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Comparison of Fuzzy c-means Algorithm and New Fuzzy Clustering and Fuzzy Merging Algorithm

Abstract: Clustering is the process of grouping feature vectors into classes in the self-organizing mode. Choosing cluster centers is crucial to the clustering. In this paper we compared two fuzzy algorithms: fuzzy c-means algorithm and the new fuzzy clustering and fuzzy merging algorithm. Fuzzy c-means algorithm uses the reciprocal of distances to decide the cluster centers. The representation reflects the distance of a feature vector from the cluster center but does not differentiate the distribution of the clusters. The new fuzzy clustering and merging algorithm uses Gaussian weights and the generated cluster centers are more representative. When a feature vector is of equal distance from two cluster centers, it weighs more on the widely distributed cluster than on the centrally located cluster. We implemented both algorithms in Java and tested them on several data sets. 
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1. Introduction 

Clustering is the process of grouping feature vectors into classes in the self-organizing mode. Let {x(q): q = 1,…,Q} be a set of Q feature vectors. Each feature vector x(q) = (x1(q), …, xN(q))  has N components. The process of clustering is to assign the Q feature vectors into K clusters {c(k): k = 1, …, K} usually by the minimum distance assignment principle. 

Choosing the representation of cluster centers (or prototypes) is crucial to the clustering. Feature vectors that are farther away from the cluster center should not have as much weight as those that are close. These more distant feature vectors are outliers usually caused by errors in one or more measurements or a deviation in the processes that formed the object [9]. 

The simplest weighting method is arithmetic averaging. It adds all feature vectors in a cluster and takes the average as prototype. Because of its simplicity, it is still widely used in the clustering initialization. 

The arithmetic averaging gives the central located feature vectors the same weights as outliers. To lower the influence of the outliers, median vectors are used in some proposed algorithms.

To be more immune to outliers and more representative, the fuzzy weighted average is introduced to represent prototypes:




Zn (k) =  ({q: q( k} wqkx(q)n;
















(1)

Rather than a Boolean value 1 (true, which means it belongs to the cluster) or 0 (false, does not belong), the weight wqk in equation (1) represent partial membership to a cluster. It is called a fuzzy weight. There are different means to generate fuzzy weights.

One way of generating fuzzy weights is the reciprocal of distance 




wqk = 1/ Dqk ,  (wqk= 1 if Dqk = 0)













(2)

It was used in earlier fuzzy clustering algorithms [2]. When the distance between the feature vector and the prototype is large, the weight is small. On the other hand, it is large when the distance is small. 

Using Gaussian functions to generate fuzzy weights is the most natural way for clustering. It is not only immune to outliers but also provides appropriate weighting for more centrally and densely located vectors. It is used in the fuzzy clustering and fuzzy merging (FCFM) algorithm.

In this project, we implemented the fuzzy c-means (FCM) algorithm and the fuzzy clustering and merging algorithm in Java, applied the algorithms to several data sets and compared the weights of the two algorithms. 

Section 2 describes the background of clustering algorithms. Section 3 discusses the implementation of FCM algorithm and the results on data sets. Section 4 presents the results using the FCFM algorithm. Section 5 compares the fuzzy weights in FCM and the Gaussian weights in the FCFM algorithm.

2. Clustering Algorithms

The clustering groups a sample set of feature vectors into K clusters via an appropriate similarity (or dissimilarity) criterion (such as distance from the center of the cluster).

2.1 The k-means Algorithm

       The k-means algorithm assigns feature vectors to clusters by the minimum distance assignment principle [5], which assigns a new feature vector x(q) to the cluster c(k) such that the distance from x(q) to the center of c(k) is the minimum over all K clusters. The basic k-means algorithm is as follows:

· Put the first K feature vectors as initial centers

· Assign each sample vector to the cluster with minimum distance assignment principle.

· Compute new average as new center for each cluster 

· If any center has changed, then go to step 2, else terminate.

The advantages of the method are its simplicity, efficiency, and self-organization. It is used as initial process in many other algorithms. The disadvantages are: 1) K must be provided; 2) it is a linearly separating algorithm. 

2.2 The ISODATA Algorithm 

This algorithm is based on the k-means algorithm, and employs processes of eliminating, splitting, and clustering.  The algorithm is described as following [8].

· Start with  Kinit (initial number of clusters) which is user-given. Assign the first Kinit samples as cluster centers. 

· Assign all samples to the clusters by minimum distance principle.

· Eliminate clusters that contain less than nmin feature vectors and reassign those vectors to other clusters to yield K clusters.

· Compute a new cluster center as the average of all feature vectors in each cluster.

· For each kth cluster, compute the mean-squared error (n2(k) of each nth component xn over that cluster and find the maximum (n*2(k)  component mean-squared error over within cluster k for over n = 1, …, N, where the index n* is for the maximum component.

· If there are not enough clusters (Kinit <  K/2) and this is not the last iteration, then if (max(k) > (split for any cluster k, split that cluster into two.

· If this is an even iteration and Kinit > 2K, then compute all distances between cluster centers. Merge the clusters that are close than a given value.

The advantages of the ISODATA are its self-organizing capability, its flexibility in eliminating clusters that are too small, its ability to divide clusters that are too dissimilar, and its ability to merge clusters that are sufficiently similar. Some disadvantages are: 1) multiple parameters must be given by the user, although they are not known a priori; 2) a considerable amount of experimentation may be required to get reasonable values; 3) the clusters are ball shaped as determined by the distance function; 4) the value determined for K depends on the parameters given by the user and is not necessarily the best value; and 5) a cluster average is often not the best prototype for a cluster [9].

2.3 Fuzzy Clustering Algorithms
Fuzzy clustering plays an important role in solving problems in the areas of pattern recognition and fuzzy model identification. A variety of fuzzy clustering methods have been proposed and most of them are based upon distance criteria [6]. One widely used algorithm is the fuzzy c-means (FCM) algorithm. It uses reciprocal distance to compute fuzzy weights. A more efficient algorithm is the new FCFM. It computes the cluster center using Gaussian weights, uses large initial prototypes, and adds processes of eliminating, clustering and merging. In the following sections we discuss and compare the FCM algorithm and FCFM algorithm.

3. The Fuzzy c-means Algorithm

The fuzzy c-means (FCM) algorithm was introduced by J. C. Bezdek [2]. The idea of FCM is using the weights that minimize the total weighted mean-square error:



J(wqk, z(k))  =  ( (k=1,K) ( (k=1,K) (wqk)|| x(q)-  z(k)||2









(3)



( (k=1,K) (wqk) = 1 for each q

wqk = (1/(Dqk)2)1/(p-1) /  ( (k=1,K) (1/(Dqk)2)1/(p-1) , p > 1







(4)

The FCM allows each feature vector to belong to every cluster with a fuzzy truth value (between 0 and 1), which is computed using Equation (4). The algorithm assigns a feature vector to a cluster according to the maximum weight of the feature vector over all clusters.

3.1 The FCM Algorithm 
Based on the original FCM algorithm [9], we added Steps 7, 8, 9 and modified Step 2. The pseudocode of our FCM algorithm follows.

// K is initial number of clusters, Imax is the iteration of fuzzy 

// c-means, p is for the weight

Input initial number of clusters K, Imax, p 



------------step 1: --------------

//initialize weights of prototype

for k = 0 to K-1


for q = 0 to Q-1



w[q,k] = random();

------------step 2: --------------

//standardize the initial weight over K

for q = 0 to Q-1

sum = 0.0;

for k = 0  to K-1


sum = sum + w[q,k];


for k = 0 to K-1



w[q,k] = w[q,k] /sum;

*****************************************

// starting  fuzzy c-means loop

I = 0   

------------step 3: --------------


// standardize cluster weights over Q


for k = 0 to K-1



min = 99999.0; max =0.0;



for q = 0 to Q-1




if (w[q,k] > max)





max = w[q,k];




if (w[q,k] < min)





min = w[q,k];



sum = 0.0



for q = 0 to Q-1




sum = sum + (w[q,k] – min) /( max –min);



for q = 0 to Q-1




w[q,k] = w[q,k]/sum;


------------step 4: --------------


// compute new prototype center


for k = 0 to K-1



for n = 0 to N-1




sum = 0.0;




for q = 0 to Q-1





sum = sum + w[q,k] x[n,q];




z[n,k] = sum;


------------step 5: --------------


// compute new weight


for q = 0 to Q-1



sum = 0.0



for k = 0 to K-1




D[q,k] =0.0;




for n = 0 to N-1





D[q,k] = D[q,k] + (x[n,q] – z[n,k])2



sum = sum + (1/(1 + D[q,k]))1/(p-1) ;



for k = 0 to K-1




W[q,k] = (1/(1 + D[q,k]))1/(p-1) /sum;

------------step 6: --------------

I = I + 1

If I < Imax


Goto step 3;

// end of fuzzy c-means loop

**********************************************

------------step 7: --------------

// assign feature vector according the max weight

for q = 0 to Q-1


maxWeight = 0.0;


for k = 0 to K-1


 
if maxWeight < weight[q,k];




maxWeight = weight[q,k];




kmax = k;


cluster[q] = k;

------------step 8: --------------

// eliminate clusters with no feature vectors

eliminate(0);   /* call the process of eliminating clusters contains 










less than or equal to the number passed to it.










Here we only pass 0 for this algorithm. */

------------step 9: --------------

// compute arithmetic center of clusters 

// calculate sigma and Xie_Beni value



.

for k = 1 to K do 

fuzzyweights(); 
/* Calculate fuzzy weight (Eqn. 4)

(2k = variance();  
/* Get variance (mean-square error) of 

each cluster (Eqn. 9) */

( = Xie-Beni();     /* Compute modified XB (Eqn. 8) */
3.2 A New Fuzzy c-means Implementation

3.2.1 Initialize the Fuzzy Weights. In order to comparing the FCM with FCFM, our implementation allows the user to choose initializing the weights using feature vectors or randomly. The process of initializing the weights using feature vectors assigns the first Kinit (user-given) feature vectors to prototypes then computes the weights by Equation (4).

3.2.2 Standardize the Weights over Q. During the FCM iteration, the computed cluster centers get closer and closer. To avoid the rapid convergence and always grouping into one cluster, we use


w[q,k] = (w[q,k] – wmin)/( wmax – wmin)













(5)

before standardizing the weights over Q. Where wmax, wmin are maximum or minimum weights over the weights of  all feature vectors for the particular  class prototype.

3.2.3 Eliminating Empty Clusters. After the fuzzy clustering loop we add a step (Step 8) to eliminate the empty clusters. This step is put outside the fuzzy clustering loop and before calculation of modified XB validity. Without the elimination, the minimum distance of prototype pair used in Equation (8) may be the distance of empty cluster pair. We call the method of eliminating small clusters by passing 0 to the process so it will only eliminate the empty clusters. 

3.2.4 Modified XB. After the fuzzy c-means iteration, for the purpose of comparison and to pick the optimal result, we add Step 9 to calculate the cluster centers and the modified Xie-Beni clustering validity (  [7]:

The Xie-Beni validity is a product of compactness and separation measures [10]. The compactness-to-separation ratio ( is defined by Equation (6).

 
( = {(1/K)((k=1,K) (k2}/Dmin2 














   (6)

(k2  =  ((q=1,Q)  wqk || x(q) – c(k) ||2             








 

   (7)

Dmin is the minimum distance between the cluster centers.

The Modified Xie-Beni validity ( is defined as 

( =  Dmin2/ {((k=1,K) (k2  }









        



    (8)

The variance of each cluster is calculated by summing over only the members of each cluster rather than over all Q for each cluster, which contrasts with the original Xie-Beni validity measure.



(k2  =  ({q: q is in cluster k}  wqk || x(q) – c(k) ||2












(9)
3.3 The Fuzzy c-means Results
We used the following data sets to run both algorithms:

The iris data set [7] is Anderson’s [1] 150 feature vectors of iris species. The data is labeled as K = 3 that represents 3 subspecies (Sestosa, Versicolor and Virginica). Each feature vector has 4 features. The given sample contains 50 labeled feature vectors from each class. 

The test13 data set consists of 2 natural classes. There are 13 two-dimensional feature vectors. Figure 1 shows the feature vectors.

The Wisconsin breast cancer data set (WCBD) [7] consists of 200 randomly selected from more than 500 breast cancer vectors of the University of Wisconsin Medical School. Each feature vector has 30 features in [0, 1]. The vectors are labeled for two classes. One label is attached to 121 vectors while the other is attached to 79 vectors.

The geological data set [7] is labeled for K = 2 classes. Each of the Q = 70 feature vectors has N = 4 features. The data labels are estimates by humans that give 35 to each class. These were assigned by humans providing their best guesses.

3.3.1 Different Combinations of Parameters. We tried different combinations of parameters in Table 1 and Table 2. The different combinations of Kinit, iterations and p (Equation (4)) result in different outputs. 


  In Table 1, 2, 3 and 4, we run the FCM without eliminating empty clusters. That is, if iteration I = 300, we did not interrupt the process until it reaches to the 300 iterations, then we deleted the empty clusters and then compute the modified XB.

Table 1 presents the results on iris data set. We standardized the components of feature vectors between 0 and 1, set Kinit = 150, assigned the feature vectors to the prototypes, and varied the value p and iteration number, p = 2, 3, 4, 5 and iteration = 100, 200, 300. The best result we get in Table 1 is when p = 2 and iteration >= 200, the modified XB = 2.365, there are two clusters, one has 56 feature vectors, the other has 94.

Table 1. Results on the iris date set via FCM algorithm (Kinit = 150).

Iterations
P = 2
p = 3
p = 4
p = 5


Clusters
XB
Clusters
XB
Clusters
XB
Clusters
XB

100
56, 57, 37
2.19E-30
48, 93, 9
1.8E-31
53, 68, 25, 4
0.39E-32
58, 92
2.175

200
56, 94
2.365
57, 93
2.225
57, 93
2.190
58, 92
2.175

300
56, 94
2.365
57, 93
2.225
57, 93
2.190
58, 92
2.175

Table 2 shows the results on iris data set under the same condition as in Table 1 except Kinit  = 50. The best result so far was when p = 2 and iteration I >= 100, the modified XB = 2.385, there are two clusters, one has 56 feature vectors, the other has 94.

Table 2. Results on the Iris Data via FCM Algorithm (Kinit = 50).

Iterations
P = 2
P = 3
P = 4
P = 5


Clusters
XB
Clusters
XB
Clusters
XB
Clusters
XB

100
56, 94
2.385
51, 93, 6
9.46E-32
53, 93, 4
1.36E-31
52, 92, 3, 3
3.35E-32

200
56, 94
2.385
57, 93
2.225
57, 93
2.190
52, 92, 6
1.10E-31

300
56, 94
2.385
57, 93
2.225
57, 93
2.190
54, 92, 4
2.00E-31

3.3.2 Initializing the Prototypes. To study the difference between initializing prototypes randomly and using the feature vectors, we run the program at same conditions but initialized the prototypes using feature vectors in Table 3 and initialized randomly in Table 4. The resulting clusters were affected by the initial prototype centers.

Table 3 shows the results on iris data set. We standardized the feature vectors into[0,1], initialized prototyes using the first Kinit feature vectors, and run the program by fixing p = 2 and varying the iteration number of fuzzy clustering and Kinit, where iteration number I = 100 and 200, Kinit = 150, 120, 90, 60, 30, 10 and 5. The results were very similar, after 200 iteration, the first cluster contains 56 feature vectors and the second contains 94 feature vectors.

Table 3.  Results on Iris Data via the FCM Algorithm When Prototypes Are 

Initialized Using Feature Vectors.

Kinit
I = 100
I = 200


Clusters
XB
Clusters
XB

150
56, 57, 37
2.19E-30
56, 94
2.365

120
56, 94
2.355
56, 94
2.355

90
56, 94
2.355
56, 94
2.355

60
56, 94
2.355
56, 94
2.355

30
56, 94
2.405
56, 94
2.405

10
56, 94
2.355
56, 94
2.355

5
50, 94, 6
1.15E-31
56, 94
2.355

Table 4 presents the results of the FCM algorithm under the same conditions as in Table 3 except initializing the prototypes randomly. 

Table 4. Results on Iris Data via the FCM Algorithm When Prototypes Are

              Initialized Randomly.

Kinit
I = 100
I = 200
I = 300


Clusters
XB
Clusters 
XB
Clusters
XB

150
59, 91
2.175
59, 91
2.175
59, 91
2.175

120
54, 90, 3, 3
3.05E-32
59, 90, 1
3.63E-31
60, 90
2.12

90
60, 90
2.12
60, 90
2.17
60, 90
2.12

60
59, 91
2.17
59, 91
2.17
59, 91
2.17

30
20, 90, 2, 7, 31
2.08E-32
52, 90, 8
5.07E-31
60, 90
2.105

10
58, 73, 19
2.87E-31
58, 92
2.195
58, 92
2.195

5
56, 94
2.355
56, 94
2.355
56, 94
2.355

3.3.3 Over Convergence. Figure 1 shows the feature vectors of Test13. There are two class. We run the FCM algorithm on Test13. We standardized the feature vector, initialized the prototypes using feature vectors, and set the Kinit = 13. After 30 iterations, yielded two clusters, K = 2.  We added 10 iterations, K became 1. The result shows in Figure 2.

Figure 1. Feature Vectors on Test13             Figure 2. Clustering Results on Test13          
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3.4 More Results

Table 5 represents the results on WBCD data set. The original prototype number Kinit was 40, p = 3, the prototypes were initialized using feature vectors. We run fuzzy c-means by gradually adding iterations as shown in column 1. Between iterations, the empty prototypes are deleted. After the total iteration 569, the first cluster does not change any more, the centers of the last two get very close. As some feature vectors wave between the two clusters, they are hard to merge to one. 

Table 5. Results on WBCD Data via the FCM Algorithm.

Iterations
Total 

Iterations
Cluster Number
Clusters
XB

200
200
23
26, 14, 18, 4, 3, 2, 3, 71, 1, 1, 13, 7, 3, 3, 8, 2, 1, 1, 14, 1, 1, 2, 1
6.83E-34

+ 300
500
10
33, 3, 6, 2, 20, 1, 4, 124, 6, 1
1.95E-32

+ 30
530
3
52, 25, 123
5.60E-10

+ 2
532
3
69, 62, 69
4.43E-11

+ 2
534
3
72, 56, 72
7.0E-13

+ 5
539
3
72, 53, 75
9.3E-17

+ 30
569
3
72, 126, 2
1.25E-32

+ 1
570
3
72, 113, 15
9.43E-32

+ 1
571
3
72, 113, 15
1.88E-31

+ 1000
1571
3
72, 119, 9
3.96E-32

+ 20
1591
3
72, 115, 72
6.73E-32

+ 1000
2591
3
72, 120, 8
2.45E-32

+ 5000
7591
3
72, 106, 26
6.13E-32

+ 1000
8591
3
72, 111, 17
1.38E-31

+ 10000
18591
3
72, 94, 34
6.7E-32

When we tried to set the iteration 18591 without eliminating the empty clusters during the loop, the results are very different. We only eliminated the empty clusters until out of the fuzzy clustering iteration and before the calculation of modified XB validity, The result is K = 10 and the count of each cluster is 26, 15, 3, 22, 2, 1, 2, 127, 1 and 1. The modified XB is 1.64E-31.

Table 6 shows the results on geological data using the FCM algorithm. The initial number of prototype Kinit was 70, p = 3. The prototypes were initialized using feature vectors. We started with 100 iterations, then added 10 each time until K=2 is reached.

Table 6. Results on Geological Data via the FCM Algorithm.

Iterations
Total 

Iterations
Cluster 

Number
Clusters
XB

100
100
4
20, 1, 29, 20
1.83E-32

+ 10
110
3
21, 29, 20
2.00E-29

+ 10
120
3
21, 40, 9
6.5E-32

+ 10
130
3
21, 30, 19
1.65E-31

+ 10
140
3
21, 48, 1
2.21E-32

+ 10
150
2
21, 49
0.543

4. The New Fuzzy Clustering and Fuzzy Merging (FCFM) Algorithm

4.1 The FCFM Algorithm
The FCFM algorithm [7] uses Gaussian weighted feature vectors to represent the prototypes. The algorithm starts with large numbers of clusters and eliminates clusters by distance or by size so the prototypes are much more representative. The FCFM algorithm computes fuzzy weights using Equation (10)


(p(r) = exp[-(xp -((r)  )2/(2(2)(r)]/{ ((m = 1,P)  exp[-(xm -((r)  )2/(2(2)(r)]}


(10)

The FCFM algorithm does the following steps: 

· Standardize the Q sample feature vectors and use a large Kinit. 

· Eliminate the prototypes that are closer to other prototype than a distance threshold DThresh, which can be set by a user.

· Apply k-means as the first step to get the prototypes.

· Eliminate small clusters.

· Loop in computing the fuzzy weights and MWFEV (modified weighted fuzzy expected value) for each cluster to obtain the prototype and then assign all of the feature vectors to clusters based on the minimum distance assignment. End the loop when the fuzzy centers do not change.

· Merge clusters.

4.1.1 Initial K. The FCFM algorithm uses a relatively large Kinit to thin out the prototypes. The default Kinit is calculated as:


Kinit  =  max{6N + 12log2Q,  Q}














(11)

4.1.2 Modified Xie-Beni Validity. The FCFM uses modified Xie-Beni validity same as in FCM (3.2.4). 

4.1.3 Clustering. To obtain a more typical vector to represent a cluster, the algorithm uses modified weighted fuzzy expected value as the prototypical value:

   ((r+1)  =  ({p=1, P}  (p(r) x p

















(12)

((r+1)  is obtained by Picard iterations. The initial value ((0) is the arithmetic average of the set of real vectors. 

(p(r)  = exp[-(xp -((r)  )2/(2(2)(r)]/{ ((m=1,P)  exp[-(xm -((r)  )2/(2(2)(r)]}




(13)

(2 is the mean-square error.

The process computes the fuzzy weights and the MWFEV componentwisely for each cluster to obtain the cluster center. It also computes the mean-square error (2 for each cluster, and then assigns each feature vector to a cluster by the minimum distance assignment principle.

4.1.4 Merging. For every pair of prototypes, the algorithm computes the distance between them. It finds the pair with shortest distance. If the pair meets the merge criteria, the two clusters are merged into one.

4.2 The Results of the FCFM Algorithm

We run the FCFM on three data sets, which are iris data set, geological data and WBCD data set. The results are presented below. 

For iris data, the initial number of prototypes was set to 150. The cluster centers were initialized randomly. After eliminating clusters by distance (0.28), K was reduced to 58. Reduce K to 21, 20, 18, 16, 14, 12 and 10 respectively by eliminating small clusters with p = 1, 2, 3, 4, 5, 6 and 8. Then set iteration number of fuzzy clustering to 100. Merge with ( = 0.5, 0.52, 0.54, 0.56 and 0.6, the K for each merge was 7, 4, 3, 3 and 2. Some more detailed results are in Table 7.

Table 7. Result of the FCFM Algorithm on Iris Data.

K
Clusters
XB
(k

4
49, 34, 17, 50
0.825
0.204, 0.227, 0.134, 0.192

3
63, 37, 50
1.45
0.233, 0.228, 0.192

3
62, 38, 50
1.4
0.231, 0.229, 0.192

2
100, 50
5.82
0.323, 0.192

Table 8 shows the results on WBCD data set.  The original prototypes were set to 200 and initialized using feature vectors. We started at deletion of close prototypes (d = 0.83), the prototype became 29. We then reduced the K to 14, 13, 11, 9 by eliminating small clusters with p = 1, 2, 4 and 7. Set fuzzy iteration f  = 40. We reduced the K to 7, 5, 4, 3, 2 by selecting ( = 0.5, 0.6, 0.66, 0.7 and 0.8 in merge process.

Table 8. Results on WBCD Data via the FCFM Algorithm.

K
Clusters
XB
(k

5
20, 18, 42, 14, 106
0.234
0.59, 0.83, 0.62, 0.77, 0.66

4
29, 18, 126, 27
0.292
0.59, 0.82, 0.72, 0.82

3
44, 123, 33
0.42
44, 123, 33

2
125, 75
1.082
75, 125

Table 9 presents the results on geological data set. The original prototypes were initialized using feature vectors. After deletion of close prototypes (d = 0.34), K reduced to 23. We eliminated small clusters with p = 1, 2, 3, 4 and 5, K became to 14, 11, 9, 8 and 7. The fuzzy clustering iteration was set to 100. Merge the clusters with ( = 0.5, 0.55, 0.65, 0.85, 0.9, K reduced to 6, 5, 4, 3 and 2.

Table 9. Results on Geological Data via the FCFM Algorithms

K
Clusters
XB
(k

5
14, 8, 27, 12, 9
0.612
0.44, 0.32, 0.30, 0.40, 0.32

4
14, 10, 34, 12
0.995
0.42, 0.32, 0.45, 0.40

3
16, 21, 33
0.87
0.42, 0.60, 0.41

3
17, 53
2.39
0.47, 0.58

5. Comparing Weights of the FCM and the FCFM Algorithm

5.1 The Weight of Fuzzy c-means


  In the FCM algorithm, the weights are defined in Equation (4). From the figure 3, we can see that the weight of feature vectors to a prototype is not related to how the feature vectors are distributed in the cluster. When the p value increases, the weight difference between two feature vectors decreases, so the speed of convergence increases.

Only the distance between the feature vector and the center decides the weight of the vector. When the clustering continues, two centers of not well-separated clusters become closer and closer until they finally merge into a large one.

The prototype representation does not reflect the distribution of feature vectors in the cluster. The feature vector with equal distance to two clusters will weigh the same, no matter that the clusters are centrally located or evenly distributed.
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Figure 3. Weights of the FCM Algorithm For Different p Values
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5.2 The Weights in the FCFM  (Gaussian Weights)

In the FCFM algorithm, the weights are defined by Equation (13). Figure 4 shows that the weight of Gaussian is decided not only by the distance between the feature vector and the prototype, but also the distribution of the feature vectors in the cluster. When the feature vectors in a cluster are centrally and densely distributed around the center, the sigma value will be small. The features that are close to prototype weigh much more than the farther features. The weight of a feature vector is related to the shape of the Gaussian. If a feature vector has equal distance from two prototypes, it weighs more on the more widely distributed cluster than on the centrally located cluster. Thus, Gaussian fuzzy weights are more immune to outliers and more representative than the other kind of fuzzy weights.
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Figure 4.  Weights of Gaussian for Different Sigma Values.
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6. Implementation of the FCM and FCFM in Java
A Java GUI application, which implements both the FCM algorithm and the FCFM algorithm, is developed (see Appendix 1). The application consists of following classes:

· Features: It stores the feature vectors into a two-dimensional array, and contains methods for standardizing the feature vectors. It is used as a member in Prototypes.

· Prototypes: It stores the prototypes, count of cluster and implements methods for assigning features into clusters, computing modified XB validity, k-means etc. It is the base class of FCmentPrototype and FClustPrototype.

· FClustPrototype: This class inherits Prototypes and implements the FCFM algorithm. 

· FCmeanPrototype: It inherits Prototypes, and has its own methods of initializing feature vectors, standardizing weights, and calculating of cluster centers. The class implements the FCM algorithm.

· FCluster: It is the driver of the two algorithms. It interacts with user and calls the methods in FCmentPrototype and FclustPrototype to run the FCM and the FCFM.

· FormatWriter: It is a utility class for formatting and outputting results.

· FormattedInput: It is a utility class for getting user input.

  Using this console application, a user can choose the data file, decide whether standardizing the feature vectors, set initial number of clusters, and the number of clustering iterations. The results are written to a file.
7. Conclusions and Future Work

The FCM algorithm uses reciprocal distance to compute the fuzzy weights. When a feature vector is of equal distance from two cluster centers, it weights the same on the two clusters no matter what is the distribution of the clusters. It cannot differentiate the two clusters with different distributions of feature vectors. Therefore, the FCM algorithm is more suited to data that is more or less evenly distributed around the cluster centers. The FCM algorithm lumps the two clusters with natural shapes but close boundaries into a large cluster. For some difficult data such as WBCD data, it is hard to for the FCM to cluster the very closed classes together without the help of other mechanisms such as elimination of small clusters. 

The FCFM algorithm uses Gaussian weights, which are most representative and immune to outliers. Gaussian weights reflect the distribution of the feature vectors in the clusters. For a feature vector with equal distance from two prototypes, it weighs more on the widely distributed cluster than on the narrowly distributed cluster. The FCFM algorithm outperforms the FCM on all the test data we used in this paper.

Since Java language is tightly integrated with the Internet, we may further develop a Java Applet using the four main classes, Feature, Prototypes,  FClustPrototype, and FcmeanPrototype. By embedding the applet in a Web page, users can easily access and use the FCM and the FCFM algorithm through browsers. This is a candidate for future work. The code can be obtained at http://www.cs.unr.edu/~lzhang/fuzzyCluster/paper/fcgui/FCluster.jar.
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Appendix 1. The Java Source Code For the Paper

The application has following classes:

· FuzzyApp: It contains main() method of the application.

· FuzzyFrame: It is the interface of the two algorithms. It interacts with user and calls the methods in FCmentPrototype and FclustPrototype to run the FCM and the FCFM.

· Features: It stores the feature vectors into a two-dimensional array, and contains methods for standardizing the feature vectors. It is used as a member in Prototypes.

· Prototypes: It stores the prototypes, count of cluster and implements methods for assigning features into clusters, computing modified XB validity, k-means etc. It is the base class of FCmentPrototype and FClustPrototype.

· FClustPrototype: This class inherits Prototypes and implements the FCFM algorithm. 

· FCmeanPrototype: It inherits Prototypes, and has its own methods of initializing feature vectors, standardizing weights, and calculating of cluster centers. The class implements the FCM algorithm.

· FormatWriter: It is a utility class for formatting and outputting results.

· FormattedInput: It is a utility class for getting user input.

· FuzzyFrame_AboutBox: It is the dialog for the about button.

These classes can be contained in FCluster.jar at the directory http://www.unr.edu/~lzhang/fuzzyCluster/paper/fcgui.  

   To open the jar file:


  

jar  xvf  FCluster.jar

   To compile the source code:


 

javac FuzzyApp.java

   To run the program:

java FuzzyApp

The test13.dta is an example of the data input file. The first line is the number of components N. The second line K is the number of initial classes. The third line J is the number of output components. The forth line Q is the number of vectors. In this two algorithms, J and K are not in use.
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