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Energy Consumption Optimization for Multihop
Cognitive Cellular Networks
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Abstract—Cellular networks are faced with serious congestions nowadays due to the recent booming growth and popularity of
wireless devices and applications. Opportunistically accessing the unused licensed spectrum, cognitive radio can potentially harvest
more spectrum resources and enhance the capacity of cellular networks. In this paper, we propose a new multihop cognitive cellular
network (MC?N) architecture to facilitate the ever exploding data transmissions in cellular networks. Under the proposed architecture,
we then investigate the minimum energy consumption problem by exploring joint frequency allocation, link scheduling, routing, and
transmission power control. Specifically, we first formulate a maximum independent set (MIS) based energy consumption optimization
problem, which is a non-linear programming problem. Different from most previous work assuming all the MISs are known, finding
which is in fact NP-complete, we employ a column generation based approach to circumvent this problem. We develop an e-bounded
algorithm, which can obtain a feasible solution that are less than (1 + ¢) and larger than (1 — ¢) of the optimal result of MP, and analyzed
its computational complexity. We also revisit the minimum energy consumption problem by taking uncertain channel bandwidth into
consideration. Simulation results show that we can efficiently find e-bounded approximate results and the optimal result as well.

Index Terms—Multihop cognitive cellular networks, energy consumption, cross-layer optimization

1 INTRODUCTION

HE booming growth and popularity of wireless devices

like smartphones have resulted in the surge of various
mobile applications, such as anywhere anytime online
social networking, mobile gaming, and mobile video serv-
ices, which have exacerbated the congestion over cellular
networks. On the other hand, recent studies show that
many licensed spectrum blocks are not effectively used in
certain geographical areas and are idle most of the time [1],
[2]. Since Federal Communications Commission (FCC)
opens the discussions on intelligently sharing licensed spec-
trum, there has been a flux of research activities on cognitive
radio (CR), which enables unlicensed users to opportunisti-
cally access the unused licensed spectrum as long as their
usage does not cause disruptive interference to the licensed
holders’ service provisioning. Moreover, enabling multihop
communications between nodes and base stations (BS),
multihop cellular network has been proposed as an exten-
sion of the conventional single-hop cellular network.
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Previous works like [3] have shown that multihop cellular
networks can achieve higher capacity than traditional cellu-
lar networks. Therefore, a new architecture taking advan-
tage of such promising technologies is in dire need to
improve the performance of cellular networks.

In this paper, we propose a multihop cognitive cellular
network (MC?N) architecture by jointly taking the advantage
of CR techniques and multihop cellular networks to support
the ever-exploding traffic demand in cellular networks. In
particular, we propose to equip both cellular base stations
and network users with CRs. Instead of delivering all the
traffic between base stations and users in one hop like that in
traditional cellular networks, we propose to carry such traffic
in hybrid mode, i.e., either in one-hop or via multiple hops
depending on the local available spectrums and the corre-
sponding spectrum conditions. In so doing, we can further
take advantage of local available channels, frequency reuse,
and link rate adaptivity to provide higher network through-
put and decrease energy consumption.

Since the users’ wireless devices are usually battery-
powered, energy consumption is obviously a crucial issue
in cellular networks. Although there have been quite a few
works on energy consumption optimization in wireless net-
works [4]-[19], unfortunately, so far there has been a lack of
a complete cross-layer solution to the energy consumption
problem. Besides, the architecture of MC?Ns makes the
minimum energy consumption problem unique and even
more challenging. Thus, under the proposed architecture, in
this study we investigate the minimum energy consumption
problem by exploring joint frequency allocation, link sched-
uling, routing, and transmission power control, with Physi-
cal Model being the interference model. We consider
M-order quadrature amplitude modulation (M-QAM)
schemes at the physical layer.

1536-1233 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



LI ET AL.: ENERGY CONSUMPTION OPTIMIZATION FOR MULTIHOP COGNITIVE CELLULAR NETWORKS 359

We first formulate a maximum independent set (MIS)
based energy consumption problem, which we call Master
Problem (MP) and is a non-linear programming (NLP)
problem. We notice that finding all the maximal indepen-
dent sets is NP-complete when transmission powers are
fixed, and hence even more difficult when transmission
powers are controllable as in our case. Although most previ-
ous research simply assumes that MISs are given [20], [21],
we do not make such assumptions. Instead, we employ a
column generation (CG) based approach to decompose MP
into a Restricted Master Problem (RMP) and a Pricing Prob-
lem (PP). Noticing that RMP can be solved in polynomial
time but PP is still very difficult to solve, we further decom-
pose PP into two separate problems, namely, Link-Band
Pair Selection (LBPS) and Power Allocation (IPA), which are
a Binary Integer Programming (BIP) problem and an LP
problem, respectively. By iteratively solving these two prob-
lems, we are able to find a suboptimal result for PP.
Although the result for PP obtained by our proposed
scheme is suboptimal, we can still find the optimal solution
to MP due to the intrinsic iterative nature of column genera-
tion. Besides, it has been observed in the context of column
generation algorithms [22], [23] that one can usually deter-
mine solutions that are at least 95-99 percent of the global
optimality fairly quickly. Subsequently, we develop an
e-bounded approximation algorithm, which can obtain a
feasible solution that achieves less than (1 + €) of and larger
than (1 —¢) of the optimal result of MP. We also theoreti-
cally analyze the computational complexity of the proposed
algorithm. Simulation results show that we can efficiently
find e-bounded approximate results and the optimal result
as well, i.e.,, when ¢ = 0% in the algorithm. In other words,
we are able to solve MP very efficiently without having to
find the maximum independent sets.

Moreover, although most previous research on CR net-
works assumes that the harvested spectrums have constant
bandwidths, in practice, due to the unpredictable activities
of primary users, the vacancy/occupancy of licensed spec-
trum are uncertain in nature [1], [24]. In this study, we also
revisit the minimum energy consumption problem by tak-
ing uncertain spectrum occupancy into consideration.

The rest of this paper is organized as follows. Section 2
introduces the most related work. In Section 3, we briefly
explain our system models, including network architecture,
network model, and link capacity model. We then formulate
a minimum energy consumption problem for MC?Ns in
Section 4. After that, we propose in Section 5 a column gen-
eration based e-bounded approximation algorithm which
can efficiently find e-bounded approximate solutions and
the optimal solution when € = 0. Subsequently, we revisit
the minimum energy consumption problem by considering
dynamic spectrum bandwidth in Section 6. The impact of
adaptive M-QAM schemes on the system performance is
studied in Section 7. Simulations are conducted in Section 8
to evaluate the performance of the proposed algorithms.
We finally conclude this paper in Section 9.

2 RELATED WORK

In this section, we discuss related work on multihop cellular
networks, energy consumption in wireless networks, and
the column generation approach.

In traditional cellular networks, ad hoc communica-
tions are introduced to deliver information among users
[25]-[27], but every user still communicates with base sta-
tions directly in one hop, which leads to low frequency
spatial reuse and hence low throughput. Considering
multi-hop communications between nodes and base sta-
tions, some works such as [3] investigate the capacity of
multihop cellular networks, which has been shown to be
much higher than that of traditional cellular networks.
The works [28], [29] also show that multihop transmis-
sions can improve the multicast throughput of cellular
networks. However, these works only consider the case
where nodes share the cellular channels and have not
exploited the local available secondary channels as we
propose in this study. Moreover, the energy consumption
optimization problem is not discussed.

In the literature, energy consumption has always been a
primary concern in wireless networks. A big chunk of work
addresses this problem by developing energy-efficient
medium access control [4]-[7] or routing [8], [9] algorithms.
In ad hoc networks, some researchers [10]-[12] try to mini-
mize energy consumption by controlling transmission
power. Energy efficiency is also studied in CR ad hoc net-
works [13]-[19]. [13]-[17] focus on energy efficiency in
cooperative spectrum sensing. Buzzi and Saturnino [18]
investigate energy-efficient power control and receiver
design in CR networks by proposing a noncooperative
power control game among the users. Bayhan and Alagz
[19] study the energy efficiency in CR networks consider-
ing link capacity and channel switching cost. However,
these works do not give a complete cross-layer solution to
the energy consumption problem.

As an efficient method to solve large-scale optimization
problems, column generation has been utilized in cross-
layer optimization in wireless networks [30]-[36]. Patrik
et al. [30] and [31] employ column generation to find sub-
optimal solutions to their optimization problems. Fu et al.
[32] develop a column generation based fast algorithm for
joint power control and scheduling in single-hop wireless
network. Zheng et al. [33] study joint congestion control
and scheduling, without considering routing. Johansson
and Xiao [34], Cao et al. [35], Kompella et al. [36] propose
cross-layer design for wireless network under the multi-
commodity flow model, where each link is assumed to
operate at one of predetermined data rates. Note that
many previous works cannot bound the gaps between
their suboptimal results and the optimal results. Compared
with the above works adopting column generation, our
problem formulation and the algorithm design are
completely different.

3 SyYSTEM MODELS

3.1 Network Architecture

We consider a multihop cognitive cellular network in which
both base stations and network users are equipped with
cognitive radios, as shown in Fig. 1. In particular, base sta-
tions and more powerful terminals (e.g., laptops and tab-
lets) can have higher cognitive capability and span a larger
range of frequency spectrum (e.g., from MHz bands to GHz
bands), while less powerful devices (e.g., smart phones and
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Fig. 1. The architecture of a multihop cognitive cellular network.

cellular phones) may just access several typical spectrum
bands, such as the cellular band, the 2.4 GHz ISM bands,
and the TV band which has large bandwidth and good
penetration and propagation performances. We call cellu-
lar band “the basic band”, and other bands “the second-
ary bands”. The service provider uses the basic channel
for signaling, controlling, handling handoffs, accommo-
dating users’ voice traffic, etc., and uses all the available
channels to support users’ data traffic. As a central coor-
dinator, the service provider purchases secondary bands,
and performs network optimization to find out the opti-
mal transmission power, radio and frequency allocation,
link scheduling, and routing schemes for satisfying users’
traffic demands, based on the observed, collected, and
predicted channel information [24], [37], [38] in the cover-
age area. The control messages can be exchanged over a
dedicated channel called cognitive pilot channel (CPC) or
common control channel as illustrated in IEEE 802.22 [39]
and in [40].

As shown in Fig. 1, we consider supporting two types of
traffic in the network: the traffic between users and base sta-
tions (U2B) and the traffic between users (U2U). Notice that
as discussed in our previous work [41], [42], the service pro-
vider can decide to route U2U traffic through the backhaul
network when the source and the destination are far away
from each other, e.g., when they are not in the same cellular
cell or not within certain number of hops of each other, in
order to maximize network capacity. In that case, one U2U
communication changes into two U2B communications, i.e.,
uplink and downlink communications in the source cell
and destination cell, respectively. Without loss of generality,
we simply refer to U2U traffic as the traffic that does not go
through the backhaul network in what follows. Note that
instead of delivering all the U2B traffic in one hop like that
in traditional cellular networks [41]-[43], we propose to
carry U2B traffic either in one-hop or via multiple hops,
depending on the local available channels and the corre-
sponding channel conditions. Therefore, the proposed
architecture can enhance the performance of cellular net-
works by taking advantage of local secondary bands and
link rate adaptivity.

3.2 Network Model

Consider a cell in a multihop cognitive cellular network con-
sistingof ' = {1,2,...,n,..., N} users and a set of available
secondary spectrum bands M = {1,2,...,m..., M} with
different bandwidths. We denote the base station by B and

the basic band by 0, and consequently let ' = A U { B} and
M = M U{0}. The bandwidth of band m is denoted by W".
The transmission power of node i to node j on band m is
denoted by P;j,,. Suppose there are a set of £ ={1,2,

.., 1,... L} sessions, including uplink U2B, downlink U2B,
and U2U traffic. We let s() and d(I) denote the source node
and the destination node of session [ € £, respectively, and
also denote by r(l) the traffic demand of session I, with the
unit of bits per second (bps). The users are allowed to access
the secondary bands when the primary services on these
bands are not active, but they must evacuate from these
bands immediately when primary services return. Besides,
due to their different geographical locations, the users in the
network may have different available secondary spectrum
bands. Let M; C M represent the set of available licensed
bands at node i € N. Then M; might be different from M,
ie., M; # M;, wherej € Nand j #i'.

3.3 Achievable Data Rate
Here we discuss the achievable data rate over a channel.

We employ a widely used model [44]-[46] for power
propagation gain between node ¢ and node j, denoted by
gij, as follows:

gij = [d(i, /)],
where i and j also denote the positions of node 7 and node j,
respectively, d(i, j) refers to the Euclidean distance between
iand j, and y is the path loss exponent.”

We consider that the network adopts a constant A/-order
quadrature amplitude modulation scheme in an additive
white Gaussian noise (AWGN) wireless environment with a
target bit error rate (BER) of P,. According to [44], the BER
of M-QAM on an AWGN channel is shown to be well
approximated by

(1)

—1.5SIN
Py~ O.Qexp(ﬁ>7

M-1

where SINR is the received signal-to-interference plus noise
ratio at the receiver. In addition, we adopt the Physical
Model [50], [51] as the interference model, which means
that a data transmission is successful only if the received
SINR is above a certain threshold I'. In particular, if node :
sends data to node j on link (7, j) using band m, the achiev-
able data rate over link (¢, j) on band m is

S C™ bits/sec, if SINR;j, > T
Um0, otherwise,

(2)

where SINR;;,,, the SINR of the signal received at j from ¢ on
channel m, is

1. Note that in this study we only consider the energy consumption
optimization in one cell. The interference from other cells can be
addressed, for example, by frequency planning. The technique pre-
sented in this paper can also be directly applied to address multiple-
cell scenarios.

2. In this paper, we assume that the coherence bandwidth of each
band is larger than its bandwidth so that each band is flat, and that the
coherence time of the channel is larger than the duration of a time slot
so that the fading remains constant in each time slot. This is a common
assumption made in the literature on resource management in cellular
networks, such as [47]-[49].
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SINR;jm, =

Here, T!" is the set of nodes transmitting on channel m at the
same time as i, and 7, is the thermal noise power density at
the receiver j.

From both (1) and (2), in order to achieve BERs which are
no larger than P, the threshold I" can be set as

(M —1DIn(55)

r=-+x- /7 =2 3
1.5 (3)

Assume that the modulation uses ideal Nyquist data pulse.

Then, the spectral efficiency of M-QAM is log, M bps/Hz

[44]. Therefore, in (2), C™, i.e., the constant data rate on

band m, can be calculated as

C™ = W™log, M.

In other words, the achievable data rate on a channel is pro-
portional to its bandwidth under a given modulation
scheme M-QAM.

Note that when an adaptive M-QAM scheme is used
instead, the constellation size can be M = 2!t =1,2,...,T,
making the spectral efficiency equal to t =1,2,...,T bps/
Hz. Thus, the achievable data rates over a channel can be T’
discrete values. This is in fact the case in some current off-
the-shelf IEEE 802.11 compliant products [52], [53]. In this
study, we will first consider a constant //-QAM modulation
scheme and then an adaptive M/-QAM modulation scheme
(in Section 7) to fully characterize the achievable data rates.

4 ENERGY CONSUMPTION OPTIMIZATION

In this section, we investigate the energy consumption opti-
mization problem for an MC?N by joint frequency alloca-
tion, link scheduling, routing, and transmission power
control, considering a constant M-QAM modulation
scheme.

4.1 Link Scheduling and Routing Constraints

We define a link-band pair ((7, ), m), which indicates a
transmission link (¢, j) (from ¢ to j) operating on band m.
We also define an independent set as a set in which each
element is a link-band pair standing for a transmission,
and all the elements (or transmissions) can be carried
out successfully at the same time, ie., SINR;;, > T for
any ((i,7),m) belonging to the IS. If adding any more
link-band pairs into an IS results in a non-independent
one, this IS is defined as a maximum independent set.
We denote the set of all the MISs in the network by
K=A{7.1.Zs,...Z,,...,Z¢}, where Q = |[K|. We will show
in the next section that we do not really need to find the
maximum independent sets. In what follows, we present
the link scheduling and routing constraints.

4.1.1  Link Scheduling Constraints

Denote the maximum independent set Z7,/s (1 < ¢ < Q) time
share (out of unit time 1) to be active by w,. Since at any
time instance, there should be only one active maximum
independent set to ensure the success of all the transmis-
sions, we have

dow <1, w=0(1<g<Q) (4)

1<¢<@

Let c;ijm(Z,) be the data rate on link (¢, j) over band m
when 7, is active. Then, ¢;jn(Z,) is equal to 0 if the link-
band pair ((i,7),m) ¢ Z,, and determined according to (2)
otherwise. For node 4,j € N, we denote by f;;({) the flow
rate of session [ over link (i, 7). Thus, the schedule of the
maximum independent sets should satisfy the following;:

i#d(1) j#s(1) Q
Yoo DY w Y (). (5)
lel q=1 mGM,’ﬁM]’

4.1.2 Routing Constraints

At the network level, a source node may need a number of
relay nodes to route its data packets toward the intended
destination node. Clearly, routing packets over a single
path may not be able to fully take advantage of local avail-
able channels. Therefore, in this study, we employ multi-
path routing to deliver packets more effectively and
efficiently.

Recall that f;;(1) is the data rate on link (7, j) that is attrib-
uted to session [. If node 7 is the source of session I, i.e.,
1 = s(l), then we have the following constraints:

)

J#s(l

Z Fs@i(0) = (D). (7)

J#s(l)

The first constraint means that the incoming data rate of ses-
sion [ at its source node is 0. The second constraint means that
the traffic for session [ may be delivered through multiple
nodes on multiple paths, and the total data rate on all outgo-
ing links is equal to the corresponding traffic demand (7).

If node 7 is an intermediate relay node for session /, i.e.,
1 # s(l) and ¢ # d(l), then

DR =" £, (8)
J#s(l) )

p#d(l

which indicates that the total incoming data rate at a relay
node is equal to its total outgoing data rates for the same
session.

Moreover, if node 7 is the destination node of session I,
i.e., i = d(l), then we have

Z faw;(1) =0, 9)
J#d(1)

> Foany (1) =r(0).

pAd(l)

(10)

The first constraint means that the total outgoing data rate
for session [ at its destination d({) is 0, while the second con-
straint indicates that the total incoming data rate for session
[ at the destination d(!) is equal to the corresponding traffic
demand r(1).
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4.2 Energy Consumption Optimization

The objective of this study is to exploit both the basic and
the secondary spectrum bands to minimize the total energy
consumption in the network required to support certain
traffic demands. Gathering information about spectrum
availability in the network, the service provider can achieve
this goal by optimally determining end-to-end paths, sched-
uling the transmissions and selecting transmission power
on each active link-band pair.

We consider the network works in a time-slotted fashion
and denote the length of a time slot by 7. Let Py,(Z,)
denote the power consumption on link (7, ;) over band m
when Z, is active. Then, P;,(Z,) is equal to 0 if the link-
band pair ((z,7), m) € Z,, and equal to P, + P, otherwise,
where P, is the receiver’s power for receiving a packet,
which we assume to be a constant for all nodes on all the
bands. Thus, in an MC®N, the energy consumption optimi-
zation problem under the aforementioned link scheduling
and routing constraints can be formulated as follows:

Min w_::quZZ >

ieN jeN meM;NM;
s.t. Constraints (4)—(10)
fl'j(l) >0 (l S [:,i7j S N)

Pi]'m (I q)

OS‘Pijm<Pi

S Fax (Z,] c N,m e M;nN ./\/l]'), (12)

where w,’s, fi;(1)’s and P;;,’s are the optimization variables.
In this optimization problem, the objective function is the
total energy consumption in one time slot in the network,
(4) indicates that the total scheduling length can be no larger
than one time unit, (5) shows that the total flow rate over
link (4,7) cannot exceed the link capacity, (6)—(10) are the
routing constraints, (11) means the flow rate is non-nega-
tive, and (12) indicates that the transmission power of node
i cannot exceed its maximum transmission power, i.e., P! .

Given all the maximum independent sets in the network,
we find that the formulated optimization problem is a linearly
constrained quadratic programming (QP), or a quadratic pro-
gramming problem. Although it is shown in [54] that a QP
can be transformed to an LP problem, finding all the maximal
independent sets in a network is still an NP-complete prob-
lem [55], [56]. Moreover, in our problem the MISs are coupled
with the selection of transmission powers, which makes the
problem even more difficult to solve. In the rest of this paper,
we call this optimization problem the master problem, and
denote the minimum total energy consumption by .

5 A CoLUMN GENERATION BASED EFFICIENT
c-BOUNDED APPROXIMATION ALGORITHM

Notice that MP is formulated given that we have already
known all the maximum independent sets K. However, find-
ing all the maximum independent sets is an NP-complete
problem [55], [56]. In this section, to circumvent this diffi-
culty and efficiently solve MP, we propose a column genera-
tion based e-bounded approximation algorithm, which can
efficiently find the e-bounded approximate results and the
optimal result as well, i.e., when ¢ = 0 in the algorithm, with-
out enumerating all the maximum independent sets.

5.1 Column Generation

Column generation is an iterative approach for solving huge
linear or nonlinear programming problems, in which the
number of variables (columns) is too large to be considered
completely [22]. Generally, only a small subset of these vari-
ables are non-zero values in an optimization solution, while
the rest of the variables (called nonbasis) are zeros. There-
fore, CG leverages this idea by generating only those critical
variables that have the potential to improve the objective
function. In our case, MP is decomposed into a Restricted
Master Problem and a Pricing Problem. The strategy of this
decomposition procedure is to operate iteratively on two
separate, but easier, problems. During each iteration, PP
tries to determine whether any columns (i.e., independent
sets) uninvolved in RMP exist that have a negative reduced
cost,” and adds the column with the most negative reduced
cost to the corresponding RMP, until the algorithm termi-
nates at, or satisfyingly close to, the optimal solution.

Notice that the optimal result of MP remains the same
when we consider all the independent sets K which include
all the maximum independent sets K. Thus, we consider
that RMP starts with a set of initial feasible independent
sets, say X', and certain fixed transmission power for each
link-band pair in each independent set. In particular, K’ can
be easily formed by placing just one link-band pair
((iy4),m) in each of them, with the initial transmission
power P, for each link-band pair set to its maximum value
Pi .. Consequently, RMP can be formulated as follows:

Ming— Y Y Y Y R
1<q<|K| ieN jeN meM;NM;
s.t. Constraints(6)—(11)

||
Z fi(l) < Z Wy Z cijm(Zy)
lel q=1 meM;NM;

(i,j €N, and Z, € K'), (13)

where P;;,,(Z,)’s are known, and the optimization variables
are wy's and f;;(l)’s. Thus, RMP is a small-scale linear pro-
gramming (LP) problem that can be easily solved in polyno-
mial time by thepolynomial interior algorithm introduced in
[57]. We can thus obtain its primal optimal solution and a
Lagrangian dual optimal solution. Since RMP uses only a
subset of all the independent sets (i.e., columns) used by MP,
ie., K' C K, the optimal result of RMP serves as an upper
bound on the optimal result of MP. By introducing more
independent sets to RMP, column generation may be able to
decrease the upper bound. Therefore, we need to determine
which column can potentially improve the optimization
result the most and when the optimal result of RMP is exactly
the same or satisfyingly close to the optimal result of MP.
Notice that the formulated RMP does not consider the
constraint (4). This is because RMP only includes a few

3. Reduced cost [22] refers to the amount by which the objective
function would have to improve before the corresponding column is
assumed to be part of optimal solution. In the case of a minimization
problem like in this paper, improvement in the objective function
means a decrease of its value, i.e., a negative reduced cost. In finding
the column with the most negative reduced cost, the objective is to find
the column that has the best chance to improve the objective function.
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independent sets in the beginning iterations, in which
> 1<q<|x’| Wq might be larger than 1, resulting in no feasible
solution to RMP. Instead, we consider the constraint (4) after
the final solution is obtained. If },_ _ w, is less than or
equal to 1, the final solution is feasible. Otherwise, it is infea-
sible, i.e., the network cannot support all the traffic demands.
We denote by ¥ the minimum total energy consumption
obtained by RMP. Since RMP is formulated only based on a
subset of all the ISs in the network, we have ' > v/*.

Note that a few works like [32] develop heuristic algo-
rithms to find a good initial set K, which can reduce the
number of iterations required in column generation. We
focus on the problem itself in this study. In addition, we
will show by simulations later that in fact our initial set K’
can be quickly improved and that the solution to RMP can
be efficiently found. Furthermore, although the initial set
will influence the convergence speed of our approach, we
will show in Section 5.4 that we can always find the optimal
solution to MP regardless of the choice of initial set.

5.2 Introducing More Columns to RMP

During every iteration, when RMP is solved, we need to
check whether any new independent set with certain trans-
mission power allocation can further improve the current
objective function. In particular, for each independent set
Z,€ K\ K/, we need to examine if any of them has a nega-
tive reduced cost. The reduced cost u, for a column
Z, € K\ K' can be calculated as [58]

m=Y3

ieN jeN

Y TPyn(Ty) — Ay
meM;NM;

D

Cijm(Z. q)) )
meM;NM;
where )\;;’s are the Lagrangian dual optimal solution corre-
sponding to (13). Since there are totally |[N| x (JN] — 1) con-
straints generated from (13), the total number of A;;’s is also
N> (V] = 1).

Notice that we need to find the column which can pro-
duce the most negative reduced cost. Consequently, this col-
umn to be added to RMP can be obtained by solving

Min U = Ug,
Z4eR\K!
or equivalently

Min u=>Y > Y (TPju(T,) — Njcijm(Z,)), (14)
TeR\K! iEN JEN meMNM;

which is called a Pricing Problem. Denote by u* the optimal
solutions to the above problem. Then, if «* > 0, it means
that there is no negative reduced cost and hence the current
solution to RMP optimally solves MP. Otherwise, we add to
RMP the column derived from (14) as well as the transmis-
sion power assignment for each link-band pair in this col-
umn, and then re-optimize the updated RMP. We leave
how to solve PP in the following two sections.

5.3 Formulating PP

Next, we study how to solve PP, i.e., the optimization prob-
lem formulated in (14). Our objective is to find out the inde-
pendent set, i.e., all the link-band pairs that can be active at
the same time, and the transmission power on each of the
link-band pairs in the set, which can minimize w.

Assume band m is available at both node ¢ and node j,
ie,m e M; N M;. We define

P { 1, if node i transmit to node j using channel m
wm 0, otherwise.

Then, the result we need to find out is

{((4,5),m), Pjjm | Sijm = 1} that can minimize v in (14).
Since a node is not able to transmit to or receive from

multiple nodes on the same frequency band, we have

Z Sijm < 1, and Z Sijm < 1.

JEN j#i iEN i)

(15)

Besides, a node cannot use the same frequency band for
both transmission and reception at the same time, due to
“self-interference” at physical layer, i.e.,

Z Sijm + Z Sjgm < 1.
iENi#] 9N g#j
Moreover, recall that in this study, we consider each node is
only equipped with a single radio, which means each node
can only transmit or receive on one frequency band at a
time. Thus, we can have

Z Z Sijm + Z Z Sign < 1.

meM;ieN i#j neM; qeN q#j
Notice that (15)-(16) will hold whenever (17) holds.

In addition to the above constraints at a certain node,

there are also constraints due to potential interference
among the nodes. In particular, according to the Physical
Model discussed in Section 3.3, if node ¢ uses band m for
transmitting data to node j, the cumulative interference
from all the other nodes transmitting on the same band at
the same time plus the noise power level should be small
enough so that the SINR of the signal received at node j is
above the threshold I', or

(16)

(17)

gijpijm Z F(?’]ij + (18)

>

gkjpkvm> .
keT v j

Rewriting the above expression in the form of a constraint
that accommodates all the link-band pairs in the network,
we have

ginljm + ]\/[ijm(l - Sijm) >T (U;-Wm + Z gijkvak'vm>7 (19)
ki oty

where M;;,, is set as the sum of interferences from all the
other nodes and the noise, i.e.,

Mijm = F(T]J-Wm + Z gkjpfmxskvm> .
k#iv#]

Note that if a link-band pair ((4,7),m) is part of the new
independent set generated by PP, i.e., s, =1, then (19)
converts back to the expression in (18). If ((z,5),m) doesn’t
belong to the independent set, i.e., s, =0, then M,
ensures that the interference constraint (19) is redundant.

Let P, = Pj, + P.. Consequently, considering the
above constraints, the pricing problem of finding the opti-
mal column and the corresponding transmission power
allocation can be formulated as follows
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Min u=YS S

ieN jeN meM;NM;
s.t. Constraints (12), (17) and (19)

>

((i,5),m)eLy

(TPjmSijm — XijCijmSijm)

Sijm < |Z,|, for any I, € K' (20)

S,j]'m:O or 17 (21)

where both P;;,,’s and s;;,,’s are the optimization variables.
Recall that );;’s are the Lagrangian dual optimal solutions
to RMP, and c¢;j,,,s are calculated according to (2). Note that
(20) indicates the obtained independent set is a new one, i.
e., notin K. Since sijm’s can only take value of 0 or 1, PP is a
mixed integer quadratically constrained quadratic program-
ming (MIQCQP) problem, which, unfortunately, is still very
difficult to solve.

5.4 Solving PP

Although there exist some approximation techniques for
solving MIQCQP problems, such as generalized benders
decomposition [59], outer approximation [60], and branch-
and-bound or branch-and-cut [61], they have prohibitively
high complexities which are unbearable in the iterative col-
umn generation approach described above. In the follow-
ing, we propose a more efficient method, which further
decomposes PP into two separate problems, namely, link-
band pair selection with given transmission power profile,
and power allocation with given link-band pair selection.

In particular, LBPS can be formulated as

Min § g § (TPL'jmsijm - /\ijcijmsijm)

ieN jeN meM;NM;
s.t. Constraints (17), (19)—(21),

where B,,’s are given and the only variables are s;;,,’s.
Thus, LBPS is a binary integer programming problem.
Then, we follow a similar idea to that in [62], [63] to develop
a greedy algorithm to find a suboptimal solution to LBPS,
which is called the sequential-fix (SF) algorithm.

The main idea of SF is to fix the values of s;j, s sequen-
tially through a series of relaxed linear programming prob-
lems. Specifically, in each iteration, we first relax all the 0-1
integer constraints on s;;,,’s to 0 < s;5,, < 1 to transform the
problem to a linear programming problem. Then, we can
solve this LP to obtain an optimal solution with each s;;,,
being between 0 and 1. Among all the values, we set the
largest s;j,,, to 1. After that, by (17), we can fix s,;, = 0 and
Sjgn = 0 forany n € Mj;and p,q € N.

Having fixed some s;j,,s in the first iteration, we remove
all the terms associated with those already fixed s;;,,’s, elim-
inate the related constraints in (17), and update the problem
to a new one for the second iteration. Similarly, in the sec-
ond iteration, we solve an LP with a reduced number of var-
iables, and then determine the values of some other unfixed
sijm’s based on the same process. The iteration continues
until we fix all s;;,,’s to be either 0 and 1.

Besides, PA can be formulated as follows:

Min Z Z Z (TPjmSijm — NijCijmSijm)
ieN jeN meM;NM;
s.t. Constraints (12) and (19),

where s;;,’s come from the results of LBPS and are consid-
ered as known values. Therefore, PA is an LP problem with
P;j,’s being the variables, which can be easily solved.

With LBPS and PA being formulated above, we can now
find the solution to PP by solving these two problems itera-
tively as follows. First, the power allocation (P;,,’s) is ini-
tialized with an arbitrary power allocation, e.g., the
maximum value P! for each link-band pair. Based on this
given power allocation, we solve LBPS to obtain the link-
band pair selection results. With such results, we then solve
PA to get updated power allocation profile Pj,’s and
replace the corresponding values in LBPS. The above itera-
tion continues until the objective function of LBPS (i.e., that
of PP) does not change any more or the maximum number
of iterations is reached. Algorithm 1 details the above pro-
cess for solving PP.

Algorithm 1 Solving PP

Input: Dual solution of RMP );;’s, maximum iteration
number max_iter_num
Output: Pjj,’s, sijm’s
1: Initialize P;j;,,’s with P!, and set iter_num to 0;
2: while iter_num < max_iter_num or u does not
change any more do

3: while not all s;;,,,’s are fixed do

4: Given {P;jn, }, solve LBPS by relaxing s;jm
between 0 and 1;

5: Search for the s;;,, with the largest value,
and set the found s;;,, to be 1;

6: Set spjn = 0, Sjgn = 0 for (n € Mj, p,q €
N);

: Remove fixed s;5,,'s from (17);

8: end while

9: Construct a new column Z; = {$;jm|Sijm = 1};

10: Solve PA with calculated s;;,,’s using the poly-

nomial interior algorithm [58];
11: Update {P;;m} according to the result of PA;
12: iter_num = iter_num + 1;
13: end while

Recall that when the optimal result of PP is larger than or
equal to 0, i.e, u* > 0, it means that there is no negative
reduced cost and MP have been optimally solved. Unfortu-
nately, our decomposition approach developed above does
not find the optimal solution to PP. However, when the
optimal result of the relaxed PP, denoted by u*, is larger
than or equal to 0 (i.e., u* > u* > 0), MP can be optimally
solved. Notice that the relaxed PP is a Quadratic Program-
ming problem. As proved in [54], a QP can be transformed
to an LP problem with m + n constraints, where m and n
are the number of constraints and the number of variables
in the original QP, respectively. Thus, the relaxed PP can be
easily solved. Moreover, notice that in each iteration, PP
finds a new independent set that is different from the previ-
ously found ones due to constraint (20). Besides, PP also
finds the corresponding P;;,,’s for this new independent set
that minimize the objective of PP. This is because PA is
always calculated at last in Algorithm 1 when solving PP,
which is an LP problem whose optimal result can be easily
calculated. Therefore, when there is no new solution found
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to the original PP, it means that we have found all the inde-
pendent sets and the corresponding optimal transmission
power allocations, and hence can also optimally solve MP.
As a result, MP can be guaranteed to be optimally solved,
and thus the optimal result of RMP will always converge to
the optimal result of MP.

5.5 e-Bounded Approximate Solutions
Since the number of independent sets in K increases expo-
nentially as the number of link-band pairs in the network,
the number of iterations (of PP) needed to find all the inde-
pendent sets producing negative reduced cost can be very
large, especially in large-size networks. However, it has
been observed in the context of column generation algo-
rithms [22], [23] that one can usually determine solutions
that are at least 95-99 percent of the global optimality fairly
quickly, although the tail-end convergence rate in obtaining
the optimal solution can be slow in many classes of prob-
lems. Here, we design an algorithm to find e-bounded
approximate solutions to MP.

We first give the definition of e-bounded approximate
solutions as follows.

Definition 1. Let 0 < ¢ < 1 be a predefined parameter, and *

the optimal result. Then, a solution is called an e-bounded
approximate solution if its corresponding result 1\ satisfies

Q—ey <y <(1+ey".

Then, we can have the following lemma.

Lemma 1. Denote by v, and v, the upper bound and lower
bound on the optimal result y* of MP, respectively. Then,
e-bounded approximate (0 < e < 1) solutions can be obtained
when there is no new independent set found by PP, or the itera-
tion stops at u* > 0, or

Yy 1
V.S Tve

(22)

Proof. When 5’ > 1, we can get that ¥, < (1 +€)y; < (14
v and ¥, > ¥, /(1+€) > (1— ey, > (1 —e)y*. Thus,
any obtained result between the upper and lower bounds,
ie, Y, <y <, satisfies ¥ <v,<(l+¢y" and

¥ >, > (1 —€)y”, and hence is an e-bounded approxi-
mate solution by definition. Besides, when u* > 0 or there

is no new independent set found by PP, as mentioned
before, the obtained solution is the optimal solution and

hence an e-bounded approximate solution as well. ]

Notice that in (22), € is predetermined, e.g., 3 percent. As
mentioned before, the optimal result of RMP in each itera-
tion is an upper bound on the optimal result of MP, i.e., ¥,.
A lower bound can be obtained by [58]

Y=Y, + Ru” <y,
where u* is obtained by solving PP optimally, and
R > 3 1<% Wq holds for the optimal solution to RMP. We
set R = 1. Then, if a traffic demand can be supported, the

optimal solution must satisfy >, g w, <R =1. Thus, if
an optimal solutionleads to ), _ 7w, > 1, then the corre-
sponding traffic demand cannot be supported. Since we

actually do not obtain u* with the decomposition algorithm,
the lower bound can be set to ¥; = ¥, + Ru* which is less
than ¥, + Ru* and hence ¥*. In addition, since v* is negative,
¥; may be negative as well. Thus, we finally calculate ¥, by

Y, = max{y, + Ru*,0}. (23)

Consequently, according to Lemma 1, the feasible solution
obtained by solving RMP, which leads to a result v, is an
e-bounded approximate solution since we have found the
corresponding scheduling and routing solutions. We finally
describe an e-bounded approximation algorithm for the
energy consumption optimization problem in Algorithm 2.

Algorithm 2 An e-Bounded Approximation Algorithm

Input: approximal factor ¢, traffic demand r(l)’s, initial
IS ICini/ ¢u = 00, 1/11 = 00, u_* = -
Output: wy’s, fij(1)’s, Pijm’s
1: while There is no new independent set found by PP
orf‘f—<ﬁoru >0 do
2 Solve RMP under current K’ using the polyno-
mial interior algorithm [58], obtain its optimal
result ¢, and dual optimal solution \;;’s;
3 Solve PP based on calculated );;’s following
Algorithm 1 and a new column Z,;
4: Obtain optimal result u* of relaxed PP;
5: Update K' = K' UZ,;
6: Y = Py + Ru*;
7. end while

5.6 Computational Complexity Analysis
As we mentioned before, although MP can be transformed
to an LP problem, solving it directly still requires a high
computational complexity since finding all the independent
sets is an NP-complete problem and coupled with the selec-
tion of transmission powers. Note that in a network, the
number of link-band pairs in it, denoted by G, will be
O(N*|M]). Thus, the number of independent sets is at
most 2¢, i.e., O(2W ‘ ). Since usually only a small number of
independent sets would be useful in a scheduling problem,
the developed column generation based algorithm finds the
useful ones one-by-one iteratively. We analyze the compu-
tation complexity of our algorithm as follows.

Theorem 1. The computational complexity of our proposed col-
umn generation based algorithm for MP is O(K* + K|N| )
when there are K iterations in the algorithm, and O(2*V ? ) in
the worst case.

Proof. In our proposed column generation based algorithm,
one RMP and one PP are solved in each iteration. In
RMP, the variables include w,’s and f;;(l)’s. Note that the
initial independent sets are formed by placing one link-
band-pair in each of them. Thus, in the kth iteration, the
numbers of w,’s and f;;({)’s are G + k and IN|*L, respec-
tively. Since RMP is an LP problem, it can be solved by
the polynomial interior algorithm introduced in [57],
whose computation complexity is O(n®) where n is the
number of the variables in a problem. Therefore, the
computation complex1ty of RMP in the kth iteration is
O((G + k + |N’L)*). For PP, we further decompose it
into an LBPS and a PA. As LBPS is a BIP problem, we
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develop an SF algorithm that consists of multiple rounds
of computation for relaxed LP problems with a decreas-
ing number of variables, i.e., s;;,’s, in each round. Note
that the number of variables is clearly upper bounded by
G. Thus, the computation complexity in each round is no
larger than O(G?®). Besides, notice that in each round, SF
fixes one of s;;,,’s to 1 and other interfering variables to 0
according to constraints (17). Particularly, from the first
inequality in (15), we can know that if s;j,, =1, then
Sizm = 0 (2 # 7). Therefore, all the variables s;j,,"s in LBPS
can be determined in at most |[A|| M| rounds. Conse-
quently, the computation complexity of LBPS is upper
bounded by O(G3|N||M]). As PA is an LP problem with
G variables, its computation complexity is O(G®).
Besides, LBPS and PA are calculated iteratively until the
objective function of LBPS does not change any more or
the maximum iteration number is reached. We set the
maximum iteration number to O(G) in our algorithm.
Therefore, the computation complexity for PP is
O(GHNIM| + GY), ie., O(GHN)).

In all, the computation complexity for column genera-
tion based approach when there are K iterations is

0 ( i [(G+k+|NPL) + G4|/\f]>

k=1
- 0<(G + K+ |NPL)' + K(G4IN|))
— O(K* + K|IN|").

The first step is due to Y1 k% = K*(K +1)*/2. In the
worst case that all the independent sets need to be found,
our algorithm needs to have at most 2¢ — @ iterations
and hence its computational complexity s
O((2VPY! 4 2T LAY, e, (24T, O
Note that our later simulations show that usually only a
small number of iterations are needed, which means our algo-
rithm has a very low computational complexity according to
Theorem 1. In contrast, if we solve MP directly, the computa-

tional complexity is always O((2¢ + IVPL)), ie., O(QSIN\2 ).

6 UNCERTAIN SPECTRUM AVAILABILITY

So far we have assumed that the availability of frequency
bands in MC2Ns is constant. However, in practice, the
vacancy/occupancy of the licensed bands is unpredictable.
To model this unique feature of MC?Ns, let 8ijm € [0,1]
denote the available time of band m at link (¢, j) within one
unit time slot, which is a random variable. As shown in [38],
the statistical characteristics of §;;, contain abundant
knowledge about band m’s spectrum availability at link
(i, j) for opportunistic accessing.* Taking uncertain stochas-
tic spectrum availability into consideration, constraint (13)
in RMP can be reformulated as follows:

4. Chen et al. in [38] carried out a set of spectrum measurements in
the 20 MHz to 3 GHz spectrum bands at four locations concurrently in
Guangdong province of China. They used these data sets to conduct a
set of detailed analysis on statistics of the collected data, including
channel occupancy/vacancy statistics, channel utilization, also spectral
and spatial correlation of these measures.

K| id(l),j#s(1)
w, Y am@)m > Y. fy). (29)
q=1 meM;NM; lel

Note that the interference constraint (19) remains the same
since the bandwidth W™ does not change. Thus, the varia-
bles §;;,,’s contained in (24) change RMP from a linear pro-
gramming problem into a stochastic optimization problem
(SOP), which needs to be solved carefully.

Inspired by the concept of value at risk (VaR) in [64], we lever-
age a parameter § € [0, 1] to define temporal spectrum availabil-
ity at confidence level 8, and denote it by X 3(1V) as follows:

{ Hw’(t) = ‘j;oo hW(w)dw, teR

Xp(W) =sup{t: Hy(t) > B}, pel0,1],

where hy(-) is the probability distribution function of the
random variable WW. Based on the above definition, we can
reformulate (24) as

K| id(l).j#s(1)
Wy Z Xp(cijm(Zq)8ijm) > Z fij(D),  (25)
q=1 mEMiﬁM]' lel

Denote by Fjy(+) the cumulative distribution function (CDF)
of the random variable W, we can get Xz(W) = F;! (1 — B).
Thus, we have Xg(¢ijm(Z)8ijm) = F! (1 — B). There-

Cijm (Z q )51'_7'm
fore, given the distributions of random variables §;;,,,’s, (25)

is a linear constraint. Replacing (24) with (25), RMP becomes
an LP problem again, which can be easily solved as
described in Section 5.4.

7 THE IMPACT OF ADAPTIVE M-QAM

In order to better characterize the achievable data rates, we
revisit the energy consumption optimization problem for
MC?Ns by considering an adaptive M-QAM modulation
scheme. Since the algorithm proposed above still works
well under this new modulation scheme, we only describe
the main changes incurred in formulating and solving PP in
the following.

7.1 Achievable Data Rate Under Adaptive M-QAM
Similar to that in (3), in order to achieve the target BER P,
under an adaptive M-QAM (M = 2!,2%,...,27) scheme, we
need to determine a set of SINR thresholds {I';,I'y,...,I'7}
as follows:

(M — 1)ln(5P,)

M =222 . 97
15 9 b b b

Diogons = —
Let I'ry1 = co. Then, the achievable data rate for (i,j)
on band m when rloggﬂl < SINRiJ‘m < Flogzj\,j+1 (M = 21,
22,...,27) can be calculated by

Cijm = W™ logy M,

i.e.,, the achievable data rate on a link depends on the
adopted modulation type and the spectrum bandwidth.

7.2 Formulating PP
Let s, be a binary indicator of whether the transmission

ijm
from node ¢ to node j on band m satisfies I'y < SINR;;,;, <
'y 1 <t <T). Then, we have
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T
Z sﬁjm <1.

t=1

(26)

Besides, since each active link-band pair ((4, j),m)’s SINR must

be above one of the thresholds in {I'y, ..., I, ..., I'r}, we have
T
Sijm = Z s?jm' (27)
=1

Therefore, under an adaptive M-QAM scheme, (18)
needs to be reformulated as

T
9ijPijm > (ngjmrt) (’lem + Z gkfpk””)‘ (28)
t=1

RET wj

Note that if ((i,),m) is not active, i.e., Sjm = > 1, Sijm =0,
we have s‘j im = 0. Then, the right-hand-side of (28) is 0, which
makes it a redundant constraint. Thus, the above constraint
can accommodate all the link-band pairs in the network.
Consequently, the PP under the new discrete link capac-

ity model can be formulated as follows:

Min u= Z Z Z (TF)’ijmsijm - /\ijcijmsijm)
ieN jeN meM;NM;

2), (17),(27), and (28)

Sijm < |Z4l, for any I, € K

s.t. Constraints (1
((i,5)m)€Zy

=0 or 1, (29)

Sijm S'Ejm
7.3 Solving PP
Following the similar decomposition algorithm introduced
before, we can solve PP by decomposing it into two smaller
and easier problems: LBPS and PA.

Specifically, by replacing s;j,, with /| 8}, LBPS can be
formulated as

MY Y Y Y (R -
iEN jEN meM;NM; t=1
s.t. Constraints (28)
T

Z Z isfjm‘" Z Z Zs;mgl.

meM;ieN i#j t=1 neM; qeN q#j t=1

T
Z Zsfjm < |Z,|, for any 7, € K’

((i,j),m)eTq t=1

t
sijme or 1,

~

t
)‘l]cljmsijm)

where P;j,,’s are given and the only variables are s;,'s.
Thus, LBPS is a Binary Integer Programming problem.
Then, we can also apply the SF algorithm to find a subopti-
mal solution.

Besides, PA can be formulated as follows:

T
. I .
Min Z Z Z Z (TBﬁ”si,irn - )‘i,ICi,iTrLsijer)

ieN jeN meM;NM; t=1
s.t. Constraints (12) and (28),

where s}, ’s come from the results of LBPS and are consid-
ered as known values. Therefore, PA is an LP problem with

P;j,,’s being the variables, which can be easily solved.

In addition, note that according to Section 6, no other
changes need to be made when uncertain spectrum avail-
ability is considered.

8 SIMULATION RESULTS

In this section, we carry out extensive simulations to evalu-
ate the performance of the proposed algorithm. Simulations
are conducted using CPLEX 12.4 and C++ on a computer
with two 2.27 GHz CPUs and 24 GB RAM. Our goals are to
demonstrate the efficiency as well as the convergency prop-
erty of the proposed algorithms, to show the performance
improvement over other schemes, to understand the cross-
layer optimization under the Physical Model, and to study
the system performance under the discrete link capacity
model. Notice that most of the previous works obtain sub-
optimal results that are either unbounded or far away from
the optimal results, and many works do not fully consider
the joint frequency allocation, link scheduling, routing, and
transmission power control. Besides, many works based on
conflict graphs assume all the maximum independent sets
are given. Therefore, it is not very fair to compare our
e-bounded approximation algorithm with other algorithms.
In the simulations, we consider a square network of area
1,000 m x 1,000 m, with a base station located at the center.
We study three cases where 20, 30, and 40 nodes are ran-
domly distributed in the network, respectively. We assume
the bandwidth of the basic band, which is available at both
the BS and CR nodes, is 1 MHz, and there are three second-
ary spectrum bands in the network with their bandwidths
being 1.2, 1.4 and 1.6 MHz, respectively. At each node
(including the base station), only a random subset of the sec-
ondary bands are available. In all the three cases, we assume
that there are three uplink U2B sessions, three downlink
U2B sessions, and three U2U sessions. The source and desti-
nation for each session are randomly selected, and each ses-
sion has a traffic demand of 500 Kbps. We set the length of
each time slot 7" to 100 seconds. Some other important simu-
lation parameters are listed as follows. The path loss expo-
nent is 4. In the case of a constant M-QAM scheme, we
adopt 8-QAM and set the target BER to P, = 107%, resulting
in the SINR threshold I" = 24.73 following (3). In the case of
an adaptive M-QAM scheme, we consider 8-QAM, 16-
QAM, and 32-QAM. With the objective BER of P, = 1073,
we set the SINR thresholds to {24.73,52.98,109.50}. The
noise power spectral density is n = 107*°W /Hz at all nodes.
According to the FCC regulations on TV white space cogni-
tive radio operation [39], we set the maximum transmission
power of CR nodes to P = 100mW for any i € N, and
that of the base station to 4 W. Besides, in the simulations
we assume the power needed by a receiver to receive a
packet is negligible compared to transmission power, so
that we can focus on the impact of transmission power. In
addition, in the case of uncertain spectrum availability, we
consider that all the secondary bands’ available durations in
a unit time follow the same uniform distribution over [0, 1].

8.1 Cost of Solving RMP

We first study the cost of solving RMP under different net-
work settings. Note that in order to well investigate the cost
of solving RMP, we apply a traditional algorithm (provided
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TABLE 1
Solving RMP with Different ¢’s
¢ | Iteration Number | Running Time (S)
5% 156 9.05
3% 169 10.14
1% 177 10.95
0% 183 11.35

by CPLEX) which can solve MIQCQPs to solve PP in inner
iterations. Table 1 shows the iteration number and running
time needed to solve RMP in order to obtain e-bounded
approximate solutions. The results are obtained when there
are 20 CR nodes in the network. We can see that it takes 156
iterations and 9.05 seconds to solve RMP so as to get optimal
results, i.e., when ¢ = 0%°. Table 2 gives the cost of solving
RMP when € = 0% in networks of different sizes. We can
observe that as the number of CR nodes increases, the itera-
tion number and the total running time both increase. Intui-
tively, this is because when the number of nodes increases,
the number of variables increases as well and the searching
space becomes larger.

Besides, Fig. 2 illustrates the convergence property of
upper and lower bounds on the optimal energy consump-
tion when we use traditional algorithms to solve PP in
inner iterations, given that e =0% and there are 20 CR
nodes in the network. In each iteration, we compute the
lower and upper bounds on the minimum energy con-
sumption of MP and track their progresses. Recall that in
each iteration the upper bound ¥, is the optimal result of
RMP, while the lower bound v, is calculated according to
(23). We can find that although the gap between the lower
and upper bounds is initially large, the gap narrows
down quickly in the first 140 iterations. Particularly, note
that there is a sharp decrease of ¥/, at the beginning. This
is because the initial set of independent sets K’ used for
solving RMP is very small and simple, and can be easily
well improved. Thus, it demonstrates that we can effi-
ciently find the e-bounded approximate solution with our
simple initial set K'. In addition, we find that the mini-
mum total energy consumption in one time slot finally
converges to 22.1 joules (]).

8.2 Cost of Solving PP

We then evaluate the cost of solving PP in networks of dif-
ferent sizes when e = 0%. We set maz_iter_num =10 x G
where G = [N | M| in Algorithm 1. Table 3 shows the run-
ning time of a traditional algorithm provided by CPLEX
and that of the proposed decomposition scheme, i.e., LBPS
plus PA, which is the total running time of solving PP until
an optimal result for MP is obtained. Obviously, the pro-
posed decomposition outperforms (in terms of running
time) the traditional algorithm. Specifically, when N = 40,
the running time needed by our decomposition method is
11.42 seconds, which is only 0.33 times of that needed by
the traditional algorithm, i.e., 34.53 seconds.

5. Note that the simulations are conducted on a general-purpose PC
with modest computation capability. In practice, the optimization prob-
lems will be solved by the service provider, which usually has much
higher computation capability. Thus, the computation time in practical
cellular systems can be much shorter.

TABLE 2
Solving RMP with Different Network Sizes
Network Size | Iteration Number | Running Time (S)
N =20 183 11.35
N =30 197 14.78
N =40 224 19.98

Fig. 3 shows the convergence property of upper and
lower bounds on the optimal energy consumption when we
use decomposition scheme to solve PP in inner iterations,
given that ¢ = 0% and there are 20 CR nodes in the network.
We find that the minimum energy consumption is also
22.1 ], which is the same as that in Fig. 2. We also notice that
compared to using the traditional algorithm to solve PP,
using the decomposition scheme leads to slightly more iter-
ations, i.e., we need to solve RMP for more times. However,
the total running time when using the decomposition
scheme is 11.35 + 5.56, i.e., 16.91 s, which is much less than
the total running time when using traditional algorithms,
ie., 11.35 + 16.49 = 27.84 s. This is due to the fact that the
decomposition scheme is more efficient and hence takes less
time in each iteration. Note that since this running time is
obtained on a general-purpose PC with modest computa-
tion capability, it can be further reduced if a more powerful
server is used. Besides, Chen et al. [38] carried out a set of
spectrum measurements in the 20 MHz to 3G Hz spectrum
bands at four locations concurrently in Guangdong prov-
ince of China, and found that most of channel vacancy dura-
tion last longer than 150 seconds, which is much larger than
the running time of our algorithm. Therefore, our algorithm
can work well under the dynamic availability of secondary
spectrum bands.

We further illustrate the convergence speed of our
scheme in Fig. 4 when there are 20 CR nodes in the network.
Following the similar idea of rate of convergence as
described in [65], we define the convergence rate in the kth
iteration as (k) = WG, where (k) stands for v,
obtained in the kth iteration. Thus, the lower «(k) is, the
faster convergence our scheme achieves in the kth iteration.
Besides, when the result converges in the kth iteration, we
have ¥, (k) = ¢, (k+ 1) = ¥* and hence (k) = 1. As shown
in Fig. 4, we can see that the convergence rate o(k)
approaches 1 as the iterations continue, indicating the con-
vergence speed slows down. Moreover, when k is smaller
than 185, «(k)’s are obviously lower than 1, indicating fast
convergence of our scheme. Besides, we obtain from Fig. 3
that v,(185) =22.9 J, ie, ¢ =3.6% when k= 185. This
reveals similar results observed by [22], [23] that column

6. Rate of convergence [65] is usually employed to analyze the con-
vergence speed of an algorithm or a sequence {z;}. For example, if
there exists a number p € (0,1) such that limy_ ""‘f;_“l_fLL = u, we say
that the sequence {z;} converges linearly to L with u being the rate of
convergence. Although there are other kinds of definitions, this metric
does not tell clearly the convergence performance at each node of a
sequence. Since in our algorithm, the convergence speed is very
dynamic in different iterations, we design a similar metric, convergence
rate in an iteration, to show the convergence speed more clearly and in
more detail. Fig. 4 shows that the convergence speed of our algorithm
tend to slow down as it proceeds.
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Fig. 2. Convergence property when using traditional algorithms to solve
PP in a 20-node network.

generation approaches can determine solutions that are at
least 95-99 percent of the global optimality fairly quickly.

8.3 Performance Comparison

Here, we demonstrate the energy consumption and the
maximum end-to-end throughput achieved by the cellular
(CN) architecture and the proposed MC’N architecture
with or without considering energy consumption optimiza-
tion. We assume that the CN architecture works in TDMA /
TDD mode, i.e., the transmission from each user is sched-
uled one by one for either upstream or downstream traffic.
In addition, if energy consumption optimization is not con-
sidered, we set P,j,, = P!, . (i € N) and formulate a sched-
uling length minimization problem. Specifically, we
formulate an optimization problem with the objective of
minimizing the total scheduling length, i.e., Z‘q’g w,, to sup-
port all traffic, considering link scheduling and routing
constraints.

Fig. 5a shows the energy consumption under different
node numbers in four scenarios, i.e., CN architecture with-
out energy consumption optimization, CN architecture
with energy consumption optimization, MC?N architecture
without energy consumption optimization, and MC?N
architecture with energy consumption optimization. We
find that the energy consumption of MC?N architecture
with energy optimization is the lowest. Besides, as N
increases, the energy consumption of the CN architecture
(with or without energy optimization) stays the same since
the traffic are delivered in one hop and its scheduling and
routing schemes do not change. On the other hand, the
energy consumption of the MC?N architecture with energy
consumption optimization decreases when there are more
nodes in the network, because we can utilize shorter links to
deliver data packets with lower energy consumption.

We further show in Fig. 5b the maximum end-to-end

throughput in the same four scenarios as mentioned

TABLE 3
Running Time Comparison
Network Size | Traditional Algorithm | LBPS+PA
©) ©)
N =20 16.49 5.56
N =30 25.21 7.18
N =40 34.53 11.42

200
| ---y,
150f| 1, —%]
2 100 \"‘\‘
l\
50 e
. /’,,./V\_
0 50 100 150 200

Iteration Number

Fig. 3. Convergence property using the proposed decomposition
scheme to solve PP in a 20-node network.
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4
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Fig. 4. Convergence rates using the proposed decomposition scheme to
solve PP.

above. Note that the maximum end-to-end throughput
r*(l), i.e., the saturated throughput when the minimum

scheduling length is 1, can be calculated as
(1) = ‘T,(Cl,} under the assumption that all the sessions

g=1"4

still have equal traffic demands. We find that the maxi-
mum end-to-end throughput achieved under the MC*N
architecture is generally higher than that achieved under
the CN architecture, since the MC2?N architecture also
takes advantage of local available channels and fre-
quency reuse. Besides, under the MC?N architecture, the
maximum end-to-end throughput

energy consumption optimization is higher than that

achieved without

achieved with energy consumption optimization, since
the former is optimized with an objective of minimum

120
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Fig. 5. Performance comparison in four different scenarios. (a) Energy
consumption. (b) Maximum end-to-end throughput.
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Fig. 6. Performance comparison with different g’s under uncertain spec-
trum supply.

scheduling length and hence a higher maximum end-to-
end throughput.

8.4 Energy Consumption Optimization Under
Uncertain Spectrum Supply

Both the lower and upper bounds on the minimum energy
consumption under uncertain spectrum supply with differ-
ent f's are illustrated in Fig. 6. Note that we consider a net-
work of 20 CR nodes. We can see that the minimum energy
consumption (when the results are stable) when g = 0.9,
i.e., 40.6 ], is higher than that when g = 0.8, i.e., 36.7 J. This
is intuitively true because a smaller g indicates a lower
requirement on service quality, and hence the minimum
energy consumption can be lower.

8.5 Impact of Adaptive M-QAM

We first compare the running time of our decomposition
scheme under these two link capacity models. As we
explained above, only the cost of solving PP is influ-
enced by the link capacity model. Thus, we compare the
running time of solving PP under constant M-QAM with
that under adaptive M-QAM in Table 4. The results are
obtained under different N’s by setting ¢ = 0%. We find
that the running time required to find the optimal result
under the adaptive M-QAM is higher than that under
the constant 8-QAM. This is because PP formulated
under the constant 8-QAM only includes variables s;;,,’s,
while that under the adaptive M-QAM includes both
sijm’s and s, s as variables, resulting in higher compu-
tation complexity.

Fig. 7a compares the minimum energy consumption
¥ achieved under the two modulation schemes. We find
that the minimum energy consumption under the con-
stant 8-QAM 1is higher than that under the adaptive
M-QAM model. Specifically, when N = 20, the former is

TABLE 4
Running Time Comparison under Different Modulation Schemes

Network Size | Constant 8-QAM | Adaptive M-QAM
©) ©)
N =20 5.56 5.79
N =30 7.18 9.44
N =140 11.42 15.27

[IConstant 8-QAM [IConstant 8-QAM
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Fig. 7. Performance comparison under different modulation schemes.
(a) Energy consumption. (b) Maximum end-to-end throughput.

J
Maximum end-to-end throughput (Mbps)

—
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equal to 22.1 J, while the latter is equal to 19.7 ]J. This is
because with the same transmission power, the achiev-
able data rate can be larger under the adaptive M/-QAM
model. Therefore, the scheduling length required to sup-
port the same traffic is shorter under the adaptive
M-QAM model, which results in lower energy consump-
tion. We also show in Fig. 7b the maximum end-to-end
throughput comparison between these two models. We
find that the maximum end-to-end throughput under the
adaptive M-QAM model is higher than that under
the constant 8-QAM model. Particularly, when N = 20,
the former is equal to 0.61 Mbps, while the latter is equal
to 0.45 Mbps.

Table 5 compares the energy consumption under these
two models when B takes different values. We find that
energy consumption under both models increases as B
increases, because a larger p indicates a higher require-
ment on spectrum availability. Besides, under the same
B, the energy consumption under the adaptive M-QAM
model is lower than that under the constant 8-QAM
model.

9 CONCLUSIONS

In this paper, we have proposed a novel multihop cogni-
tive cellular network architecture to accommodate the
ever-exploding traffic demand in cellular networks. We
have studied a minimum energy consumption problem
in MC2Ns, and formulated it as a joint scheduling, rout-
ing, and transmission power control optimization prob-
lem, which we call MP and is a QP problem. We have
solved MP utilizing column generation, without having
to find the maximum independent sets which are
assumed to be known by most previous works. We have
also investigated the minimum energy consumption
problem considering uncertain spectrum bandwidth,
which has been largely overlooked in former research.

TABLE 5
Energy Consumption Comparison under Different
Modulation Schemes

Confidence | Constant 8-QAM | Adaptive M-QAM
Level 1)) 0
£=0.8 36.7 33.5
£=0.85 38.2 34.9
3=0.9 40.4 37.3
£=0.95 45.6 41.2
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Moreover, both constant M-QAM and adaptive M-QAM
physical-layer modulation schemes have been considered
in the energy consumption problem.
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