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Abstract— First-person shooter robot controllers (bots) are
generally rule-based expert systems written in C/C++. As such,
many of the rules are parameterized with values, which are
set by the software designer and finalized at compile time. The
effectiveness of parameter values is dependent on the knowledge
the programmer has about the game. Furthermore, parameters
are non-linearly dependent on each other. This paper presents an
efficient method for using a genetic algorithm to evolve a set of
parameters for bots which play as well as parameters tuned by
a human with expert knowledge about the game’s strategy. This
indicates genetic algorithms as being a potentially useful method
for tuning bots.

I. INTRODUCTION

Commercial game developers are faced with the challenge
of creating realistic, human-like artificial intelligence robot
controllers (game AI) within tight hardware constraints [9]. In
terms of first-person shooters, rule-based expert system robot
controllers which play the game are called ”bots.” Due to
computational constraints, most bots are written in C/C++,
taking the form of state-based machines [15].

In order to save both computation and the programmer’s
time, the game AI uses many hard-coded parameters to
complete the bot’s logic. Authors of bots spend an enormous
amount of time setting parameters. Parameters can be thought
of as values which act as thresholds in the bot’s rule-based
logic. Figure 1 shows an example of such parameters in terms
of Counter Strike gameplay. Counter Strike is a popular first-
person shooter game [3].

By adding more parameterized rules, the bots become more
realistic. Consequently, the development time increases since
the programmer has more parameters to tune using trial-and-
error. The tuning of these parameters becomes increasingly
complicated even if the programmer is an expert in the game’s
strategy.

While there exists work in applying genetic algorithms to
board games such as checkers and game theoretic problems
like the iterated prisoner’s dilemma, little work has been
done within the scientific community in applying a genetic
algorithm to a popular, 3-D, first-person shooter game like
Counter Strike [6], [2].

We propose a technique which applies a genetic algorithm
to the task of tuning these parameters, such as the bold face
ones in Figure 1. This will help game developers write game
AI that is efficient, realistic, and easy to develop.

if( enemy.distance ≤ 5 )
{

ATTACK-WITH-KNIFE()
}
else if( enemy.distance ≥ 5 AND enemy.distance ≤ 30 )
{

ATTACK-WITH-SUBMACHINE-GUN()
}
else
{

ATTACK-WITH-RIFLE()
}

Fig. 1. An example of parameterized rule-based AI. The parameters we are
concerned with appear in bold face.

The process of finding an acceptable set of parameters is
referred to as tweaking the bot. In Counter Strike, this would
be the time spent tuning the bot’s weapon preference, initial
aggressivity, path preference, and style of gameplay. Weapon
preferences are set as relative probabilities of selection. If
a bot selected the same weapon round after round, then
opponents would easily exploit the bot since no single weapon
is perfect for every situation. Therefore, programmers give
each weapon a probability of being selected. This leads to
a biased randomness in the bot’s weapon selection behavior.
Table I shows an example of the relative probabilities for
weapon selection.

Choosing a correct set of parameters is not always a
straightforward process and requires a great deal of trial-and-
error testing. An acceptable parameter set can be thought of as
the code to a safe, and in the case of Counter Strike bots, there
are many combinations which will unlock the safe. In terms
of search space, there are a number of acceptable parameter
optima that will lead to good gameplay. Determining the
correct set of parameters is a tedious and time-consuming
one, since a slight change to one parameter will often have a
negative impact on other parameters, i.e. they are non-linearly
dependent. This is our motivation for applying a genetic
algorithm to find a good set of these rule-based parameters.
We ask, ”Is it possible to use a genetic algorithm to tune the



TABLE I

BOT WEAPON PREFERENCES

Weapon Selection Probability

Steyr Scout 10
Bennelli XM1014 5
Ingram Mac-10 15
Steyr Aug 30
H&K UMP 45 10
Sig SG-550 Sniper 5
AI Arctic Warfare Magnum 25
H&K MP5-Navy 30
FN M249 Para 5
Bennelli M3 Super-90 15
Colt M4A1 Carbine 20
Steyr Tactical Machine Pistol 10
H&K G3/SG-1 5
Sig SG-552 Commando 30
AK-47 20
FN P90 5

parameters as well as a human can?”
Recently, the scientific community has taken an interest in

using commercial 3-D engines such as Quake, Unreal, and
Half-Life as a testbed for advanced AI research [9], [1], [11],
[12]. We also believe Counter Strike, a game which runs
inside the Half-Life engine, to a be a good testbed for AI
research. John Laird uses the Soar AI Engine, a rule-based
expert system, to design bots that play Quake II, another
popular first-person shooter. Laird’s Soar engine is re-useable
from game to game within a specific genre, requiring only
changes to the engine calls and not to the AI logic inside of
the Soar Engine [15]. Rogelio Adobatti et al. have developed a
framework inside the Unreal Tournament engine which allows
them to study AI behavior within the virtual environment
provided by the engine [1]. Adobatti et al. have also developed
a non-violent game in order to attract more researchers, who
would otherwise be turned away by the extreme violence found
in most first-person shooters.

Realizing the fact that computer game AI is constrained by
hardware limitations, Khoo et al. proposed inexpensive yet
effective methods for improving game AI [9]. Their work
included adding an Elisa-based chat program to an existing
Counter Strike bot in order to make the human players believe
they were not playing against bots but rather other humans [9].

Work by Fogel with Blondie24 shows that coevolutionary
computation can lead to a ranked AI checker player [6].
Axelrod’s work with the iterated prisoner’s dilemma problem
has also shown that coevolution techniques can lead to the
discovery of successful game strategies [2]. Since Counter
Strike is not a turn-based game like most board and card
games, it may not lend itself well to currently established
coevolution techniques. Since coevolution may not be directly
applicable, we are simply applying a genetic algorithm to the
tuning of parameters to ascertain how effective evolutionary
computation techniques are at first-person shooter games. If
the genetic algorithm can make progress, then we will continue
with our plans to coevolve Counter Strike bots. Our eventual

goal is to investigate evolutionary computing techniques for
knowledge acquisition, human modelling, and teamplay based
on this platform. We chose Counter Strike because it is
extremely popular. Last month, players spent over 1.5 billion
minutes playing Counter Strike online [14]. Gamers connect
from across the globe. This popularity will make it easier to
collect more data for human modelling from human players
as they connect to our server.

A. Genetic Algorithms

Genetic algorithms (GAs) are stochastic, parallel search
algorithms based on the mechanics of natural selection and
evolution [8], [7]. GAs were designed to efficiently search
large, non-linear, poorly-understood search spaces where ex-
pert knowledge is scarce or difficult to encode and where
traditional optimization techniques fail. Robust and flexi-
ble, GAs exhibit the adaptiveness of biological systems. As
such, GAs appear well-suited for searching the large, poorly-
understood spaces that arise in tuning problems, specifically,
tuning parameterized rule-based bots for Counter Strike.

B. Counter Strike

Counter Strike is a popular first-person shooter game in
which counter terrorists try to neutralize terrorists. The game
has a strong emphasis on tactics, decision-making, and team-
play, and we believe it serves as a good testbed for our work.
Figure 2 shows an in-game screenshot.

Fig. 2. In-game screenshot of Counter Strike

There are a number of variant types of gameplay for Counter
Strike, but we focused on one subset of gameplay inside
Counter Strike called the defuse mission. In the defuse mission,
counter terrorists are tasked with preventing the terrorists from
planting a bomb at one of two locations on the map. A map
can be thought of as an environment in which the game takes
place. Figure 3 shows an overhead view of a typical Counter
Strike map. The counter terrorists may win by defusing a
planted bomb. The terrorists may win by planting a bomb
and protecting it from defusal until its detonation. Either side
may win by eliminating all members of the opposite team,
since either side’s goal could be trivially accomplished without
interference from the other team.

To constrain things further, each round of gameplay is
limited to five minutes with a six-second planning phase called



Fig. 3. This is an overhead view of the Counter Strike map ”de-dust2.” The locations where the bomb may be planted by the terrorists are denoted by a
large X. Counter terrorist begin at the location marked CT Start. Terrorists begin each round at the location marked T Start.

freeze time. During freeze time, each side may purchase new
weapons and equipment. Each item has an associated cost.
Table II shows the cost of each primary weapon. A primary
weapon, as the name suggests, is the player’s weapon of
choice. Secondary weapons, pistols, can also be purchased in
case the primary weapon fails.

TABLE II

PRIMARY WEAPON COSTS IN COUNTER STRIKE[3]

Name Cost Notes

Benneli M3 Super90 $1,700 Shotgun
Benneli XM1014 $3,000 Automatic Shotgun
Hechler and Koch MP5-Navy $1,500 Sub-Machine Gun
Steyr Tactical $1,250 Machine-Pistol
FN P90 $2,350 Sub-Machine Gun
Ingram MAC-10 $1,400 Sub-Machine Gun
Hechler and Koch UMP $1,700 Sub-Machine Gun
AK-47 $2,500 Assault Rifle
Colt M4A1 Carbine $3,100 Assault Rifle
Steyr AUG $3,500 Assault Rifle
Sig SG-552 Commando $3,500 Assault Rifle
Steyr Scout $2,750 Sniper Rifle
AI Arctic Warfare/Magnum $4,750 Sniper Rifle
Hechler and Koch G3/SG-1 $5,000 Sniper Rifle
Sig SG-550 Sniper $4,200 Sniper Rifle
FN M249 Para $5,750 Full-sized Machine Gun

The money to purchase these items is earned by the result
of the previous round. There are penalties and rewards for
certain actions during the round as shown in Table III. The
Payoff/Fine table will serve as a useful gradient for our GA
in determining fitness.

During this planning time, teammates communicate with

TABLE III

PAYOFF/FINE TABLE FROM COUNTER STRIKE[3]

Action Payoff / Fine

Kill Opponent $300 for individual
Kill Team Mate -$3,300 for individual
Terrorists Win by Bombing Target $2,750 for team members
Win by Elimination (Defuse Mission) $2,500 for team members
Counter Terrorists Defuse Bomb $2,750 for team members
Losing a Round $1,400 for team members
Losing over 2 Consecutive Rounds $1,400 + $500 per round over 2

(maximum $2,900) for team
members

one another to determine which path they want to take to
neutralize the opposite team. Planning is a key element of
gameplay as each player should purchase a weapon which
is effective for the chosen path. For example, if a player
has decided to take a path which follows a narrow series of
hallways and air vents, it is desirable to use a close-quarters
automatic weapon such as the MP5-Navy. On the other hand,
if the player decides to head towards a large, open plaza, then
perhaps a long-range, bolt-action sniper rifle such as the Steyr
Scout would be more desirable. The individual tactics of the
player is paramount to the weapon selection. Long-range, bolt-
action rifles can only be effective when fired from a fixed
position where the player is not moving and has a clear line of
sight towards the enemy. An aggressivity parameter determines
the bot’s style of play. A less aggressive player tends to locate
easily-defended positions and wait for the enemy to enter



their kill-zone, whereas an aggressive player relies on the
effectiveness of a fast-attack to try and catch the enemy off-
guard. A bot should have an aggressivity parameter that is
appropriate for its weapon selection. Guarding a large open
plaza from long distance is nearly impossible with a shotgun.
Likewise, charging into a room with a sniper rifle that needs
significant time to aim properly is not a prudent tactic. By
the time the bot can aim the weapon, its opponents will have
already eliminated it from the round.

The remainder of this paper will discuss our architecture,
methodology, results, and, finally, our conclusions and future
work. For convenience, we shall now refer to bots which use
genetic algorithm chosen parameters as GAABs which stands
for Genetic Algorithm Assisted Bot.

II. ARCHITECTURE

Working with a commercial 3-D engine is not an easy task,
and Counter Strike is a game which runs inside Half-Life, a
popular commercial 3-D engine. The Half-Life engine only
makes a Software Developer Kit (SDK) available for public
use. The SDK allows for engine calls to be made, such as
requesting the number of kills a certain player has, but the
SDK does not allow one to view or modify the actual code
inside the engine. Half-Life, like many other commercial 3-
D engines, is frame-driven. This means if a task takes up
too much processing time, the frame-rate will drop, clients
will lose their connections, and the engine will become non-
responsive.

The Half-Life engine itself handles physics, rendering 3-D
geometry, drawing textures, playing sound effects, and man-
aging client connections. Counter Strike has its own Dynamic
Link Library (DLL) to manage Counter Strike specific tasks,
which includes weapon profiles (rate of fire and reload time),
user interface, and gameplay code (win/loss conditions). Since
Counter Strike does not have any of its own AI code, it
became necessary to employ the use of yet another DLL
which contained our bot code. Figure 4 shows how the DLLs
and the engine interact. All components enclosed inside of
the Half-Life Dedicated Server communicate by means of
function calls. As mentioned previously, we wanted to keep
the frame rate inside of Half-Life up, so we developed a GA
Server which manages all GA-related operations outside of the
Half-Life engine. The GA Server communicates directly with
the Bot DLL via TCP/IP. The bots receive new parameters
from the GA Server each round. At the end of the round,
they report their score, which becomes the fitness for that
individual (parameter set). The GA Server is written in Java, so
it is platform independent. Since the Half-Life engine is real-
time dependent for its physics calculations, it is infeasible to
speed up the engine artificially, while maintaining a reliable
simulation. Realizing this, we are working towards upgrading
the GA Server so it can manage multiple Half-Life Dedicated
Servers, all of which are running simulations of our bots in
parallel. This will significantly reduce our simulation time.
Currently, it takes over two hours to run 50 generations with
a population size of 30.

Ideally, commercial 3-D engines could be more modular. At
the moment, the physics, the graphics, and multiplayer logic,
run interdependently. For the purpose of tuning bots, it is only
necessary for us to have information about the physics and
geometry of the world–rendering graphics for a bot is wasteful.

III. METHODOLOGY

In order to have a genetic algorithm tune the parameterized
rule-based AI, we had to: (1) select parameters to tune, (2)
allow the GA to evolve parameters values, and (3) pit the
GAABs against bots which were tuned by us. As we have
many years of Counter Strike playing experience as well as
a solid understanding of the elements of which a good bot is
comprised, the bots we tuned are challenging to most veteran
Counter Strike players.

Although many commercial bots cheat to play well, our
bots, however, do not cheat. Cheating game AI destroys the
game experience [10]. For example, imagine a human player
is hiding behind a car, cheating game AI would be able to
detect this player just as easily as if they were standing in the
middle of the street. Our bots, however, use sensor information
gathered from their environment much like human players. For
example, if they detect another player it is only because the
bot has a line of sight to the player, or it has heard the player’s
footsteps.

The rest of this section will describe the selection of param-
eters, encoding, the evaluation function, the GA’s parameters,
and Counter Strike game settings.

A. Parameter Selection

First, we identified the parameters to optimize. The two
sets of parameters we focused on were: (1) weapon selection
parameters and (2) aggressivity parameters (which ultimately
affects path preference). The weapon selection and aggressiv-
ity of the bot are closely-related in playing Counter Strike.
Previously, we described a bot which used a sniper rifle to
play more defensively, waiting for the enemy to come to
it. Also, a bot that uses small automatic weapons should be
highly aggressive to be effective against its enemies because
its weapons have limited range. There exists no one correct
strategy to Counter Strike, but it is generally accepted that
following these styles of play will lead to a better score. Since
weapon selection and aggressivity are somewhat dependent
sets of parameters, we choose to allow the GA to optimize
these bot parameter sets in the hope that the GA will find a
player who fits either one of these predominant styles. It is
also quite possible that the GA will arrive at an strategy that
is not easily understood yet effective.

B. Encoding

The encoding was straightforward. Each parameter was
encoded into a binary string consisting of 178 bits. Figure 5
shows the chromosome’s layout.



Fig. 4. The Half-Life engine’s architecture relies on communication between DLLs to operate the game. This figure shows how the various DLLs interact
with each other inside of the Half-Life Dedicated Server (HLDS) and how our GA Server communicates with the HLDS.

Fig. 5. Basic layout a of chromosome. Each parameter was represented in
binary.

C. Evaluation Function

The evaluation function was an approximation of the stan-
dard Counter Strike Payoff/Fine table found in Table III and
provided a straightforward method for measuring fitness. For
example, if a bot is tuned with parameters that would lead
to excessive friendly fire (such as high aggressivity and a
strong weapon preference for automatic shotguns), then it
would receive a low fitness per the Payoff/Fine table since
team killing is severely punished.

D. GA Parameters

The GA used the parameters in Table IV during the training
phase for the bots. Since we considered our search space
rather large, we wanted the GA to move quickly away from
poor parameter selections. We chose CHC as our selection
method [5]. During crossover, CHC doubles the population
to 2n. Then, the best n individuals are chosen from the
parents and offspring. CHC’s elitist selection allowed the best
individuals to remain in the population after crossover. Since
our crossover probability was so high, elitism was necessary

to prevent the high fitness individuals from being destroyed
during crossover.

TABLE IV

GA PARAMETERS

Parameter Setting

Generations 50
Individuals 30
Crossover Points 2
Probability of Crossover 0.95
Probability of Mutation 0.1
Selection Method CHC-GA
Chromosome Length 178

E. Game Settings

Counter Strike has settings which determine the gameplay
constraints and style. We changed the round time from its
default 5:00 minutes per round to 3:00 minutes. This reduced
the evaluation time per generation by a minimum of 2:00
minutes, which was a significant gain. The teams were even,
15 counter terrorists versus 15 terrorists. Each team was
randomly composed of both GAABs and bots tuned by us.
The map chosen for the match was ”de-dust2,” a well-rounded
map, which offers a good mix of both indoor and outdoor
combat as well as long-range and short-range combat. An
overhead view of ”de-dust2” can be seen in Figure 3. It is
also popular among Counter Strike players.

IV. RESULTS

The results of the GA can be seen in Figure 6. The GA
made steady progress during the 50 generations.



Fig. 6. The results of the GA selecting the optimal parameters for the bots
averaged over 15 runs of the GA

The best individual’s phenotype from generation 50 was
saved to file. Then, this phenotype was shared among 15
GAABs. These 15 GAABs then played over 100 rounds of
Counter Strike against bots whose parameters we tuned. The
average time per round was 2 minutes and 4 seconds. The
results of the match can be found in Table V. The first column
shows the names of the two teams. The second column shows
the average skill for each team. The third column shows the
standard deviation of each team’s average skill. Finally, the
fourth column shows the median skill on each team.

TABLE V

MATCH RESULTS BETWEEN BOTS

Team Average Skill Standard Deviation Median

GAABs 1005 55.2 987
Bots tuned by us 999 40.3 991

The statistics found in Table V are based on standard
tournament ranking of Counter Strike players [13]. The skill
of a bot is a calculated by the following formula:

NewSkill = Skill +
K

1 + 10(k−v)/1000

Skill is calculated using the ELO Method, a standard chess
player rating system created by Arpad Elo [4]. The system
takes into consideration two important factors when rewarding
skill points to a player: (1) the difficulty of the kill and (2) the
experience of the current player [13]. Each player begins with
skill 1000 by default. When someone is killed, the resulting

skill of each player is calculated by the formula above, where
K represents the experience of the player and k and v represent
the skills of the killer and victim respectively. K is a simple
coefficient which begins at 20 and after the player has 100
kills or more, K is reduced to 15 [13].

When observing the bots in game, the GAABs and the bots
tuned by us play at first glance the same. This is expected
since they share the same rule-based logic. We noticed that the
GAABs would generally begin with no particular preference
for a single weapon or even single type of weapon (shotgun,
sub-machine gun, sniper rifle, or assault rifle). By the last
few generations, they would converge strongly on at least
one weapon from each of the various types. In some cases,
however, when the GAABs only converged on a single weapon
preference, they chose one inexpensive weapon and set for
high aggressivity. This is an unexpected strategy but not
unheard of. The GAABs could manage to inflict enough
damage before dying to earn just barely enough money to
purchase another inexpensive sub-machine gun for next round
to do it over again.

Our results indicate that GAABs play statistically the same
as bots tuned by us. This shows that a genetic algorithm tunes
a bot’s parameters as well as a human could. With game
engine or compiler support, this method would be far superior
to tuning the bots manually. Programmers would only need
to define a range of values for each parameter. The rest of
the work would be performed by the GA. Depending on the
constraints the GA evaluation function exerts on the bots, the
AI could be universally shaped to favor a certain play style or
tactic. A good mix of different types of bots makes a game
more interesting. Different styles of bots could be created by
simply changing the evaluation function.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a method for tuning the parameterized
rules of rule-based, expert system robot controllers (bots) using
a genetic algorithm. Our results show that using this method
results in bots that play as well as bots tuned by a human with
expert knowledge about the game. We believe this method is
generalizable not only to other first-person shooter bots but
to other games. This method significantly reduces the time to
develop such systems, moreover, this method, with compiler or
game engine support, could be completely automated, allowing
the programmer to focus on other tasks. Also, the programmer
is not required to be an expert in the game’s strategy. We
believe this method could lead to more sophisticated bots
since more rules can be added to the bot’s logic without the
consequence of tuning a growing number of parameters using
trial-and-error.

This work, like Khoo and Zubek’s work in employing com-
putationally inexpensive methods to improve AI in computer
games, is useful in that all of the extra computation performed
to determine the correct parameters is done during a training
phase which happens before human players ever meet the
bots in game [9]. This saves developer and testing time while
yielding similar bots.



For future work, we would like to move toward having
people evaluate the bots as they play them to determine their
fitness. Play-testing is nothing new for game development. It
would be interesting to see the results of play-testers evaluating
how human-like a bot is and then using their evaluation as the
individual’s fitness. This would hopefully move the bots from
being more efficient to playing more like human players.

Finally, we will look at using a genetic algorithm to
determine the ”optimal” configuration for a team. Bots can
be coded with a personality which drives their behavior. A
Leader bot will give radio commands and signals to other
bots instead of trying to hunt down opponents. On the other
hand, a Psycho bot will simply try to score the most kills
in the round regardless of how it affects the team and their
accomplishing of the goal. A genetic algorithm could be used
to determine the optimal configuration of personalities, given
some time to train. This work represents a start in a promising
new area of research.
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