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Authors’ responses to the comments of the paper 

SMCB-E-01162002-0026 
 

Replies to the Associate Editor: 
 

Above all, I am very grateful for your efforts on my paper. I have carefully read and been 
thinking about all comments from you and the reviewers respectfully. I have tried hard to 
revise my paper and improve its quality according to your suggestions. The followings are 
answers to your comments and suggestions.  

 
1. The whole paper is revised carefully to address the contributions of the paper clearly in 

many places. The second paragraph in the Introduction is rewritten to clarify the clues of 
my paper with respect to existing work.  

2. More references are added and referred in the context. 
3. All notations have been checked and defined clearly. 
4. Some more words are added in Section 2.2.1 and Section 3.2 to address the meanings of the 

parameters. Their influences on system performance are discussed and clearly stated. Their 
reference values in average applications are also given in these sections as well as in 
Simulations.  

5. Evaluation part, Section 3.3, of the paper addresses the computation efficiency, learning 
ability and incremental learning ability of the modified RFWR algorithm. The purpose is to 
show that the proposed modified RFWR is better in these three issues than the original 
RFWR, which is very important for dynamic multi-sensor data fusion applications. One of 
the important contributions of the paper is to propose a new cost function stated in 
Equation (10). We compare this with the original one to show better performance in 
learning. This comparison is useful to prove that the proposed modified RFWR has better 
learning efficiency than the original RFWR, thus is better for sensor fusion in dynamic 
environment. Concerning about the incremental learning ability. The incremental learning 
ability is accumulated with incremental training data in input space. The motivation of the 
paper is to propose a new kind of learning algorithm with incremental learning ability that 
is applicable for sensor fusion system in which the number and the sort of the sensor in the 
system may be variable in accordance with dynamic environment. Thus the paper provides 
performance evaluation on the algorithm we proposed to show that the modification of the 
original RFWR does not affect its incremental learning ability that is very important for 
dynamic fusion system. The paper is not trying to study how many ways or what are the 
other ways to gain incremental learning ability. One more paragraph is added in the end of 
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Section 3.3.3 to state the importance of the incremental learning ability on multi-sensor 
data fusion application. 

6. I am sorry for my limited ability in written English. I have tried my best to improve 
presentation of the paper. I also asked two of my friends who have lived in English-spoken 
countries for more than 10 years to check the expressions of the paper. Hope the paper is 
more readable this time. 
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Replies to the Reviewer 1: 
 
Above all, I am grateful to you for reviewing my paper and respect your comments very much. 
The following is the answer to each of your comments after I read them thoroughly several 
times. 
 
1. Thanks for your positive comment on my paper. 
2. The Reference of the paper is reorganized and many more important papers which relate to 

my research are listed. All reference papers are referred in the context. The relations 
between the RFWR and the RBF are clearly stated in the second paragraph of the 
Introduction. 

3. There has no evidence that the RFWR is a type of neural network or a type of ellipsoidal 
basis function NN since the Schaal and Atkeson’s pioneer work addressing RFWR. So I 
cannot state this in my paper. Actually, this is not so important since my paper emphasizes 
applications of RFWR in multi-sensor data fusion system rather than classification of 
RFWR. 

4. Section 2.1 is modified to explain what the RFWR is more clearly. But I don’t want to say 
RFWR is a kind of neural network since I cannot find evidence in literatures, though it’s 
clear that RFWR is a kind of link net. The slash in the nodes of figure 1 means the linear 
relationship. 

5. I have checked the whole paper and corrected the errors. 
6. All your efforts are appreciated very much. I have checked the whole paper and corrected 

the errors. 
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Replies to the Reviewer 2: 
 
Above all, I am very grateful to you for reviewing my paper. I appreciate your comments and 
respect your suggestions very much. The followings are the answers to each of your 
comments after I read them thoroughly several times. 
 

1. I have checked the whole paper and corrected mistakes as possible as I can. Hope this time 
the paper is more readable. 

2. The Introduction Section is carefully revised. Relevant techniques are reviewed and 
summarized more extensively with more literatures added in References. 

3. I have done my best to improve the quality of the plots in the paper. Hope they are 
illustrative this time. 

4. I have checked all variables in the paper and tried to define and explain them clearly, e.g. in 
Section 2. 

5. Parameters used in the modified RFWR algorithm and simulations have been explained 
their meanings in details. Their normal values in applications are given. See following 
explanations of items 4 and 5. For more details, please check sections 2.2.1, 3.2 and 3.3.2. 

6. See following explanations in items 9-13 for more details. 
7. Many more relevant work has been added in References and referenced in context. 
 
Specific: 
1. b_{k}, b_{0}, k, P ,P^{n}, and e_{cv} are defined clearly in Sections 2.1, 2.2.2. 
2. In Eq. (6), the cost function relates to y_{i}, which is the output in each individual 

receptive field. In Eq. (10), the cost function relates to y, which is the final weighted 
averaged output of all receptive fields. The difference of the idea of the two cost functions 
is obvious. 

3. Thanks for your suggestion. We use G. to denote the gain factor. 
4. More words are added to explain the meaning of the gain factor. Its usual value is clearly 

given in Section 3.3.2. 
5.The meanings of w_{gen} and w_{prun} are explained in more details in section 2.2.1. 

More words are added to explain w_{a} and e_{a} in section 3.2. Their reference values 
used in simulations are given in section 3.3.2. 

6. Figure 2 is corrected for its legend. 
7. In fig 3 (c) and (d), ellipses represent receptive fields. I have added the statement in the last 

paragraph in page 10 in the revised paper. Due to space limitation of the paper, results from 
original RFWR are not given here. But the performance of the original RFWR and the 
modified RFWR are compared extensively in the paragraph below fig.3. 

8. One of the important contributions of the paper is to propose a new cost function stated in 
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Equation (10). We compare this with the original one to show better performance in 
learning. This comparison is useful to prove that the proposed modified RFWR is better 
than the original RFWR for our tasks.  

9.Concerning about the incremental learning ability. The incremental learning ability is 
accumulated with incremental training data in input space. The motivation of the paper is 
to propose a new kind of learning algorithm with incremental learning ability that is 
applicable for multi-sensor data fusion in dynamic environment. Thus the paper provides 
performance evaluation on the algorithm we proposed to show that the modification of the 
original RFWR does not affect its incremental learning ability that is very important for 
dynamic fusion system. The paper is not trying to study how many ways or what are the 
other ways to gain incremental learning ability. One more paragraph is added in the end of 
Section 3.3.3 to state the importance of the incremental learning ability on multi-sensor 
data fusion application. 

10. Actually, the original RFWR cannot deal with sensor fusion task. This is the main 
inspiration of the research, which is stated in the third paragraph of Section 5. Tsai’s 
method is a classical method in camera calibration and has been used widely in practice. 
So it is meaningful to compare performance of our method with Tsai’s method. 

11.Yes, but the modified RFWR alone (before fusion) has overall similar performance to that 
of Tsai’s method which has been widely adopted in applications. This is actually a proof of 
effectiveness of the modified RFWR. 

12. Tsai’s method is of another category for calibration that leads to explicit descriptions of 
camera models. The model from Tsai’s method is usually not able to fuse since each 
camera model obtained is independent. The proposed fusion-based calibration system is of 
a new kind of category that leads to no explicit parametric descriptions of the camera 
model. Calibration model of the camera are integrations of numerous pairs of linear and 
Gaussian kernel models in numerous receptive fields. Thus measurements from the 
fusion-based calibration model are the fused results from estimations on all different 
receptive fields obtained from the modified RFWR algorithm. An additional contribution 
of my paper is to propose a novel category for camera calibration techniques. 

13. Comparisons between table 2 and 3 are just to show that the modified RFWR algorithm 
alone is also a good solution for camera calibration. We think this comparison is 
meaningful to evaluate the performance of the modified RFWR in camera calibration 
applications. 
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Replies to the Reviewer 3: 
 
Above all, I am very grateful to you for reviewing my paper. I appreciate your comments on 
my paper and respect your suggestions very much. The followings are the answers to each of 
your comments and suggestions. 
 

1.In real applications, prior knowledge about sensors involved in the system should be 
invoked, such as measurement performance of each sensor, measurement precisions 
(confidences) of each sensor across its range, etc. The weights of the weighted average are 
chosen according to prior confidences in the sensor measurements across its measurement 
ranges. The simple average scheme is just an exemplified scheme to be adopted in the 
paper for the fusion system. For the camera calibration case, it is well adapted. One could 
use more elegant fusion schemes for final results according to applications. 

2.The meanings of the thresholds are explained in more details in Section 3.2. Their normal 
values are given in section 3.3.2.  

3. The calibration strategy for the two-camera system based on the modified RFWR technique 
and the fusion scheme is actually a novel contribution to the camera calibration problem. 
Tsai’s two-step camera calibration method is very famous, It is a very efficient technique 
for camera calibration and thus has served as a classical method for many years. Therefore 
it is normal, necessary and convincing to compare any new calibration methods with Tsai’s 
method to evaluate their performances. This is also what we do for our method in our 
paper.  

4. Spelling error in figure 2 has been corrected. 
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Replies to the Reviewer 4: 
 

Thank your very much for your reviewing. I have revised the whole paper and hope to 
clarify the contribution of the paper more clearly. Multi-sensor data fusion in dynamic 
environment is a key problem to be studied in sensor fusion society. Developing a new fusion 
structure with the incremental learning ability is a good solution to this kind of problem. 
RFWR is a kind of learning scheme with incremental learning ability that can overcome many 
disadvantages from other incremental learning algorithms. But the idea it adopts for learning 
is not appropriate to the application in multi-sensor data fusion, since the learning in RFWR is 
emphasizing on individual receptive field that will leads to unbalanced measurements across a 
particular sensor’s measurement ranges as well as among different sensors. Actually this 
research is motivated by the failure that we cannot get reasonable results by applying the 
normal RFWR in multi-sensor data fusion applications. Thus we modify the idea of learning 
for the normal RFWR to adapt to multi-sensor applications. We should state that the 
contributions of paper lie in: 

a) We state that a fusion system with incremental learning ability is effective for dynamic 
sensor fusion problems; 
b) We find that RFWR of the incremental learning ability is a good alternative in this category 

that can overcome the disadvantages of bias dilemma and negative interference from 
normal learning algorithm of incremental learning ability. Thus it is a good strategy for 
multi-sensor applications; 

c) We state that direct application of the RFWR is not proper due to its computational 
complexity and its unbalanced measurements for sensors involved in the system. Thus we 
modify the learning idea that is adopted in the normal RFWR with the help of the idea of 
back propagation. We propose new cost function that is more efficient and more proper for 
dynamic sensor fusion applications. We evaluate the proposed new RFWR and show that 
the modified RFWR is more efficient in computation. Much more, all remarkable 
characteristics of the normal RFWR are meanwhile retained and somewhat improved. This 
is also a good extension for the RFWR method. 

d) All these contributions are evaluated with a two-camera calibration system. We not only 
show that the proposed modified RFWR is effective for sensor fusion, but also propose a 
novel scheme for camera calibration that has a more flexible structure and more accurate 
measurements. 
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Abstract  

This paper addresses applications of incremental learning ability from Receptive 
Field Weighted Regression (RFWR) algorithm in multi-sensor data fusion system. 
First, a new cost function is proposed based on the idea of back propagation (BP) to 
modify the original RFWR learning algorithm. This cost function emphasizes balanced 
learning among all receptive fields in addition to individual adjustments. With the 
proposed cost function and the BP learning algorithm, the computation efficiency of 
the modified RFWR is increased to a great extent while all remarkable advantages of 
the original RFWR are retained and somehow improved. All these features of the 
modified RFWR make it fit for applications in multi-sensor data fusion system. Thus a 
new fusion structure and algorithm with incremental learning ability is constructed 
based on the modified RFWR algorithm together with the weighted average algorithm. 
Experiments of a two-camera unified positioning system are implemented successfully 
to test the proposed computation structure and algorithms. 
 
Keywords: Sensor Fusion, Incremental learning, Receptive field, Back Propagation.
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1  Introduction 
 

Frequently in practice, a multi-sensor fusion system needs to be upgraded by integrating 
additional sensors into the system to adapt to more complex environments and applications. 
Normally the structure and fusion algorithm of the fusion system should be designed from the 
very beginning for the upgrade, even if most of the sensors of the system are retained without 
any changes [2]. This inefficiency can be overcome if the fusion system has incremental 
learning ability [11]. With this ability, the structure of the fusion system is easy to be upgraded 
and only the added sensor needs to be trained before being included in the whole system.  

Learning with spatially localized basis function [4,16,17] has been studied for many years 
in contrast to the learning with the global basis function [15]. A lot of applications have been 
accumulated ranging from robot control [6], chemical process modeling [7], nonlinear system 
estimation and control [8], to image coding [18], pattern recognition [9,12], etc. Incremental 
learning ability from local receptive-field is proved to be extremely useful for approximating 
unknown functional relationships between input and output data streams [11]. Among these, 
Schaal and Atkeson proposed a Receptive Field Weighted Regression (RFWR) algorithm with 
incremental learning ability in [1]. This algorithm is related to constructive learning [10] and 
local function approximation based on the well-known radial basis function networks. But 
with some particular nonparametric regression techniques involved, RFWR is more efficient 
for incremental function approximation in the sense that it is not necessary to store the 
training data and discard receptive fields after using them. In addition, it can overcome some 
difficulties occurring normally in the incremental learning tasks, especially the bias-variance 
dilemma [13] and the negative interference problems. Therefore the RFWR is able to deal 
with a sufficiently complex learning task and can be expected to have wide applications in 
many disciplines. 

However, direct application of RFWR in the multi-sensor data fusion system is not 
practical. Although some techniques from nonparametric statistics, such as leave-one-out 
local cross validation and the stochastic approximation, improve the effectiveness of learning 
for RFWR, they contribute much to the computational complexity of whole learning process. 
Moreover, RFWR is a receptive field based learning system. Learning process is actually the 
process of updating size and shape of the receptive field describing model uncertainties. The 
idea of learning adopted in RFWR emphasizes only individual adjustment in each receptive 
field. If this learning scheme is utilized in multi-sensor data fusion, resultant sensor models by 
RFWR may unexpectedly have inconsistent measurements across their ranges and thus 
unbalanced contributions to the final fused result. Thus the learning algorithm in RFWR 
should be modified to fit for the characteristics of the multi-sensor fusion applications.  
 In this paper, a new cost function based on the idea of back propagation (BP) [5] for 
learning in RFWR is proposed so that balanced updates among all receptive fields are 
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additionally reached. With the new cost function, back propagation algorithm is consequently 
involved for learning. These two modifications sharply reduce the computational complexity 
of the modified RFWR compared with that of the original RFWR. At the same time, all 
remarkable features of the RFWR, such as incremental learning ability and efficiency to 
approximating complex functions, are retained and improved. In addition, some tricks are also 
proposed to further improve the learning efficiency of the modified RFWR.  

The modified RFWR algorithm is then served as an efficient tool for learning in 
multi-sensor data fusion problem, where learning ability has become extremely important, 
especially in dynamic unknown environment [3,21]. For a fusion system, its fusion structure 
is of the same importance as its fusion algorithm in the sense that both are tightly related to 
computation efficiency and final performance of the fusion system [20]. We show that the 
modified RFWR is inherently fit for sensor fusion problems not only in its learning ability but 
also in its computation structure. Combined with the weighted average strategy, a new 
computation paradigm is formed for multi-sensor data fusion system.  
 The rest of the paper is organized as follows. Section 2 briefly introduces the idea and 
algorithm of RFWR. Section 3 describes the ideas of the new cost function together with the 
back propagation learning algorithm. We will show that the incremental learning ability is 
retained and improved with the new cost function, while the computational complexity is 
decreased to a great extent. In Section 4, the computation structure of RFWR is extended to a 
new computing paradigm for sensor fusion applications by combining it with the weighted 
average scheme. In the new computation paradigm, the modified RFWR algorithm is used for 
learning and local fusion and the weighted average algorithm is used for final fusion. The 
success of the extended model is shown by its application in a unified two-camera positioning 
system described in Section 5. Conclusions are provided in Section 6.  
 

2   Receptive Field Weighted Regression 

2.1  Preliminaries 

Receptive Field Weighted Regression (RFWR) algorithm is composed of two steps: 1) 
learning on the receptive field; and 2) building prediction from weighted average approach. 
Two models are involved in each receptive field. A linear model describes the input-output 
relations of the receptive field while a Gaussian function-based model describes the weight of 
the estimated output in this receptive field to the final estimation. For a training sample 

),( yx , assuming there are K receptive fields to be used to approximate function relations 
between x  and y , the models of the k-th receptive field are:  

 ，k
T

kk
T

kk by β~)(ˆ ,0 xbcx =+−=    (1) 

 )),()(
2
1exp( kk

T
kkw cxDcx −−−=    (2) 
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where k = 1, …, K. Here, Equation (1) is a linear model, approximating relationship between 
input and output data in the k-th receptive field. kŷ  is the prediction of a query point x  in 
the k-th receptive field. kc  is the location of the center of the k-th receptive field in input 
space. TT

k )1,)((~ cxx −= , is the center-subtracted, augmented input vector. T
k

T
kk b ),( ,0bβ = , 

denotes the parameters of the locally linear model, composed of the coefficient vector kb  
and the bias kb ,0  of the linear model. Equation (2) determines the size and shape of each 
receptive field in terms of a positive definite distance matrix kD for the k-th receptive field. 
Normally kD  can be decomposed as k

T
kk MMD = , in which kM  is an upper triangular 

matrix. The weight kw  corresponds to the activation strength of the k-th receptive field for a 
prediction kŷ . So a prediction ŷ  for a query point x  is obtained from the normalized 
weighted sum of individual predictions kŷ  of all receptive fields: 
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Figure 1 is the structure of RFWR, which shows the computation procedure of RFWR 
and the relations among models described by (1), (2) and (3). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Structure plot of RFWR 

 
2.2   Learning with RFWR 

Learning task in RFWR includes three parts: 1) evolving receptive fields for 
approximation descriptions; 2) updating the linear model parameters kβ , which is to learn the 
linear model for input-output relations in each receptive field; and 3) updating the distance 
matrix kD , or similarly, its decomposed matrix kM , which is to adjust the size and shape for 
each receptive field.  
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1ŷ

wk 

w2

w1

Linear Model 

Gaussian Kernel 
Function 

Weighted 
Average 

… …

ŷ
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2.2.1 Evolving receptive field 

A new receptive field is created if a training sample ),( yx  does not activate any of the 
existing receptive fields by more than a threshold genw . When a new receptive field is created, 
the parameters related to the new receptive field are initialized. On the contrary, a receptive 
field is pruned if it overlaps another receptive field too much. The overlap can be detected 
when a training sample activates two receptive fields simultaneously more than a predefined 
threshold prunw . We take the rule that the receptive field with the larger determinant of the 
distance matrix D is pruned. It is useful to note that genw  and prunw  determine the overlap of 
the receptive fields. They could be chosen independently of a particular learning problem and 
should thus be considered constants of the algorithm and not open parameters. Empirical 
values for genw  is 10%, and 80%~90% for prunw . 
 

2.2.2 Learning the linear model 

Due to the linearity of kβ  in the regression model in RFWR, kβ  can be updated from a 
weighted regression in the batch form. Since each receptive field is updated in the same way, 
we drop the subscript k in the following discussion. 

 WYPXWYXWX)Xβ TT1T == −(     (4) 

where T
p )~,,~,~( 21 xxxX K= , T

pyyy ),,,( 21 K=Y , T
pwwwdiag ),,,( 21 K=W , P =(XTWX)-1 , 

and p is the number of training data points. According to [19], Equation (4) can be 
transformed into the recursive form given a training point ),( yx : 

 T
cv

nnn ew xPββ ~11 ++ +=     (5) 

where 
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

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A forgetting factor λ  is included here in order to gradually cancel contributions from 
previous data points.  
 

2.2.3 Learning the shape and size of the receptive field 

It is clear that the update of kM cannot be implemented by using Equation (2) in a direct 
way. Therefore, a cost function is introduced assuming that there exists a batch of training 
data points: 
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However, training in terms of this cost function will result in over-fitting problem. Thus 
several techniques, such as leave-one-out local cross validation, etc., are involved, which 
results in the following form: 
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where Di,j is the element in distance matrix D. With the cost function described in (7), M can 
be adjusted by using gradient descent method with learning rate α: 

 
M

MM
∂
∂

−=+ Jnn α1           (8) 

Computation of M∂∂ /J  in (8) can further be transformed to conduct in an incremental way 
by adopting the stochastic approximations, which are normally very computationally 
expensive [19].  
 
 

3   New Cost Function for RFWR 
 

3.1   New cost function 

In RFWR, the shape and size of a receptive field is determined by its associated Gaussian 
kernel function as described in Equation (2). Thus evolving the shape and size of receptive 
field turns out to be updating of the Gaussian kernel function, which is further to update the 
decomposed distance matrix M as shown in Section 2. As mentioned before, update of the 
Gaussian kernel function has to resort to a suitable cost function because Gaussian kernel 
function does not describe the relationship between input x  and prediction kŷ  directly. In 
RFWR, the cost function described by (6) or (7) is technically set up from the viewpoint of 
local learning, and learning process focuses on individual adjustment of each receptive field. 
This is unfortunately not appropriate for applications in multi-sensor data fusion since a 
trade-off among all the receptive fields should be achieved to implement the same and 
balanced reliability for all measurements of each sensor. 

The output of Gaussian kernel function in (2) is the weight kw  that describes the 
contribution of estimation kŷ  from associated linear model to the final estimation ŷ . 
Updating the shape and size of receptive fields is basically to adjust the weight kw . From 
figure 1, we can see that this work is very similar to that in training a neural network. Thus the 
idea of back propagation can be employed here and a similar cost function used in BP 
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network can be borrowed: 

 ∑∑
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This cost function is to adjust weights kw  in order to minimize the bias between the actual 
output y and the prediction of RFWR ŷ . Moreover, according to the feature of RFWR, there 
exists the relationship between the weights kw  and local prediction bias )ˆ( kyy −  in the 
update process, which leads to the second cost function: 

 ∑∑
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This cost function emphasizes that weights kw  should be adjusted in terms of the local 
prediction bias so that the coordination among the adjustments of all the receptive fields can 
be achieved. By combining Equation (9) and (10), a new cost function is obtained and 
adopted in this paper: 

 ∑∑
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Equation (11) means that the update of all the receptive fields is dedicated to global prediction 
error and local prediction bias. This idea improves that of original RFWR and is more 
complete and reasonable. The new cost function in (11) focuses on the balance among all the 
receptive fields in addition to adjustments in individual fields, while cost function of the 
original RFWR in (6) or (7) only emphasizes on adjustments in individual fields. We believe 
that balance among all receptive fields is important because this means estimations from all 
receptive fields have identical contributions to the final result. This consideration is essential 
for the applications of the modified RFWR algorithm in multi-sensor fusion systems. 

Update of the receptive fields with the new cost function is done by minimizing J with 
respect to M. After tedious mathematical derivations, we have  
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where we define ∑∑
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3 )ˆ( . For the second equation 

in (12), we use the relation: 21 ˆJyJ = , which is an equivalent form of Equation (3).  

Equation (12) is efficient for iterating M in RFWR training. But normally the 
convergence speed for M is slow. Thus a gain factor G is introduced to improve the training 
speed and training precision, which leads to the following equation: 



 16

 












∂

∂−−
+

∂

∂−
−⋅=

∂
′′∂

+
∂

′∂
=

∂
∂

j

jj

j

jj

jjj

w
J

JJyyw
J

yy
yyGJJJ

MMMMM 2

23
2

2

)(
)(

ˆˆˆ
ˆ   (13) 

Computational complexity from (13) or (12) is far less than that of Equation (8). We will 
show this later by simulation comparisons. 
 

3.2  Additional skills for the modified RFWR 

The performance and computation efficiency of the modified RFWR can be further 
enhanced by the following two tricks in applications: 
1) The effect of updating a receptive field can almost be neglected for a training data point if 

its corresponding weight is less than genaa www <<0, . Of course this neglect is surely 
affect the training accuracy, thus the value of aw  is normally set as gena ww )( %~% 51=  
according to applications and requirements for training accuracy. So we can judge which 
receptive field will be adjusted by comparing kw  with aw  in order to improve the 
training efficiency. 

2) Considering the approximation error yy ˆ− . If yy ˆ−  is sufficiently small, say, smaller 
than a predefined threshold ae : aeyy <− ˆ , we can only take the cost function in 
Equation (10) instead of that in Equation (11). This is because if yy ˆ−  is small enough, 
the cost function in Equation (9) has already been approximately minimized. Thus further 
minimization of this cost function contributes very little to iterations of M but much to 
computational complexity. Hence the cost function in Equation (10) is the main part that 
should be minimized for updating M. This trick is useful and simplifies the computational 
complexity in many applications. Ignorance of little approximation error yy ˆ−  is surely 
realted to the final training accuracy, thus the threshold ae  is usually determined 
according to practical learning task. 

 

3.3   Evaluations of the modified RFWR 

3.3.1  Comparisons of the computation efficiency 

We first show the computation efficiency of the modified RFWR algorithm improved by 
the new cost function and the BP learning scheme over the original RFWR. We use a PC with 
CPU- Intel Celeron 366, OS-Windows 98, Simulation Tools-Matlab5.3 for all simulation 
calculations. In the simulation, we construct a RFWR model with 100 receptive fields and 
then use one training data point to finish one epoch of training by using RFWR and modified 
RFWR respectively. Figure 2 shows the result. 

From figure 2, we can see that the more the receptive fields, the more time the modified 
RFWR saves over the original RFWR. This is especially important for training task of 
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approximating complex functions since the more complex the learning task is, the more 
receptive fields it requires. Thus more time for learning can be saved.  
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Figure 2: Comparison of training time
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3.3.2 Comparison in the learning ability 

The complex function used in [1] is adopted here to investigate the learning ability of the 
modified RFWR and compare with that of the normal RFWR. 

 { } 1,),01.0,0(25.1,,max )(55010 2222

≤+= +−−− yxNeeez yxyx    (14) 

We take this task to show the advantages of the modified RFWR over the original RFWR on 
the same training set. Similarly, 500 training samples are drawn uniformly from the input 
space. The test set consists of 1681 data points corresponding to the vertices of a 41x41 grid 
over a unit square. Corresponding output values are the exact function values. The 
approximation error is measured as a normalized mean squared error, nMSE. The initial 
values of the parameters of the modified RFWR in training are set to M0=5I (I is the identity 
matrix), 1.0=genw , 9.0=prunw , 001.0=aw , 001.0=ae , G=100, and 
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 The simulation results are shown in Figure 3. Figure 3 (a) is the function to be 
approximated; figure 3 (b) is the approximate result after 34 epochs. Figure 3 (c) is the 
receptive field in input space after 1 epoch, and figure 3 (d) is the final receptive fields after 
34 epochs (In figure 3(c) and (d), receptive fields are represented by the ellipses, “*” stands 
for the center of each receptive field and the training data is displayed by “.”.).  
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We compare the simulation results in Figure 3 with the results reported in [1]. With the 
modified RFWR, 25 receptive fields are created after 1 epoch illustrated in Figure 3(c), while 
with the original RFWR, only 16 receptive fields were created. This means that the modified 
RFWR has higher learning efficiency than the original one. After 34 epochs of training, the 
approximation error meets the training termination condition, nMSE<0.02 and 51 receptive 
fields are obtained. If it is trained with original RFWR, 50 epochs are needed before 
converged to the same nMSE, and 48 receptive fields are finally created. This means the 
convergence speed of the modified RFWR is faster than that of the original RFWR. Moreover, 
since the learning in the modified RFWR is conducted evenly in all receptive fields, more 
receptive fields are obtained for final results that have balanced convergence preciseness over 
all receptive fields. From the comparisons, we can conclude that the performance and learning 
ability of the modified RFWR with the new cost function and the BP algorithm is obviously 
better than that of the original RFWR. 
 

3.3.3 Incremental Learning Ability 

Although the cost function and the learning algorithm in modified RFWR to update the 

(a) Target function to be approximated (b) Approximated function after 34 epochs of training 
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(c) Distribution of receptive fields after 1 epoch (d) Distribution of receptive fields after 34 epochs
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Figure 3. Simulation results 
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kernel function is different from that in RFWR due to different cost function, incremental 
learning ability is retained. We show this by the following simulations. 

In this simulation, the input space is divided into three subspaces: { }2.00.11 −<<−= xT , 
{ }4.04.02 <<−= xT , and { }12.03 <<= xT . They have overlaps in some parts. First the 

algorithm is used to train the function on 1T  only and tested on 1T  with convergence 
condition. The resulting approximated function is depicted in Figure 4 (a). Then the trained 
results from 1T  (including linear models, Gaussian kernel functions, and receptive fields 
created) are trained further on 2T  only and tested on 1T ∪ 2T . The resulting approximated 
function is plotted in figure 4 (b). It is seen that the functional relations in the input subspace 

1T  is still well retained after it is trained in 2T . Finally the trained results from 1T ∪ 2T  are 
trained on 3T  only and tested on the whole space, i.e. 1T ∪ 2T ∪ 3T . Figure 4 (c) illustrates 
the final results of the approximated function. Through Fig. 4(a) to (c), we can see that when 
the modified RFWR is used to train a function, the results from former training spaces hold in 
consequent training spaces and are not required to be trained again. This exactly verifies the 
incremental learning ability of the modified RFWR.  

 
(a) Training in 1T         (b) Training in 2T  

 

 

(c) Training in 3T  

Figure 4. The incremental learning ability with the modified RFWR 
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The incremental learning ability is especially important for applications in dynamic 
multi-sensor data fusion where structure of a multi-sensor system, thus the algorithm for data 
fusion, might be variable online. Thus efficient task implementations in different phases could 
be achieved by involving different sorts and numbers of the sensors in the sensor system. 

 
 

4  Fusion system based on the modified RFWR 

 A RFWR model can be interpreted as a system composed of a set of experts [14]. Thus 
the final prediction can be regarded as the consensus result from all the experts as shown in 
Equation (3). This characteristic of RFWR is similar to that of a multi-sensor data fusion 
system. Moreover, RFWR presents a valid scheme to model an uncertain system and a RFWR 
model is used to predict the actual output of a system according to its input. Therefore, RFWR 
can be extended to be a good solution to implement fusion. Figure 5 shows the structure for a 
fusion system by combining the RFWR model and weighted average scheme. 
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In Figure 5, iu  is defined as the uncertain description of the output of i-th RFWR model, 
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   (15) 

If a RFWR model is considered as a team of experts, the fusion system based on RFWR 
model can be a set of several expert teams. In addition, the new cost function employed in the 
modified RFWR emphasizes balanced update among receptive fields. If a sensor in a 
multi-sensor system is represented by a RFWR model with many receptive fields, then 
balanced update of the receptive fields means the sensor has a consistent performance across 
its measurement range. A fusion system of several sensors will be modeled by several RFWR 
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models, with each RFWR representing the model of each sensor. The final fused result of the 
fusion system is accomplished by the weighted average algorithm, which addresses 
contribution of each sensor via its corresponding weight. With these characteristics of RFWR 
and weighted average, the fusion model illustrated above can meet the requirements of a 
fusion system. Furthermore, it can enhance the performance of the fusion system, such as 
accuracy and robustness.  
 Since the modified RFWR proposed in the former sections retains the computation 
structure of the original RFWR and improves its learning efficiency, it is a better algorithm to 
be integrated into a fusion system. Thus the modified RFWR algorithm is used to realize the 
fusion system depicted in Fig. 5. 
 

 

5  Experiments 

Multi-camera systems can not only provide a larger quantity of visual information, but 
also improve the accuracy and reliability of the information needed [21]. Therefore it has 
attracted great attention since long ago. A two-camera vision system has been set up in our lab 
to form a stereovision system, with which the 3-D location of the object in the world 
coordinate system can be obtained from its projections in two 2-D image planes. Figure 6 
shows the configuration of our system. 
 

 
 

Figure 6. A two-camera vision system 
 

The purpose of calibration model is to obtain measurements for control. Thus if we can 
develop a fusion system for the two-camera system that can provide measurements of the 
environment, the calibration model of the two-camera system is equivalently obtained even 
though we do not have explicit parametric descriptions of the camera models. Furthermore, 
the measurements from fusion system can be expected to be more accurate than that from 
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either single one. So we use the modified RFWR model for learning the calibration model of 
the camera and use fusion algorithm for final measurement. 

The fusion scheme presented in Section 4 is adopted here for the camera calibrations. We 
use the modified RFWR algorithm to learn the calibration model for each camera. Here we 
should point out that only modified RFWR can accomplish the fusion task because the 
modified RFWR has the modified cost function that emphasize on balance of receptive fields, 
which inherently meet requirements of multi-sensor data fusion. 

Since the experiment is just to show the application of the modified RFWR in camera 
calibrations, we restrict ourselves to a 2-D to 2-D mapping calibration problem, which means 
the depth information of the object in the world coordinate system is omitted. Even though, 
the 2-D to 2-D calibration problem is still a complex nonlinear mapping that is sufficient to 
evaluate the performance of the fusion scheme and algorithm developed. The calibration 
problem with the fusion method is solved in two stages. The camera models are first trained 
and tested with sampling data individually. The final results are obtained from the fusion 
system with weighted average scheme. 

To simplify the learning tasks, each camera employs two RFWR models, either of which 
is for mapping in x or y direction from the world coordinate system to the image plane: 
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where ),( i
c

i
c yx  (i=1,2) is the location of the object in the i-th camera's image plane and 

),( ww yx  is the location of the object in world coordinate space. The final fusion results are 
obtained from Equation (15).  

For gathering the training data, the same procedure as in [22] is followed here so that 504 
training samples and 252 test samples are obtained with the help of reference grids. The 
statistical error of the samples is illustrated in the Table 1.   

Table 1.  The statistical error of the samples (unit: mm) 
(ME-Max Error, MSE-Mean Square Error) 

Statistical error in X axis Statistical error in Y axis 
Item 

ME MSE ME MSE 

Camera 1 0.613 0.106 0.661 0.096 

Camera 2 0.609 0.084 0.617 0.104 

The corresponding models are obtained via the training procedure with the modified 
RFWR algorithm. The training results are shown in Table 2, where RF# is the number of 
receptive fields obtained after 7 epochs. 

To illustrate the advantage of the modified RFWR in modeling, we compare it with a 
well-known two-stage method proposed by Tsai in [22]. Results of Tsai’s method for the same 
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two-camera unified calibration problem are shown in Table 3. Comparing the results in Table 
2 with Table 3, we can see that in the training stage, all maximum errors (ME) and mean 
square errors (MSE) of modified RFWR are smaller than those of Tsai’s method. In the test 
stage, most of the MEs from the modified RFWR are smaller except in the x direction of the 
2nd camera’s image plane and the two methods are of the same performance for MSEs. This 
means that the modified RFWR itself is a good solution for the camera calibration problem. 

Table 2.  Training result with the modified RFWR (unit: mm) 
(ME-Max Error, MSE-Mean Square Error) 

Camera 1 Camera 2 
Items 1RFWR x  1RFWR y  2RFWR x  2RFWR y  

RF# 121 55 140 92 

ME 3.3274 2.7429 3.8856 2.7995 Training 
Error MSE 0.7689 0.9408 1.1632 0.5093 

ME 4.3420 4.2714 4.4406 3.4515 Test 
Error MSE 2.5152 2.2641 2.9102 2.3275 

 

Table 3.  Training result of Tsai’s method (unit: mm) 
(ME-Max Error, MSE-Mean Square Error) 

Camera 1 Camera 2 Items x y x Y 

ME 3.4551 2.9237 4.3765 3.2456 Training 
Error MSE 1.9908 0.9465 2.9001 1.1647 

ME 5.4986 4.5826 4.3523 3.8192 Test 
Error MSE 2.4941 2.6451 3.3570 1.6707 

The fusion model can be achieved after training and testing stages described above, and 
used to get more accurate and robust measurement results. 50 samples are acquired randomly 
in the whole sample space and used to evaluate the performance of the fusion method. The 
final results are shown in Table 4. Results from Tsai’s method are also provided as further 
comparisons.  

In Table 4, it is shown that the performance of individual RFWR model is worse than that 
of Tsai’s model. But with the fusion algorithm proposed, the fused results are much better 
than either individual one’s as well as results from Tsai’s method. This verifies that the fusion 
structure shown in Figure 5 and the fusion algorithm based on the modified RFWR algorithm 
are successful in multi-sensor fusion applications. And the fusion strategy from Equation (15) 
and the fusion model from Equation (16) are also effective for this application. 
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Table 4.  Results of the fusion system based on the modified RFWR algorithm (unit: mm) 

(ME-Max Error, MSE-Mean Square Error) 

Items RFWR 
(Camera 1) 

RFWR 
(Camera 2) Fusion Tsai 

（Camera 1） 
Tsai 

（Camera 2）

ME 2.8864 4.1606 1.2890 1.8361 3.2904 

MSE 1.9998 3.0158 0.8996 1.7056 1.6774 

 

 

6  Conclusions 

An efficient algorithm with incremental learning ability is studied and introduced into the 
multi-sensor fusion system in this paper. We replace the cost function in RFWR that 
emphasizes balanced updating on receptive fields in addition to individual adjustments. This 
means, for multi-sensor data fusion applications, all measurements of a sensor have identical 
reliability across its range. With the modified cost function, idea of back propagation 
algorithm is introduced to RFWR for the updating of the receptive fields. Consequently the 
computation complexity is reduced to a great extend, while all other remarkable features, such 
as incremental learning ability, etc., are retained and improved. All these improvements for 
the RFWR algorithm make it more appropriate for its applications in multi-sensor fusion 
systems. Thus a fusion system with its structure and learning algorithm is developed to be 
endowed with incremental learning ability, which is very important for sensor fusion in 
dynamic environments. Experiments of a unified calibration process of a two-camera system 
and extensive comparisons of its performance with Tsai’s method are provided to show the 
performance of the proposed fusion system and its successful application. Future work will lie 
in new applications of proposed algorithm and fusion system with incremental learning ability 
in dynamic environments.  
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