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Abstract—With the ever increasing user adoption of mobile
devices like smart phones and tablets, the cellular service
providers’ energy consumption and cost are fast-growing and
have received tremendous attention. How to effectively reduce
the energy cost of cellular networks and achieve green com-
munications while satisfying cellular users’ rocketing traffic
demands has become an urgent and challenging problem.
In this paper, we investigate the minimization of the long-
term time-averaged expected energy cost of a cellular service
provider while guaranteeing the strong stability of the network.
We first formulate an offline optimization problem with a
joint consideration of flow routing, link scheduling, and energy
(i.e., renewable energy resource, energy storage unit, etc.)
constraints. Since the formulated problem is a time-coupling
stochastic Mixed-Integer Non-Linear Programming (MINLP)
problem, it is prohibitively expensive to solve. Then, we
reformulate the problem by employing Lyapunov optimization
theory. A decomposition based algorithm is developed to solve
the problem, which is proved to guarantee the network strong
stability. Both the lower and upper bounds on the optimal result
of the original problem are derived and proven. Simulation
results demonstrate that the obtained lower and upper bounds
are very tight, and that the proposed scheme results in
noticeable energy cost savings.

I. INTRODUCTION

In the last few years, with the proliferation of smart
phones, tablets, etc., we have witnessed tremendous growth
in the number of cellular subscribers and in their traffic
demand [1]. In parallel with the rapidly growing demand for
cellular services, the number of cellular base stations (BSs)
all over the world has increased from a few hundred thou-
sands to more than 4 million, and each of them consumes an
average of 25 MWh per year [2]. Studies show that the radio
network itself adds up to 80% of an operator’s entire energy
consumption, which represents a significant portion of a
network operator’s overall expenditures [3]. Therefore, it is
in dire need to find effective solutions to reducing the energy
costs of cellular networks while satisfying subscribers’ ever-
increasing traffic demand.

The rising energy costs of cellular networks have led
to both academical and industrial efforts to address the
energy efficiency issues and develop the “green cellular
networks” [4], [5]. In particular, the energy consumption of
a BS can be reduced by improving the BS hardware design,
for example, the efficiency of power amplifiers (PAs) [6].
We can also reduce BSs’ energy consumption by including

additional software and system features to balance between
energy consumption and network performance, e.g., shutting
down BSs during low traffic hours or cell zooming [7]–
[10]. In particular, Niu et al. [7] propose algorithms for cell
zooming to avoid coverage holes when BSs are turned off.
Niu [8] also studies cell deployment when cell zooming is
not sufficient. Oh et al. [9] propose to switch BSs off by
considering a newly introduced notion of network-impact.
Peng et al. [10] propose to turn underutilized BSs off
when traffic is low and turn them on when traffic is high.
However, such system level approaches may degrade the
cellular network performance and some cellular users can
get disconnected.

Beyond the advance of BS development and control itself,
it is crucial to consider various paradigm-shifting technolo-
gies, such as multi-hop relaying and renewable energy inte-
gration, in order to enhance the energy efficiency of cellular
networks. Particularly, multi-hop relaying has been intro-
duced into cellular networks to improve network throughput
[11]–[13]. In fact, since multi-hop communications divides
direct paths between mobile terminals and BSs into shorter
links [14], in which wireless channel impairments such as
path loss are less destructive, lower transmission power can
be assigned to the BSs and relays and hence network energy
consumption can also be saved. It has been shown [15] that
using multi-hopping in CDMA cellular networks can reduce
the average energy consumed per call. In addition, renew-
able energy integration has attracted intense attention [16].
Sustainable energy resources such as sustainable biofuels,
solar and wind energy seem to be promising options to
reduce the overall network energy expenditure and the CO2

footprint since they are significantly cheaper to maintain in
the long run. Erission and Nokia [17], [18] have developed
a green BS that is based on solar power and wind power,
respectively, without using any grid electricity. Han et al.
[19] try to take advantage of green BSs by maximizing the
green energy usage. For subscribers, mobile manufacturers
like Samsung and Nokia have released a series of future
phones which contain solar panels [20].

In this paper, we investigate how to minimize the energy
cost of cellular networks while still satisfying users’ traffic
demand by considering energy-efficient wireless architec-
tures, renewable energy integration, and network stability.
Specifically, we consider a multi-hop cellular network con-
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sisting of a number of cellular users, a group of base stations,
and a set of available spectrum bands. We envision that
each node is equipped with a renewable energy resource, for
example, a solar panel (e.g., for each mobile user) or a wind
turbine (e.g., for each base station), as well as an energy
storage unit [17], [18], [20]. Both spectrum bandwidths and
renewable energy resource outputs are modeled as random
processes. In this network, mobile users may communicate
with each other or with base stations via multiple hops,
rather than a single hop as in traditional cellular networks.
Thus, the communications can take advantage of locally
available spectrums and link rate adaptivity, and hence
provide much higher network capacity.

We first formulate an offline energy cost minimization
problem, by jointly exploring renewable energy resource
allocation, routing, and link scheduling, which turns out
to be a time-coupling stochastic Mixed-Integer Non-Linear
Programming (MINLP) problem. Previous approaches usu-
ally solve such problems based on Dynamic Programming
and suffer from the “curse of dimensionality” problem
[21]. Full statistical information of the random variables is
required to solve the problem, which may be difficult to
obtain in practice. Therefore, we reformulate the problem
by employing Lyapunov optimization theory [22] and pro-
pose an online finite-queue-aware energy cost minimization
problem. In the literature, Lyapunov optimization techniques
have been adopted to investigate optimization problems
in wireless networks [22]–[28]. Unfortunately, [23], [24]
cannot guarantee that all queues are finite. [25], [27], [28]
develop opportunistic scheduling schemes, which maintain
finite queue sizes by dropping some packets. [22], [26]
propose joint stability and utility optimization algorithms,
but assume that the users’ input data rate is interior to the
network capacity region. Thus, in spite of these existing
studies, none of the developed algorithms can be adopted
to solve our problem, nor to keep all queues finite.

Considering that the previously formulated online finite-
queue-aware energy cost minimization problem is an
MINLP problem, which is in general NP-hard [29] and
needs to be solved in each time slot, we reformulate it and
propose an approximation algorithm to solve it efficiently.
Specifically, by introducing virtual queues, we are able to
decompose the reformulated problem into four subproblems:
link scheduling, resource allocation, routing, and energy
management. We develop three algorithms to solve the first
three subproblems, respectively, based on current network
states only. After the first three subproblems are solved,
the fourth subproblem can be easily solved as well. We
prove that the proposed decomposition based approximation
algorithm guarantees that all queues in the network are
finite, i.e., network strong stability. Moreover, while the
approximation algorithm leads to an upper bound on the
optimal result of the original problem, a lower bound is also
found by solving a relaxed online Linear Programming (LP)
problem.

Internet

Figure 1. System architecture for green multi-hop cellular networks.

The main contributions of this paper are briefly summa-
rized as follows:

∙ We formulate an offline energy cost minimization prob-
lem by considering dynamic spectrum and renewable
energy resource availability, routing, link scheduling,
and energy resource allocation.

∙ We formulate an online finite-queue-aware energy cost
minimization problem and propose a decomposition
based algorithm to solve the problem efficiently while
guaranteeing the strong stability of all queues in the
network, i.e., network strong stability.

∙ We obtain and prove the lower and upper bounds on
the optimal result of the original offline energy cost
minimization problem.

∙ Simulation results demonstrate that the obtained lower
and upper bounds are very tight, and that the proposed
scheme results in noticeable energy cost savings.

II. SYSTEM MODELS

A. Network Model

As shown in Fig. 1, we consider a multi-hop cellular
network that consists of 𝒰 = {1, 2, ⋅ ⋅ ⋅ , 𝑢, ⋅ ⋅ ⋅ , 𝑈} users and
ℬ = {1, 2, ⋅ ⋅ ⋅ , 𝑏, ⋅ ⋅ ⋅ , 𝐵} base stations. Let 𝒩 = 𝒰 ∪ ℬ.
We denote the set of available spectrum bands by ℳ =
{1, 2, ⋅ ⋅ ⋅ ,𝑚, ⋅ ⋅ ⋅ ,𝑀}, and assume that the bandwidth of
band 𝑚 is a random process denoted by {𝑊𝑚(𝑡)}∞𝑡=0

which can be observed at the beginning of each time slot.
In addition, due to their different geographical locations,
different nodes may have different available spectrum bands.
Denote byℳ𝑖 ⊆ℳ the set of available spectrum bands that
node 𝑖 ∈ 𝒩 can access. Thus, it is possible that ℳ𝑖 ∕=ℳ𝑗

for 𝑖 ∕= 𝑗, 𝑖, 𝑗 ∈ 𝒩 . Assume the system operates in a time-
slotted manner. Suppose there are a set of downlink Internet
service sessions denoted by 𝒮 = {1, 2, ⋅ ⋅ ⋅ , 𝑠, ⋅ ⋅ ⋅ , 𝑆}, each
of which is denoted as a tuple {𝑑𝑠, 𝑣𝑠(𝑡), 𝑠𝑠(𝑡)} where 𝑑𝑠
stands for the destination of service session 𝑠, 𝑣𝑠(𝑡) is the
required throughput (in terms of the number of packets) in
time slot 𝑡, and 𝑠𝑠(𝑡) stands for the source base station of
service session 𝑠 in time slot 𝑡.

B. Link Capacity

A widely used model [30], [31] employed for power
propagation gain between node 𝑖 and 𝑗, denoted by 𝑔𝑖𝑗 , is
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𝑔𝑖𝑗 = 𝐶 ⋅ [𝑑(𝑖, 𝑗)]−𝛾 , where 𝑖 and 𝑗 denote their locations,
𝑑(𝑖, 𝑗) is the Euclidean distance between 𝑖 and 𝑗, 𝛾 refers
to the path loss exponent, and 𝐶 is a constant related to
the antenna profiles of the transmitter and the receiver,
wavelength, etc.

We adopt the Physical Model [30], [32] as the interference
model, i.e., a data transmission is successful only if the
received signal-to-interference plus noise ratio (SINR) is no
less than a threshold Γ. Specifically, if node 𝑖 sends data
to node 𝑗 on band 𝑚 in time slot 𝑡, the capacity can be
calculated as

𝑐𝑚𝑖𝑗 (𝑡) =

{
𝑊𝑚(𝑡) log2(1 + Γ), if 𝑆𝐼𝑁𝑅𝑚

𝑖𝑗 (𝑡) ≥ Γ
0, otherwise.

(1)

where 𝑆𝐼𝑁𝑅𝑚
𝑖𝑗 (𝑡), the SINR of the signal sent from 𝑖 to 𝑗

on band 𝑚 in time slot 𝑡, is

𝑆𝐼𝑁𝑅𝑚
𝑖𝑗 (𝑡) =

𝑔𝑖𝑗𝑃
𝑚
𝑖𝑗 (𝑡)

𝜂𝑗𝑊𝑚(𝑡) +
∑

𝑗∈𝒩 ,𝑗 ∕=𝑖 𝑔𝑘𝑗𝑃
𝑚
𝑘𝑣(𝑡)

Here, 𝜂𝑗 is the thermal noise power density at the receiver
𝑗, 𝑃𝑚

𝑖𝑗 (𝑡) is the transmission power of node 𝑖 to node 𝑗 on
band 𝑚 in time slot 𝑡, and 𝑃𝑚

𝑘𝑣(𝑡) is the transmission power
of an interfering node 𝑘 to its receiver 𝑣 on band 𝑚 in time
slot 𝑡. We also denote the maximum transmission power of
node 𝑖 by 𝑃 𝑖

𝑚𝑎𝑥.

C. Energy Consumption

For a node 𝑖 (𝑖 ∈ 𝒩 ), its consumed energy in time slot 𝑡,
denoted by 𝐸𝑖(𝑡), is attributed to the energy needed to feed
the antenna denoted by 𝐸𝑐𝑜𝑛𝑠𝑡

𝑖 , the energy consumed when
staying in idle mode denoted by 𝐸𝑖𝑑𝑙𝑒

𝑖 , and the energy for
serving the traffic 𝐸𝑇𝑋

𝑖 (𝑡), i.e. [33],

𝐸𝑖(𝑡) = 𝐸𝑐𝑜𝑛𝑠𝑡
𝑖 + 𝐸𝑖𝑑𝑙𝑒

𝑖 + 𝐸𝑇𝑋
𝑖 (𝑡). (2)

𝐸𝑇𝑋
𝑖 (𝑡) will be introduced later.

D. Renewable Energy Generation and Energy Storage

We assume that each node 𝑖 ∈ 𝒩 has a renewable energy
resource, for example, a solar panel (e.g., for each mobile
user) or a wind turbine (e.g., for each base station). The
output of node 𝑖’s renewable resource, denoted by 𝑅𝑖(𝑡),
is an i.i.d. stochastic process that satisfies 0 ≤ 𝑅𝑖(𝑡) ≤
𝑅𝑚𝑎𝑥

𝑖 , where 𝑅𝑚𝑎𝑥
𝑖 is the maximum energy output and a

constant. This is because the output of a renewable energy
resource mainly depends on meteorological conditions and
is dynamic.

We also assume that every node 𝑖 has its own energy
storage unit, e.g., a battery, for storing energy obtained from
its renewable energy resource or drawn from the power
grid, which can be used at later time slots. Thus, node 𝑖’s
renewable resource output 𝑅𝑖(𝑡) can be used to charge the
energy storage device or serve 𝑖’s energy demand, i.e.:

𝑅𝑖(𝑡) = 𝑐𝑟𝑖 (𝑡) + 𝑟𝑖(𝑡), (3)

where 𝑐𝑟𝑖 (𝑡) and 𝑟𝑖(𝑡) are the energy used for charging node
𝑖’s energy storage unit and serving node 𝑖’s current energy
demand, respectively.

In addition, notice that node 𝑖’s energy storage unit works
as an energy buffer, whose energy level, denoted by 𝑥𝑖(𝑡),
can be modeled as an energy queue, i.e.,

𝑥𝑖(𝑡+ 1) = 𝑥𝑖(𝑡) + 𝑐𝑖(𝑡)− 𝑑𝑖(𝑡). (4)

where 𝑑𝑖(𝑡) is the energy discharged from the energy storage
unit for serving node 𝑖’s energy demand, and 𝑐𝑖(𝑡) is the
energy charging the energy storage unit, i.e.,

𝑐𝑖(𝑡) = 𝑐𝑟𝑖 (𝑡) + 𝜔𝑖(𝑡)𝑐
𝑔
𝑖 (𝑡) (5)

𝜔𝑖(𝑡) =

{
1, if 𝑖 ∈ ℬ
𝜉𝑖(𝑡), if 𝑖 ∈ 𝒰 (6)

where 𝑐𝑔𝑖 (𝑡) is the energy drawn from the power grid and
𝜔𝑖(𝑡) indicates whether node 𝑖 is connected into the power
grid in time slot 𝑡. Note that base stations are always
connected to the grid while mobile terminals are only
occasionally connected. Thus, we assume that {𝜉𝑖(𝑡)}∞𝑡=0

is an i.i.d. random process where 𝜉𝑖(𝑡) ∈ {0, 1}.
Due to the fact that serving node 𝑖’s energy demand 𝐸𝑖(𝑡)

by directly using energy from the grid or from the renewable
energy resource, is more efficient than by first charging the
energy storage unit and then discharging it, we have the
following two constraints

1𝑑𝑖(𝑡)>0 + 1𝑐𝑟𝑖 (𝑡)>0 ≤ 1 (7)

1𝑑𝑖(𝑡)>0 + 1𝑐𝑔𝑖 (𝑡)>0 ≤ 1 (8)

where 1𝐴 is an indicator function that is equal to 1 when the
event 𝐴 is true, and zero otherwise. Notice that the above
constraints (7) and (8) will hold whenever the following
inequality holds:

1𝑐𝑖(𝑡)>0 + 1𝑑𝑖(𝑡)>0 ≤ 1 (9)

Besides, denote by 𝑥𝑚𝑎𝑥
𝑖 the maximum amount of energy

that can be stored by node 𝑖’s energy storage unit. Then, we
need

0 ≤ 𝑥𝑖(𝑡) ≤ 𝑥𝑚𝑎𝑥
𝑖 . (10)

Denote by 𝑐𝑚𝑎𝑥
𝑖 and 𝑑𝑚𝑎𝑥

𝑖 the maximum amount of energy
that node 𝑖’s energy storage unit can be charged with and
that can be discharged from node 𝑖’s energy storage unit
during a single time slot, respectively. Thus, we have

𝑐𝑖(𝑡) ≤ min[𝑐𝑚𝑎𝑥
𝑖 , 𝑥𝑚𝑎𝑥

𝑖 − 𝑥𝑖(𝑡)] (11)

𝑑𝑖(𝑡) ≤ min[𝑑𝑚𝑎𝑥
𝑖 , 𝑥𝑖(𝑡)]. (12)

From (11) and (12), we get 𝑐𝑖(𝑡) + 𝑑𝑖(𝑡) ≤ 𝑥𝑚𝑎𝑥
𝑖 − 𝑥𝑖(𝑡) +

𝑥𝑖(𝑡) = 𝑥𝑚𝑎𝑥
𝑖 , which should hold for any 𝑐𝑖(𝑡) and 𝑑𝑖(𝑡) that

satisfy (11) and (12). Since 𝑐𝑖(𝑡) ≤ 𝑐𝑚𝑎𝑥
𝑖 and 𝑑𝑖(𝑡) ≤ 𝑑𝑚𝑎𝑥

𝑖 ,
we also have the following constraint:

𝑐𝑚𝑎𝑥
𝑖 + 𝑑𝑚𝑎𝑥

𝑖 ≤ 𝑥𝑚𝑎𝑥
𝑖 . (13)
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E. Energy Serving and Generation Cost

Node 𝑖’s energy demand is satisfied by the energy from
the power grid, its local renewable energy resource, and its
own energy storage device. Particularly, we have 𝐸𝑖(𝑡) =
𝜔𝑖(𝑡)𝑔𝑖(𝑡)+𝑟𝑖(𝑡)+𝑑𝑖(𝑡), where 𝑔𝑖(𝑡) is the amount of energy
drawn from the power grid to satisfy user 𝑖’s energy demand
in time slot 𝑡.

Besides, the amount of energy that node 𝑖 draws from the
power grid in time slot 𝑡, denoted by 𝑝𝑖(𝑡), satisfies

0 ≤ 𝑝𝑖(𝑡) = 𝜔𝑖(𝑡)
(
𝑔𝑖(𝑡) + 𝑐𝑔𝑖 (𝑡)

) ≤ 𝑝𝑚𝑎𝑥
𝑖 (14)

where 𝑝𝑚𝑎𝑥
𝑖 is a constant determined by the physical char-

acteristics of user 𝑖’s connection to the grid.
Since the energy needed from the power grid for mobile

terminals is negligible compared to that required for base
stations, the total amount of energy supplied by power grid
in time slot 𝑡, denoted by 𝑃 (𝑡), is 𝑃 (𝑡) =

∑
𝑖∈ℬ

(
𝑔𝑖(𝑡) +

𝑐𝑔𝑖 (𝑡)
)
. Thus, the energy cost of the cellular service provider

in time slot 𝑡 can be calculated as 𝑓(𝑃 (𝑡)), where 𝑓(⋅) is
assumed to be a non-negative, non-decreasing, and convex
function.

F. Definitions

Next, we introduce some definitions and theorems that
would be used later in this paper [22].

Definition 1: The time average of a random process 𝑎(𝑡),
denoted by 𝑎, is 𝑎 = lim𝑇→∞ 1

𝑇

∑𝑇−1
𝑡=0 𝔼[𝑎(𝑡)].

Definition 2: A discrete time process 𝑎(𝑡) is rate stable
if lim𝑡→∞

𝑎(𝑡)
𝑡 = 0 with probability 1, and strongly stable

if lim𝑇→∞ sup 1
𝑇

∑𝑇−1
𝑡=0 𝔼[∣𝑎(𝑡)∣] <∞.

Theorem 1: Queue Rate Stability Let 𝑄(𝑡) denote the
queue length of a single-server discrete time queueing sys-
tem, whose initial state 𝑄(0) is a non-negative real-valued
random variable, and future states are driven by stochastic
arrival and server processes 𝑎(𝑡) and 𝑏(𝑡) according to the
following dynamic equation:

𝑄(𝑡+1) = max{𝑄(𝑡)− 𝑏(𝑡), 0}+𝑎(𝑡) for 𝑡 ∈ {0, 1, 2, ...}.

Then 𝑄(𝑡) is rate stable if and only if 𝑎 ≤ 𝑏.
Theorem 2: Necessity for Queue Strong Stability If a

queue 𝑄(𝑡) is strongly stable, and there is a finite constant
𝑐 such that either 𝑎(𝑡)+ 𝑏−(𝑡) ≤ 𝑐 with probability 1 for all
𝑡 (where 𝑏−(𝑡) ≜ −min[𝑏(𝑡), 0]), or 𝑏(𝑡) − 𝑎(𝑡) ≤ 𝑐 with
probability 1 for all 𝑡, then 𝑄(𝑡) is rate stable, i.e., 𝑎 ≤ 𝑏.

Besides, we say that a network is rate stable or strongly
stable if all queues in this network are rate stable or strong
stable as described above.

III. DYNAMIC ENERGY COST OPTIMIZATION

In this section, we investigate the dynamic energy cost
minimization problem in a multi-hop cellular network.

A. Network Layer Design

Recall that we consider downlink traffic in the network.
Specifically, the destination nodes are served by the base
stations via multiple hops, with the help of other nodes.
Therefore, as a network layer buffer, each node 𝑖 maintains
a data queue 𝑄𝑠

𝑖 for each service session 𝑠. The queueing
law for 𝑄𝑠

𝑖 is as follows:

𝑄𝑠
𝑖 (𝑡+ 1) = max{𝑄𝑠

𝑖 (𝑡)−
∑

𝑗∈𝒩 ,𝑗 ∕=𝑖

𝑙𝑠𝑖𝑗(𝑡), 0}

+
∑

𝑗∈𝒩 ,𝑗 ∕=𝑖

𝑙𝑠𝑗𝑖(𝑡) + 𝑘𝑠(𝑡) ⋅ 1𝑖=𝑠𝑠(𝑡), (15)

where 𝑙𝑠𝑖𝑗(𝑡) is the number of packets transmitted from 𝑖 to
𝑗 for service session 𝑠 in time slot 𝑡, and 𝑘𝑠(𝑡) (0 ≤ 𝑘𝑠(𝑡) ≤
𝐾𝑚𝑎𝑥

𝑠 ) is the number of packets that the source base station
of service session 𝑠 receives from the Internet. Note that the
destination node 𝑑𝑠 does not need to maintain a data queue
for its own service since data will be directly passed on to
the upper layers.

Besides, at the source and destination nodes, we have the
following routing constraints:∑

𝑗∈𝒩 ,𝑗 ∕=𝑖

𝑙𝑠𝑗𝑖(𝑡) = 0, if 𝑖 = 𝑠𝑠(𝑡), 𝑠 ∈ 𝒮, (16)

∑
𝑗∈𝒩 ,𝑗 ∕=𝑖

𝑙𝑠𝑖𝑗(𝑡) = 0, if 𝑖 = 𝑑𝑠, 𝑠 ∈ 𝒮, (17)

∑
𝑗∈𝒩 ,𝑗 ∕=𝑖

𝑙𝑠𝑗𝑖(𝑡) = 𝑣𝑠(𝑡), if 𝑖 = 𝑑𝑠, 𝑠 ∈ 𝒮, (18)

∑
𝑖∈ℬ

1𝑖=𝑠𝑠(𝑡) = 1. (19)

Constraints (16) and (17) indicate that there is no incoming
data and outgoing data at the source node and the destination
node for service session 𝑠, respectively. Constraint (18)
models the throughput requirement of service session 𝑠,
where 𝑣𝑠(𝑡) is the number of packets required by session
𝑠. Constraint (19) indicates that there is only one source
base station for session 𝑠 in any time slot 𝑡.

B. Link Layer Design

Next, we illustrate the channel allocation and link schedul-
ing constraints on data transmissions.

Assume that band 𝑚 is available at both node 𝑖 and node
𝑗, i.e., 𝑚 ∈ℳ𝑖 ∩ℳ𝑗 . We denote

𝛼𝑚
𝑖𝑗 (𝑡) =

⎧⎨
⎩

1, if node 𝑖 transmits to node 𝑗 using band 𝑚
in time slot 𝑡,

0, otherwise.

Since a node is not able to transmit to or receive from
multiple nodes on the same frequency band, we have∑

𝑗∈𝒩 ,𝑗 ∕=𝑖

𝛼𝑚
𝑖𝑗 (𝑡) ≤ 1, and

∑
𝑖∈𝒩 ,𝑖∕=𝑗

𝛼𝑚
𝑖𝑗 (𝑡) ≤ 1. (20)
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Besides, a node cannot use the same frequency band for
transmission and reception, due to “self-interference” at
physical layer, i.e.,

∑
𝑖∈𝒩 ,𝑖 ∕=𝑗

𝛼𝑚
𝑖𝑗 (𝑡) +

∑
𝑞∈𝒩 ,𝑞 ∕=𝑗

𝛼𝑚
𝑗𝑞(𝑡) ≤ 1. (21)

Moreover, we consider that each node is only equipped with
one single radio, which means that each node can only
transmit or receive on one frequency band at a time. Thus,
we have

∑
𝑚∈ℳ𝑗

∑
𝑖∈𝒩 ,𝑖 ∕=𝑗

𝛼𝑚
𝑖𝑗 (𝑡) +

∑
𝑚∈ℳ𝑗

∑
𝑞∈𝒩 ,𝑞 ∕=𝑗

𝛼𝑚
𝑗𝑞(𝑡) ≤ 1. (22)

Notice that (20) and (21) will hold whenever (22) holds.
Recall that in (2), 𝐸𝑇𝑋

𝑖 (𝑡) is node 𝑖’s consumed energy
for serving its traffic. Thus, it can be calculated as follows:

𝐸𝑇𝑋
𝑖 (𝑡) =

∑
𝑚∈ℳ𝑖

∑
𝑗∈𝒩 ,𝑗 ∕=𝑖

𝛼𝑚
𝑖𝑗 (𝑡)𝑃

𝑚
𝑖𝑗 (𝑡)Δ𝑡

+
∑

𝑚∈ℳ𝑖

∑
𝑗∈𝒩 ,𝑗 ∕=𝑖

𝛼𝑚
𝑗𝑖(𝑡)𝑃

𝑟𝑒𝑐𝑣
𝑖 Δ𝑡, (23)

where node 𝑖’s receiving power, i.e., 𝑃 𝑟𝑒𝑐𝑣
𝑖 , is a constant,

and Δ𝑡 is the time duration of one time slot.
In addition to the above constraints at a certain node,

there are also constraints due to potential interference among
different nodes. In particular, according to the Physical
Model discussed in Section II-B, if node 𝑖 uses a frequency
band 𝑚 for transmitting data to another node, the cumulative
interference from all the other nodes transmitting on 𝑚 at the
same time plus the noise power level should be low enough
so that the SINR of node 𝑖’s transmission is above the thresh-
old Γ, i.e., 𝑔𝑖𝑗𝑃𝑚

𝑖𝑗 (𝑡) ≥ Γ
(
𝜂𝑗𝑊

𝑚(𝑡)+
∑

𝑘 ∕=𝑖,𝑣 ∕=𝑗 𝑔𝑘𝑗𝑃
𝑚
𝑘𝑣(𝑡)

)
.

Rewriting the above expression in the form of a constraint
that accommodates all the link-band pairs in the network,
we have

𝑔𝑖𝑗𝑃
𝑚
𝑖𝑗 (𝑡)𝛼

𝑚
𝑖𝑗 (𝑡) +𝑀𝑚

𝑖𝑗

(
1− 𝛼𝑚

𝑖𝑗 (𝑡)
)

≥ Γ
(
𝜂𝑗𝑊

𝑚(𝑡) +
∑

𝑘 ∕=𝑖,𝑣 ∕=𝑗

𝑔𝑘𝑗𝑃
𝑚
𝑘𝑣(𝑡)𝛼

𝑚
𝑘𝑣(𝑡)

)
, (24)

where 𝑀𝑚
𝑖𝑗

(
1 − 𝛼𝑚

𝑖𝑗 (𝑡)
)

is set as the sum of interferences
from all the other nodes and the noise, i.e., 𝑀𝑚

𝑖𝑗

(
1 −

𝛼𝑚
𝑖𝑗 (𝑡)

)
= Γ

(
𝜂𝑗𝑊

𝑚(𝑡) +
∑

𝑘 ∕=𝑖 𝑔𝑘𝑗𝑃
𝑘
𝑚𝑎𝑥

)
.

Moreover, the flow rate over link (𝑖, 𝑗) should satisfy the
following inequality, i.e.,

𝛿
∑
𝑠∈𝒮

𝑙𝑠𝑖𝑗(𝑡) ≤
∑

𝑚∈ℳ𝑖∩ℳ𝑗

𝑐𝑚𝑖𝑗 (𝑡)𝛼
𝑚
𝑖𝑗 (𝑡)Δ𝑡 (25)

where 𝛿 is the number of bits per packet. (25) indicates that
the total number of bits transmitted on a link during one
time slot cannot exceed the link’s capacity multiplied by the
duration of one time slot.

C. Offline Finite-Queue-Aware Energy Cost Minimization

Our objective is to minimize the time-averaged expected
energy cost of the cellular service provider given the routing,
link scheduling and energy capabilities, while guaranteeing
the strong stability of the network. Thus, the offline finite-
queue-aware energy cost optimization problem can be for-
mulated as follows:

P1: Minimize 𝜓 = lim
𝑇→∞

1

𝑇

𝑇−1∑
𝑡=0

𝔼[𝑓(𝑃 (𝑡))],

s.t. Constraints (9)-(14), (16)-(19), (22)-(25), ∀𝑡 ≥ 0

Q(𝑡) and x(𝑡) are strongly stable. (26)

where Q(𝑡) = {𝑄𝑠
𝑖 (𝑡), ∀𝑖 ∈ 𝒩 , 𝑠 ∈ 𝒮} and x(𝑡) =

{𝑥𝑖(𝑡), ∀𝑖 ∈ 𝒩}. We denote the optimal result of P1 by 𝜓∗𝑃1.
We can see that without the constraint (26), P1 is a time-
coupling stochastic Mixed-Integer Non-Linear Programming
(MINLP) problem, which is already prohibitively expensive
to solve. Previous approaches usually solve such problem-
s based on Dynamic Programming and suffer from the
“curse of dimensionality” problem [21]. They also require
detailed statistical information on the random variables in
the problem, i.e., the available spectrums, and output of
renewable energy resources at each node, which may be
difficult to obtain in practice. In addition, the constraint (26)
makes P1 an even more complicated problem. Next, we
will reformulate this problem into an online optimization
problem using Lyapunov optimization to break the time
coupling in P1, and find a feasible solution to it only based
on the current network states.

IV. ONLINE FINITE-QUEUE-AWARE ENERGY COST

MINIMIZATION

In this section, we exploit Lyapunov optimization tech-
niques to design an online finite-queue-aware algorithm
to solve the energy cost minimization problem without
requiring any priori knowledge of the network parameters.

Before we delve into the details, we first reformulate P1
into an equivalent offline optimization problem P2. In partic-
ular, summing the inequality (25) over all 𝑡 ∈ {0, 1, ...𝑇−1},
and taking expectation and limitation on both sides, we get

lim
𝑇→∞

1

𝑇

𝑇−1∑
𝑡=0

𝔼[𝛿
∑
𝑠∈𝒮

𝑙𝑠𝑖𝑗(𝑡)]

≤ lim
𝑇→∞

1

𝑇

𝑇−1∑
𝑡=0

𝔼[
∑

𝑚∈ℳ𝑖∩ℳ𝑗

𝑐𝑚𝑖𝑗 (𝑡)𝛼
𝑚
𝑖𝑗 (𝑡)Δ𝑡]. (27)

Thus, we define 𝑃 = lim𝑇→∞ 1
𝑇

∑𝑇−1
𝑡=0 𝔼[𝑓(𝑃 (𝑡)) −

𝜆
∑

𝑠∈𝒮
∑

𝑖∈ℬ 𝑘𝑠(𝑡) ⋅ 1𝑖=𝑠𝑠(𝑡)], where 𝜆 is a coefficient that
can be determined by the system operator. We then formulate
the following optimization problem P2:

P2: Minimize 𝜓 = 𝑃

s.t. Constraints (9)-(14), (16)-(19), (22)-(27), ∀𝑡 ≥ 0.
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We denote the optimal result of P2 by 𝜓∗𝑃2. We formulate
P2 in such a way to help ensure the strong stability of
the network, which will be clear later. Besides, note that
similar to P1, P2 is also a time-coupling MINLP problem. In
what follows, we will formulate a drift-plus-penalty problem
based on P2, which we call P3.

A. Modeling Virtual Queues

In order to guarantee that all queues in the network are
stable, we introduce virtual queues as follows. Consider
a virtual queue 𝐺𝑖𝑗(𝑡) at node 𝑖 for each of its one-hop
neighbor 𝑗 with the following queueing law:

𝐺𝑖𝑗(𝑡+ 1)=max
{
𝐺𝑖𝑗(𝑡)− 1

𝛿

∑
𝑚∈ℳ𝑖∩ℳ𝑗

𝑐𝑚𝑖𝑗 (𝑡)𝛼
𝑚
𝑖𝑗 (𝑡)Δ𝑡, 0

}

+
∑
𝑠∈𝒮

𝑙𝑠𝑖𝑗(𝑡). (28)

This virtual queue can be understood as the link-layer buffer
for link (𝑖, 𝑗). The queue backlog 𝐺𝑖𝑗(𝑡) represents the total
number of packets stored at node 𝑖 to be transmitted to node
𝑗 at the beginning of time slot 𝑡1.

For queue 𝐺𝑖𝑗(𝑡), we have

1

𝛿

∑
𝑚∈ℳ𝑖∩ℳ𝑗

𝑐𝑚𝑖𝑗 (𝑡)𝛼
𝑚
𝑖𝑗 (𝑡)Δ𝑡−

∑
𝑠∈𝒮

𝑙𝑠𝑖𝑗(𝑡)

≤ 1

𝛿

∑
𝑚∈ℳ𝑖∩ℳ𝑗

𝑐𝑚𝑖𝑗 (𝑡)𝛼
𝑚
𝑖𝑗 (𝑡)Δ𝑡

≤ 1

𝛿
𝑐𝑚𝑎𝑥
𝑖𝑗 Δ𝑡 (29)

where 1
𝛿 𝑐

𝑚𝑎𝑥
𝑖𝑗 Δ𝑡 is a constant. Therefore, if we can guar-

antee the strong stability of this queue, we can ensure its
rate stability, i.e., constraint (27), according to Theorem 2.
Besides, the virtual queue backlog is always nonnegative
according to the queueing law (28).

Instead of utilizing 𝐺𝑖𝑗(𝑡) directly, we build anoth-
er virtual queue 𝐻𝑖𝑗(𝑡) = 𝛽𝐺𝑖𝑗(𝑡), where 𝛽 =
max𝑖,𝑗∈𝒩 ,𝑗 ∕=𝑖 { 1

𝛿 𝑐
𝑚𝑎𝑥
𝑖𝑗 Δ𝑡}. Thus, the queueing law of

𝐻𝑖𝑗(𝑡) is

𝐻𝑖𝑗(𝑡+ 1)=max
{
𝐻𝑖𝑗(𝑡)− 𝛽

𝛿

∑
𝑚∈ℳ𝑖∩ℳ𝑗

𝑐𝑚𝑖𝑗 (𝑡)𝛼
𝑚
𝑖𝑗 (𝑡)Δ𝑡, 0

}

+𝛽
∑
𝑠∈𝒮

𝑙𝑠𝑖𝑗(𝑡). (30)

Note that the strong stability of 𝐻𝑖𝑗(𝑡) implies the strong
stability of 𝐺𝑖𝑗(𝑡), and hence (27) would directly follow.

1In order to guarantee that the queue size of 𝐺𝑖𝑗(𝑡) is an in-
teger in each time slot, the service rate of the queue should
in fact be ⌊ 1

𝛿

∑
𝑚∈ℳ𝑖∩ℳ𝑗

𝑐𝑚𝑖𝑗 (𝑡)𝛼
𝑚
𝑖𝑗 (𝑡)Δ𝑡⌋. Here, we assume

1
𝛿

∑
𝑚∈ℳ𝑖∩ℳ𝑗

𝑐𝑚𝑖𝑗 (𝑡)𝛼
𝑚
𝑖𝑗 (𝑡)Δ𝑡 to be integers for simplicity.

B. Reformulation of Dynamic Energy Cost Minimization
Using Lyapunov Optimization

We first define a shifted energy level 𝑧𝑖(𝑡) for any node
𝑖 ∈ 𝒩 to better control its energy storage unit, i.e.,

𝑧𝑖(𝑡) = 𝑥𝑖(𝑡)− 𝑉 𝛾𝑚𝑎𝑥 − 𝑑𝑚𝑎𝑥
𝑖 ,

where 𝛾𝑚𝑎𝑥 is the maximum first-order derivative of
𝑓(𝑃 (𝑡)) with respect to 𝑃 (𝑡), and 𝑉 is a positive constant
to be defined later. Thus, according to (4), 𝑧𝑖(𝑡) is updated
following the queueing law below:

𝑧𝑖(𝑡+ 1) = 𝑧𝑖(𝑡) + 𝑐𝑖(𝑡)− 𝑑𝑖(𝑡). (31)

Note that 𝑥𝑖(𝑡) is stable as long as 𝑧𝑖(𝑡) is stable.
Next, we define a Lyapunov function [22] as

𝐿(Θ(𝑡)) ≜ 1

2
[
∑
𝑠∈𝒮

∑
𝑖∈𝒩

(𝑄𝑠
𝑖 (𝑡))

2 +
∑
𝑖∈𝒩

∑
𝑗∈𝒩 ,𝑗 ∕=𝑖

(𝐻𝑖𝑗(𝑡))
2

+
∑
𝑖∈𝒩

(𝑧𝑖(𝑡))
2]

where Θ(𝑡) = {Q(𝑡),H(𝑡), z(𝑡)}. We assume Q(0) = 0,
H(0) = 0, and z(0) = 0. This function represents a scalar
measure of queues in the system. 𝐿(Θ(𝑡)) being small
indicates that all queue backlogs are low, while 𝐿(Θ(𝑡))
being large implies that at lease one queue backlog is high.
Meanwhile, its one-slot conditional Lyapunov drift is defined
as

Δ(Θ(𝑡)) ≜ 𝔼
[
𝐿(Θ(𝑡+ 1))− 𝐿(Θ(𝑡))∣Θ(𝑡)]. (32)

In order to minimize the long-term time-averaged ex-
pected total cost of energy from UC, instead of directly
minimizing Δ(Θ(𝑡)), we intend to minimize the upper
bound of the drift-plus-penalty function, which is defined
as:

Δ(Θ(𝑡)) + 𝑉 𝔼
[
𝑓(𝑃 (𝑡))− 𝜆

∑
𝑠∈𝒮

∑
𝑖∈ℬ

𝑘𝑠(𝑡) ⋅ 1𝑖=𝑠𝑠(𝑡)∣Θ(𝑡)
]

where 𝑉 ≥ 0 is a constant that represents the weight on
how much we emphasize on the energy cost minimization.
Such a scheduling decision can be explained as follows:
we want to make Δ(Θ(𝑡)) small to push queue backlog
towards a lower congestion state, but we also want to make(
𝑓(𝑃 (𝑡))−𝜆

∑
𝑠∈𝒮

∑
𝑖∈ℬ 𝑘𝑠(𝑡)⋅1𝑖=𝑠𝑠(𝑡)

)
small in each time

slot so that the energy cost can be low.
We can have the following lemma.
Lemma 1: Given Δ(Θ(𝑡)) defined in (32), we have

Δ(Θ(𝑡)) + 𝑉 𝔼
[
𝑓(𝑃 (𝑡))− 𝜆

∑
𝑠∈𝒮

∑
𝑖∈ℬ

𝑘𝑠(𝑡) ⋅ 1𝑖=𝑠𝑠(𝑡)∣Θ(𝑡)
]

≤ 𝐵 +Ψ1(𝑡) + Ψ2(𝑡) + Ψ3(𝑡) + Ψ4(𝑡), (33)
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where 𝐵 is a constant, i.e.,

𝐵=
1

2

∑
𝑠∈𝒮

∑
𝑖∈𝒩

[(
max

𝑗∈𝒩 ,𝑗 ∕=𝑖
{1
𝛿
𝑐𝑚𝑎𝑥
𝑖𝑗 Δ𝑡})2

+
(

max
𝑗∈𝒩 ,𝑗 ∕=𝑖

{1
𝛿
𝑐𝑚𝑎𝑥
𝑗𝑖 Δ𝑡}+ 𝑙𝑚𝑎𝑥

𝑠 ⋅ 1𝑖=𝑠𝑠(𝑡)

)2]

+
∑
𝑖∈𝒩

∑
𝑗∈𝒩 ,𝑗 ∕=𝑖

[𝛽
𝛿
(𝑐𝑚𝑎𝑥

𝑖𝑗 ⋅Δ𝑡)
]2

+
1

2

∑
𝑖∈𝒩

max
{
(𝑐𝑚𝑎𝑥

𝑖 )2, (𝑑𝑚𝑎𝑥
𝑖 )2

}
(34)

Ψ1(𝑡) is only related to the link scheduling variables
𝛼𝑚
𝑖𝑗 (𝑡)’s, i.e.,

Ψ1(𝑡) =−𝛽

𝛿
𝔼
[ ∑
𝑖∈𝒩

∑
𝑗∈𝒩 ,𝑗 ∕=𝑖

(
𝐻𝑖𝑗(𝑡)

∑
𝑚∈ℳ𝑖∩ℳ𝑗

𝑐𝑚𝑖𝑗 (𝑡)𝛼
𝑚
𝑖𝑗 (𝑡)

⋅Δ𝑡
)∣Θ(𝑡)],

Ψ2(𝑡) is related to the resource allocation variables 𝑘𝑠(𝑡)
and 1𝑖=𝑠𝑠(𝑡)’s, i.e.,

Ψ2(𝑡)=𝔼
[∑
𝑠∈𝒮

∑
𝑖∈ℬ

(
(𝑄𝑠

𝑖 (𝑡)− 𝜆𝑉 )(𝑘𝑠(𝑡) ⋅ 1𝑖=𝑠𝑠(𝑡))
)∣Θ(𝑡)],

Ψ3(𝑡) is only related to the routing variables 𝑙𝑠𝑖𝑗(𝑡)’s, i.e.,

Ψ3(𝑡)=𝔼
[∑
𝑠∈𝒮

∑
𝑖∈𝒩

𝑄𝑠
𝑖 (𝑡)

( ∑
𝑗∈𝒩 𝑗 ∕=𝑖

𝑙𝑠𝑗𝑖(𝑡)−
∑

𝑗∈𝒩 ,𝑗 ∕=𝑖

𝑙𝑠𝑖𝑗(𝑡)
)

∣Θ(𝑡)]+ 𝔼
[ ∑
𝑖∈𝒩

∑
𝑗∈𝒩 ,𝑗 ∕=𝑖

(
𝛽𝐻𝑖𝑗(𝑡)

∑
𝑠∈𝒮

𝑙𝑠𝑖𝑗(𝑡)
)∣Θ(𝑡)],

and Ψ4(𝑡) is related to the energy management variables
𝑐𝑖(𝑡), 𝑑𝑖(𝑡) and 𝑃 (𝑡), ∀𝑖 ∈ 𝒩 , i.e.,

Ψ4(𝑡)=𝔼
[ ∑
𝑖∈𝒩

(
𝑧𝑖(𝑡)(𝑐𝑖(𝑡)− 𝑑𝑖(𝑡))

)∣Θ(𝑡)]

+𝑉 𝔼
[
𝑓(𝑃 (𝑡))∣Θ(𝑡)].

Proof: For the detailed proof, please check our online
technical report [34].

Based on the drift-plus-penalty framework, our objective
is to minimize the right-hand-side of (33), and hence to min-
imize Ψ1(𝑡)+Ψ2(𝑡)+Ψ3(𝑡)+Ψ4(𝑡) since 𝐵 is a constant,
given the current system status Θ(𝑡) = {Q(𝑡),H(𝑡), z(𝑡)}
in each time slot. We now use the concept of opportunisti-

cally minimizing an expectation [22], which is to minimize:

Ψ̂1(𝑡) = −𝛽

𝛿

∑
𝑖∈𝒩

∑
𝑗∈𝒩 ,𝑗 ∕=𝑖

(
𝐻𝑖𝑗(𝑡)

⋅
∑

𝑚∈ℳ𝑖∩ℳ𝑗

𝑐𝑚𝑖𝑗 (𝑡)𝛼
𝑚
𝑖𝑗 (𝑡)Δ𝑡

)
(35)

Ψ̂2(𝑡) =
∑
𝑠∈𝒮

∑
𝑖∈ℬ

(
(𝑄𝑠

𝑖 (𝑡)− 𝜆𝑉 )(𝑘𝑠(𝑡) ⋅ 1𝑖=𝑠𝑠(𝑡))
)

(36)

Ψ̂3(𝑡) =
∑
𝑠∈𝒮

∑
𝑖∈𝒩

𝑄𝑠
𝑖 (𝑡)

( ∑
𝑗∈𝒩 𝑗 ∕=𝑖

𝑙𝑠𝑗𝑖(𝑡)−
∑

𝑗∈𝒩 ,𝑗 ∕=𝑖

𝑙𝑠𝑖𝑗(𝑡)
)

+
∑
𝑖∈𝒩

∑
𝑗∈𝒩 ,𝑗 ∕=𝑖

(
𝐻𝑖𝑗(𝑡)

∑
𝑠∈𝒮

𝛽𝑙𝑠𝑖𝑗(𝑡)
)

(37)

Ψ̂4(𝑡) =
∑
𝑖∈𝒩

(
𝑧𝑖(𝑡)(𝑐𝑖(𝑡)− 𝑑𝑖(𝑡))

)
+ 𝑉 𝑓(𝑃 (𝑡)). (38)

Therefore, the problem of online finite-queue-aware ener-
gy cost minimization can be formulated as follows:

P3: Minimize Ψ̂1(𝑡) + Ψ̂2(𝑡) + Ψ̂3(𝑡) + Ψ̂4(𝑡)

s.t. Constraints (9)-(14), (16)-(19), (22)-(25), ∀𝑡 ≥ 0.

Θ(𝑡) is strongly stable. (39)

Note that the constraint (27) has been left out in P3 (com-
pared to P2) since it can be guaranteed if H(𝑡) is strongly
stable as mentioned before.

C. A Decomposition Based Approximation Algorithm

In the following we decompose P3 into four subproblems
(from S1 to S4) and solve them respectively. The intuition
is that since each subproblem has fewer variables compared
with that in P3 and can be solved easily, by solving the
subproblems one by one, the later subproblems can treat the
variables that have been solved in previous subproblem as
constants. Consequently, we can obtain a feasible solution
to P3.

1) Link Scheduling: First, we minimize Ψ̂1(𝑡) by finding
the optimal link scheduling policy, i.e., determining the
variables 𝛼𝑚

𝑖𝑗 (𝑡)’s (∀𝑖, 𝑗 ∈ 𝒩 , 𝑗 ∕= 𝑖,𝑚 ∈ ℳ𝑖 ∩ ℳ𝑗), as
follows:

S1: Minimize Ψ̂1(𝑡)

s.t. Constraint (22).

Since the variables 𝛼𝑚
𝑖𝑗 (𝑡)’s can only take value of 0 or 1, the

above subproblem is a Binary Integer Programming (BIP)
problem. In the following, based on the similar ideas in
[31], [35], we propose a heuristic greedy scheme called the
sequential-fix (SF) algorithm to find a suboptimal solution
to this problem, the solution of which can be obtained
in polynomial time. The main idea of SF is to fix the
binary variables 𝛼𝑚

𝑖𝑗 (𝑡)’s sequentially through a series of
relaxed linear programming problems. Specifically, we first
set 𝛼𝑚

𝑖𝑗 (𝑡)’s to 0 if 𝐻𝑖𝑗(𝑡) = 0, remove all the terms
associated with such 𝛼𝑚

𝑖𝑗 (𝑡)’s from the objective function,
and eliminate the related constraints in (22). Then, in each
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iteration, we first relax all the 0-1 integer constraints on
𝛼𝑚
𝑖𝑗 (𝑡)’s to 0 ≤ 𝛼𝑚

𝑖𝑗 (𝑡) ≤ 1 to transform the problem
to a linear programming (LP) problem. Then, we solve
this LP to obtain an optimal solution with each 𝛼𝑚

𝑖𝑗 (𝑡)
being between 0 and 1. Among all the values, we set
the largest 𝛼𝑚

𝑖𝑗 (𝑡) to 1. After that, based on the constraint
(22), we can fix 𝛼𝑚

𝑝𝑗(𝑡) = 0 and 𝛼𝑛
𝑗𝑞(𝑡) = 0 for any

𝑛 ∈ℳ𝑗 and 𝑝, 𝑞 ∈ 𝒩 . Besides, if the result includes several
𝛼𝑚
𝑖𝑗 (𝑡)’s with the value of 1, we can set those 𝛼𝑚

𝑖𝑗 (𝑡)’s to 1
and perform an additional fixing for the largest fractional
variable in the current iteration as illustrated above. Having
fixed some 𝛼𝑚

𝑖𝑗 (𝑡)’s in the first iteration, we remove all the
terms associated with those already fixed 𝛼𝑚

𝑖𝑗 (𝑡)’s from the
objective function, eliminate the related constraints in (22),
and update the problem to a new one for the next iteration.
The iteration continues until we fix all 𝛼𝑚

𝑖𝑗 (𝑡)’s to be either
0 or 1.

2) Resource Allocation: Second, we minimize Ψ̂2(𝑡) by
finding the source base station for each service session 𝑠
(𝑠 ∈ 𝒮) and determining its incoming packet rate 𝑘𝑠(𝑡), i.e.,

S2: Minimize Ψ̂2(𝑡)

s.t. Constraints (19).

We develop the following search algorithm to locally find
a resource allocation policy. Specifically, at the beginning
of each time slot, given the current queue backlogs 𝑄𝑠

𝑖 (𝑡)’s
(∀𝑖 ∈ ℬ) for each service session 𝑠, we find the base station
with the smallest 𝑄𝑠

𝑖 (𝑡) and choose it as the source base
station. If there are multiple variables with the same smallest
queue backlog, we randomly pick one of them as the source
base station. After that, we can determine the source node’s
incoming packet rate as follows:

𝑘𝑠(𝑡) =

{
𝐾𝑠

𝑚𝑎𝑥, if 𝑄𝑠
𝑠𝑠(𝑡)− 𝜆𝑉 < 0

0, otherwise.

3) Routing: Third, after reorganizing Ψ̂2(𝑡), we minimize
it by finding the optimal routing policy, i.e., determining the
variables 𝑙𝑠𝑖𝑗(𝑡)’s (∀𝑠 ∈ 𝒮, 𝑖, 𝑗 ∈ 𝒩 , 𝑗 ∕= 𝑖), as follows:

S3: Minimize∑
𝑠∈𝒮

∑
𝑖∈𝒩

∑
𝑗∈𝒩 ,𝑗 ∕=𝑖

(−𝑄𝑠
𝑖 (𝑡) +𝑄𝑠

𝑗(𝑡) + 𝛽𝐻𝑖𝑗(𝑡)
) ⋅ 𝑙𝑠𝑖𝑗(𝑡)

s.t. Constraints (16)-(18), (25).

We can see that S3 is an Integer Linear Programming (ILP)
problem with the only variables being 𝑙𝑠𝑖𝑗(𝑡)’s. We notice that
the total flow rate

∑
𝑠∈𝒮 𝑙𝑠𝑖𝑗(𝑡) over link (𝑖, 𝑗) does not affect

the flow rates over other links {(𝑝, 𝑞)∣𝑝 ∕= 𝑖 ∩ 𝑞 ∕= 𝑗}, and
only depends on its link capacity according to the constraint
(25). Besides, the objective function of S3 can be viewed as
a weighted sum of the variables 𝑙𝑠𝑖𝑗(𝑡)’s. Therefore, we can
determine the flow rate over any link (𝑖, 𝑗) at node 𝑖 locally,
based on its current queue backlogs 𝑄𝑠

𝑖 (𝑡) and 𝐻𝑖𝑗(𝑡), and
the queue backlogs of node 𝑗, i.e., 𝑄𝑠

𝑗(𝑡). In the following,

we will propose an algorithm to obtain the optimal solution
for 𝑙𝑠𝑖𝑗(𝑡)’s.

In particular, we first set the variables 𝑙𝑠𝑖𝑗’s (∀𝑗 =
𝑠𝑠(𝑡), 𝑖 ∈ 𝒩 ∖ {𝑗}, 𝑠 ∈ 𝒮) and those (∀𝑖 = 𝑑𝑠, 𝑗 ∈
𝒩 ∖ {𝑖}, 𝑠 ∈ 𝒮) to 0 according to constraints (16) and
(17). Besides, if a node 𝑗 = 𝑑𝑠 (𝑠 ∈ 𝒮) in time slot
𝑡, then the variable 𝑙𝑠𝑖𝑗 (∀𝑖 ∈ 𝒩 ∖ {𝑗}) with the smallest
coefficient in the objective function of S3 is set to 𝑣𝑠(𝑡) due
to constraint (18). In all the other cases, in order to minimize
the objective function, node 𝑖 also sets the variables 𝑙𝑠𝑖𝑗(𝑡)’s
(∀𝑗 ∈ 𝒩 , 𝑗 ∕= 𝑖, 𝑠 ∈ 𝒮) to 0 if their coefficients are non-
negative. Otherwise, for any 𝑙𝑠𝑖𝑗(𝑡)’s (𝑠 ∈ 𝒮) over link
(𝑖, 𝑗), node 𝑖 sets the variable with the smallest coeffi-
cient to 1

𝛿

∑
𝑚∈ℳ𝑖∩ℳ𝑗

𝑐𝑚𝑖𝑗 (𝑡)𝛼
𝑚
𝑖𝑗 (𝑡)Δ𝑡 while the rest to 0,

due to the constraint (25). The intuition is that by doing
so, the link (𝑖, 𝑗) can be fully utilized while minimizing
S3. Besides, if there are variables 𝑙𝑠𝑖𝑗(𝑡)’s with the same
smallest coefficients on link (𝑖, 𝑗), node 𝑖 randomly picks
one of them and sets it to 1

𝛿

∑
𝑚∈ℳ𝑖∩ℳ𝑗

𝑐𝑚𝑖𝑗 (𝑡)𝛼
𝑚
𝑖𝑗 (𝑡)Δ𝑡

while the rest to 0. Note that 𝛼𝑚
𝑖𝑗 (𝑡)’s are known from

the link scheduling optimization problem S1. It is pos-
sible that 1

𝛿

∑
𝑚∈ℳ𝑖∩ℳ𝑗

𝑐𝑚𝑖𝑗 (𝑡)𝛼
𝑚
𝑖𝑗 (𝑡)Δ𝑡 is equal to 0 if∑

𝑚∈ℳ𝑖∩ℳ𝑗
𝛼𝑚
𝑖𝑗 (𝑡) = 0. Then, the corresponding variable

𝑙𝑠𝑖𝑗(𝑡) is also equal to 0.
4) Energy Management: Fourth, in order to minimize

Ψ̂4(𝑡), we try to find the optimal energy management for
all 𝑖 ∈ 𝒩 , i.e., determining the variables 𝑃𝑚

𝑖𝑗 (𝑡)’s, 𝑐𝑟𝑖 (𝑡)’s,
𝑐𝑔𝑖 (𝑡)’s, 𝑟𝑖(𝑡)’s, 𝑑𝑖(𝑡)’s, and 𝑔𝑖(𝑡)’s. This problem can be
formulated as follows:

S4: Minimize Ψ̂4(𝑡)

s.t. Constraint (9)-(14), (24).

Notice that S4 is a convex optimization problem, which can
be easily solved, e.g., using CPLEX, given the system states
and shifted energy levels 𝑧𝑖(𝑡).

In summary, in each time slot, the online finite-queue-
aware energy minimization problem P3 can be solved after
S1, S2, S3 and S4 are solved. The queues Q(𝑡), H(𝑡) and
z(𝑡) are then updated in each time slot according to the
queueing laws (15), (30), and (31), respectively. We will
show in the next section that all queues are strongly stable.
We denote the corresponding time-averaged expected total
energy cost by 𝜓𝑃3.

V. PERFORMANCE ANALYSIS

In this section, we first prove that the proposed approx-
imation algorithm can guarantee network strong stability.
Then, we derive both the lower and upper bounds on the
optimal result of P1.

A. Network Strong Stability

Our proposed algorithm finds a feasible solution to P3
which satisfies the constraints (9)-(14), (16)-(19), (22)-(25).
We can have the following theorem.
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Theorem 3: Our proposed approximation algorithm guar-
antees that the queues Q(𝑡), H(𝑡) and z(𝑡) are all strongly
stable.

Proof: We omit the proof here due to space limit. Please
refer to our online technical report [34] for the details.

B. Lower and Upper bounds on 𝜓∗𝑃1

In what follows, we obtain both lower and upper bounds
on the optimal results of P1, i.e., 𝜓∗𝑃1.

Theorem 4: The solution obtained from our proposed
algorithm serves as a suboptimal yet feasible solution to
P1, and the corresponding time-averaged expected amount
of energy cost works as an upper bound on the optimal result
of P1, i.e., 𝜓∗𝑃1 ≤ 𝜓𝑃3.

Proof: Please refer to our online supplemental material
[34] for detailed proof.

Next, we find a lower bound on 𝜓∗𝑃1. We first present a
lemma as follows.

Lemma 2: The time-averaged expected amount of energy
cost achieved by optimally solving P3, denoted by 𝜓∗𝑃3, is
within a constant gap 𝐵

𝑉 from the minimum time-averaged
expected energy cost achieved by P2, i.e., 𝜓∗𝑃2. Particularly,
we have 𝜓∗𝑃3 − 𝐵

𝑉 ≤ 𝜓∗𝑃2 where 𝐵 and 𝑉 are defined in
Section IV-B.

Proof: Please refer to our online technical report [34]
for detailed proof.

Recall that P1, P2 and P3 are both Mixed-Integer Pro-
gramming problems. We relax P2 to a Linear Programming
(LP) problem without the strong stability constraint (26)
denoted by 𝑃2, and formulate a corresponding online energy
cost minimization problem denoted by 𝑃3. We can see
that 𝑃3 is a relaxed LP problem based on P3 without
the strong stability constraint (39), which can be easily
solved. Denoted by 𝜓∗

𝑃1
and 𝜓∗

𝑃3
the time-averaged expect-

ed amount of energy cost obtained by optimally solving 𝑃1
and 𝑃3, respectively, based on Lemma 2, we can know
that 𝜓∗

𝑃3
− 𝐵

𝑉 ≤ 𝜓∗
𝑃2

. Since obviously we also have
𝜓∗
𝑃2
≤ 𝜓∗𝑃2 ≤ 𝜓∗𝑃1, we can arrive at the following result.

Theorem 5: The optimal result of P1 is lower bounded
by 𝜓∗

𝑃3
− 𝐵/𝑉 , where 𝜓∗

𝑃3
can be obtained by optimally

solving 𝑃3.

VI. SIMULATION RESULTS

In order to complement the analysis in the previous
sections, we carry out extensive simulations to evaluate the
performance of our proposed scheme. Our goals are to obtain
the lower and upper bounds on the optimal result of P1, to
examine the tradeoff between energy cost and queue size,
and to demonstrate the energy efficiency of our scheme
compared with that of other similar energy management
strategy. Simulations are conducted under CPLEX 12.4 on
a computer with a 3.00 GHz CPU and 4 GB RAM.

Specifically, we consider a square network of area
2000𝑚 × 2000𝑚, where 2 base stations are located at
coordinates (500𝑚, 500𝑚), (1500𝑚, 500𝑚), respectively,

and 20 users are randomly distributed. Besides, we assume
there is one cellular band with bandwidth 1 MHz and four
other spectrum bands whose bandwidth are independently
and uniformly distributed within [1, 2] MHz in each time
slot. Only a random subset of the spectrum bands are
available at each mobile user while base stations can access
all the bands. Each service session has a traffic demand
of 100 Kbps. Some other important simulation parameters
are listed as follows. The path loss exponent is 4 and
𝐶 = 62.5. The SINR threshold is Γ = 1. The noise
power spectral density is 𝜂 = 10−20 W/Hz at all nodes.
All nodes (∀𝑖 ∈ 𝒰 ) have the same maximum transmission
power, which is 𝑃 𝑖

𝑚𝑎𝑥 = 1 W while base stations have a
much larger transmission power, i.e., 20 W. In addition,
the outputs of mobile users’ renewable energy resources
and that of base stations’ are assumed to be independently
and uniformly distributed within [0, 1] W and [0, 15] W,
respectively, in each time slot. The maximum charging and
discharging limits on each user’s energy storage device in a
time slot, i.e., 𝑐𝑚𝑎𝑥

𝑖 and 𝑑𝑚𝑎𝑥
𝑖 , are both set to 0.06 kWh for

mobile users and 0.1 kWh for base stations. The maximum
amount of energy that each node can draw from the power
grid in a time slot, i.e., 𝑝𝑚𝑎𝑥

𝑖 , is set to 0.2 kWh. The
energy generation cost function, i.e., 𝑓(𝑃 (𝑡)), is defined as
𝑓(𝑃 (𝑡)) = 𝑎𝑃 2(𝑡) + 𝑏𝑃 (𝑡) + 𝑐, where 𝑎 = 0.8, 𝑏 = 0.2 and
𝑐 = 0. All our results presented below are collected after
the experiments run for a period of 𝑇 = 100 time slots, the
duration of each of which is set to 1 minute.

In Fig. 2(a), we show both the upper and lower bounds
on the optimal result of P1. Recall that the upper bound is
achieved by our proposed algorithm, i.e., 𝜓𝑃3, and the lower
bound is obtained by optimally solving the relaxed problem
𝑃3, i.e., 𝜓∗

𝑃3
−𝐵/𝑉 . We can find that the lower and upper

bounds get closer to each other as 𝑉 increases.
Then, we examine the tradeoff between energy cost and

the queue backlog sizes incurred by our scheme. We find that
in Fig. 2(b) and Fig. 2(c), the data queue backlog sizes of
base stations and mobile users increase as time goes by and
are bounded. We can also get similar results in Fig. 2(d)
and Fig. 2(e) for energy queues. Since the expected total
sizes of all data queues and energy buffers of both mobile
users and base stations are all finite, each single data queue
and energy buffer in the network are finite in each time slot,
therefore guaranteeing the strong stability of the network.
Besides, a larger 𝑉 results in a larger queue backlog size.
This is because a larger 𝑉 means more emphasis on the
energy cost minimization than on the queue size and that
the system needs to have a larger queue buffer so as to save
more energy cost. The results in Fig. 2(a)-2(e) together show
the tradeoff between energy cost minimization and queue
length in our proposed algorithm.

Lastly, we compare the time-averaged expected energy
cost of our proposed architecture with other cellular network
architectures, i.e., multi-hop network without renewable en-
ergy, one-hop network with renewable energy, and one-hop
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(a) Time-averaged expected energy cost.
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(b) Total data queue backlog size of base
stations over time.

0 20 40 60 80 100
0

1

2

3

4

5

6
x 10

4

Time(minutes)

T
ot

al
 d

at
a 

qu
eu

e 
ba

ck
lo

g 
si

ze
 o

f m
ob

ile
 u

se
rs

 

 

V=1x105

V=2x105

V=3x105

V=4x105

V=5x105

(c) Total data queue backlog size of mobile
users over time.
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(d) Total energy buffer size of base stations
over time.
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(e) Total energy buffer size of mobile users
over time.
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(f) Performance comparison of different archi-
tectures.

Figure 2. Performance evaluation of the proposed scheme.

network without renewable energy. As shown in Fig. 2(f),
our system has the lowest time-averaged expected energy
cost among these four network systems when 𝑉 goes from
1 × 105 to 5 × 105. Specifically, compared with the multi-
hop network without renewable energy, our system can
take advantage of the renewable energy and the energy
stored locally and hence save energy cost. In addition, by
comparing one-hop and multi-hop networks, we can find
that the latter have lower energy cost. This is because
multi-hop technology enables nodes in the network to use
lower transmission powers to help each other with the
transmissions and reduce energy consumption.

VII. CONCLUSIONS

In this paper, we propose an energy cost minimization
framework for downlink data communication in multi-hop
cellular networks. In particular, with the objective of mini-
mizing the long-term time-averaged expected energy cost of
cellular service provider while guaranteeing the strong sta-
bility of the network, we construct a time-coupling stochastic
Mixed-Integer Non-Linear Programming (MINLP) problem,
which is prohibitively expensive to solve. By employing
Lyapunov optimization theory, we reformulate the problem
and develop a decomposition based scheme to solve the
problem in each time slot without priori knowledge of the
network statistics. The proposed scheme can ensure the
network strong stability. Both lower and upper bounds on
the optimal result of the original optimization problem are
obtained. Extensive simulation results validate the energy
cost savings of the proposed scheme.
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