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Abstract—Crowdsourcing is a crowd-based outsourcing, where
a requester (task owner) can outsource tasks to workers (public
crowd). Recently, mobile crowdsourcing, which can leverage
workers’ data from smartphones for data aggregation and analy-
sis, has attracted much attention. However, when the data volume
is getting large, it becomes a difficult problem for a requester
to aggregate and analyze the incoming data, especially when the
requester is an ordinary smartphone user or a start-up company
with limited storage and computation resources. Besides, workers
are concerned about their identity and data privacy. To tackle
these issues, we introduce a three-party architecture for mobile
crowdsourcing, where the cloud is implemented between workers
and requesters to ease the storage and computation burden of
the resource-limited requester. Identity privacy and data privacy
are also achieved. With our scheme, a requester is able to verify
the correctness of computation results from the cloud. We also
provide several aggregated statistics in our work, together with
efficient data update methods. Extensive simulation shows both
the feasibility and efficiency of our proposed solution.

Index Terms—Mobile Crowdsourcing, Cloud Computing, Se-
curity and Privacy, Verifiable Computation.

I. INTRODUCTION

The pervasiveness of smartphones revolutionarily changes
the traditional crowdsourcing to mobile crowdsourcing, where
workers can perform tasks more freely for a requester by
using their smartphones [1]–[7]. Nowadays, smartphones often
come with a rich set of embedded sensors such as GPS,
accelerator, gyroscope, digital compass, light, audio, and video
sensors. More and more cheap sensors measuring temperature,
humidity, barometer, chemical, and biomedical are also ex-
pected to be incorporated into smartphones. This indicates that
smartphones are increasingly capable of sensing surrounding
environments and providing all kinds of data desired by a
requester. For example, a healthcare company may want to
collect users’ health-related information such as weights, blood
glucose levels, heart rates with biomedical sensors for medical
use. The transportation agencies can harness the collected
sensed data for managing, scheduling, and maintaining urban
transportation systems. The data may not only be the sensed
data generated by smartphone sensors like in [1]–[6], it may
also come from other sources, e.g., a worker’s personal knowl-
edge. Crowdsourcing data via smartphones brings a bunch
of benefits to both requesters and workers. First of all, the
ubiquitous penetration of smartphones into daily life implies
sufficient geographic coverage and data diversity, which makes
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the data aggregation results more accurate. Second, it costs
much less time and expense of the requester, because the
requester does not need to dispatch data collector to go through
well-planed routes. Also, the universal access of the Internet
and cellular networks enables nearly real-time data collection.
Besides, workers can also get many rewards (e.g., revenue and
reputation) through participation.

No matter how promising the mobile crowdsourcing is, it
will not be widely accepted unless the following issues are
well addressed. First, the requester often needs to aggregate
and analyze a huge amount of data samples from workers,
which involves intensive storage, communication, and compu-
tation cost [8]. If the requester is an ordinary smartphone user
or a start-up company, that cost is not affordable when the
involved data volume is increasingly large [6], [9]. Second, a
worker’s data might contain private information like identity,
age, weight, location, and so on. Revealing this information
to the requester or other workers could incur serious privacy
breach or even physical attacks [2], [5], [10]–[13]. As a
result, workers might be reluctant to participate due to privacy
concern.
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Fig. 1. Computation Comparison between the Requester and Cloud

Facing these challenges, we propose to take advantages the
cloud to help the requester to aggregate, store, and process
the collected data, while the requester only needs to send a
request to the cloud and retrieve the corresponding results.
Here, we use a simple example to show the benefits brought
by using cloud. Given a task of computing mean, variance,
and correlation coefficient over large integer datasets (all in
plaintext), we show in Fig.1 the advantage of cloud over
an ordinary resource-limited requester. As we can see from
Fig.1, the advantage of cloud becomes larger as the number
of data increases, and this is especially meaningful in big data
aggregation and processing.
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Besides, the involvement of cloud cuts down the direct
data communication between requester and workers. With
proper encryption schemes, workers’ data privacy can be well
protected from the requester. However, the introduction of the
cloud brings new challenges. First, current cloud computing
platforms cannot protect users’ data privacy well [10], [14],
[15]. Second, the cloud might encounter hardware/software er-
rors and internal/external attacks, which may lead to incorrect
computation. Therefore, how to verify the correctness of the
computation results is a question. To address the above issues,
we propose a privacy-preserving verifiable data aggregation
and analysis for cloud-assisted mobile crowdsourcing. In our
scheme, the requester is able to delegate the data aggregation
and analysis to the cloud, and verify the correctness of the
retrieved results. Meanwhile, a worker’s identity and data will
not be revealed.

Related Works:
Privacy-Preserving Data Aggregation: Privacy-preserving

data aggregation is useful in many areas such as mobile
sensing [3]–[6], [16], eHealth [9], and smart grid [17]. In
[3]–[5], [16], [17], different encryption schemes are used to
achieve data privacy, but all data aggregation schemes are
accomplished by the requester. An additive homomorphic
encryption scheme is used to achieve Sum aggregate and Min
aggregate of time-series data in [3]–[5]. The requester needs
to store all the ciphertexts from the users and compute the
Sum and Min by himself, which is obviously not applicable
when the requester is constrained in storage and computation
capability. Shi et al. [16] propose a privacy-preserving sum
aggregation, where the decryption in their scheme requires
brute-force to solve the DLP, which brings much computation
burden to the requester. The collector in [17] can only obtain
the summation of the data which is not enough in our
proposed scenario. The in-network data aggregation will incur
much delay in mobile crowdsourcing, because one worker’s
data needs to be routed by some other workers. In [6], [9],
the aggregation is done by the cloud. A peer-to-peer based
privacy-preserving data aggregation scheme is proposed for
people-centric urban sensing in [6]. However, there is no
mechanism for the requester to verify the correctness of the
results retrieved from the service provider. Zhou et al. [9]
propose a homomorphic data aggregation scheme in eHealth
systems. In this scheme, the users’ data privacy can be well
protected and the computation of the aggregation statistics
is delegated to the cloud. Unfortunately, in [9] they cannot
achieve the verifiable computation which is required in our
scenario. Our proposed solution cannot only protect data
privacy but also achieve delegated computation and storage.
The comparison between our solution and three other typical
ones are given in Table. I.

Verifiable Computation: Gennaro et al. [18] introduce and
formalize the concept of verifiable computation, which enables
a resource-constrained client to outsource the computation
of a function to one or more workers. The client should
be able to efficiently verify the correctness of the results.
In [19]–[21], verifiable computation over plaintext space is
achieved. In [19], the first practical verifiable computation
scheme for high degree polynomial functions is proposed.
Dario et al. [20] propose a publicly verifiable computation of
large polynomials and matrix computations, where anyone can

TABLE I
OUR SOLUTION VS. TYPICAL EXISTING SOLUTIONS

������������Functionality

Schemes
Ours [5] [6] [16]

Data Privacy � � � �
Storage Delagation � × × �
Computation Delegation � × × �
Correctness Verification � × × ×
Sum/Mean � � � �
Variance/Correlation Coefficient � × × �

verify the correctness of the results. Papamanthou et al. [21]
propose a verifiable delegated computation of set operations,
such as set union, set intersection and set difference. However,
all these verifiable computation are over the plaintext space,
which is not suitable for our scheme. Verifiable computation
in ciphertext space is realized in [22]–[24]. Guo et al. [22]
design a verifiable computation over the ciphertext space for
mHealh systems, where a patient can ask the cloud to evaluate
a polynomial over his encrypted personal health record. In
[23], the accumulation tree is novelly used to verify the
results of proximity test. Fiore et al. [24] achieve efficiently
verifiable computation on encrypted data. All these solutions
can only enable the workers to verify the results which cannot
be used directly in our scheme. Based on [24], we extend
their architecture from two-party model (user and cloud) to
three-party model (worker, cloud and requester) so that we
can achieve privacy-preserving verifiable data aggregation and
analysis for cloud-assisted mobile crowdsourcing.

Our Contributions: We list our contributions as follows.

• The proposed architecture achieves privacy-preserving
verifiable data aggregation and analysis for mobile crowd-
sourcing.

• With our scheme, each worker’s identity privacy and data
privacy are well protected. The cloud will not learn the
exact identity of the workers or the content of aggregation
results, and requester can only learn the final aggregation
results.

• The requester is enabled to verify the correctness of
computation results retrieved from the cloud.

• A variety of statistics, i.e., sum, mean, variance, and
uncentered correlation coefficient are computed with our
scheme and an efficient data update method is provided.

The remainder of this paper is organized as follows. Section
II introduces preliminaries, assumptions and problem formu-
lation. Section III presents the system model, security model
and design objectives. The proposed scheme is described in
detail in Section IV, followed by the protocol evaluation in
Section V. Finally, Section VI concludes the paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries
1) Bilinear Pairing: A bilinear pairing is a map e : G1 ×

G2 → GT , where G1, G2 and GT are multiplicative cyclic
groups of the same prime order q and G1 is generated by g, G2

is generated by h. The pairing e has the following properties
[25], [26]:

• Bilinearity: e(ga1 , g
b
2) = e(g1, g2)

ab for all g1 ∈ G1, g2 ∈
G2 and random numbers a, b ∈ Z∗

q ;



• Computability: For all g1 ∈ G1, g2 ∈ G2, e(g1, g2) can
be computed efficiently;

• Non-degeneracy: For g ∈ G1, h ∈ G2, e(g, h) �= 1.

2) Cryptographic Assumptions:

• Discrete Logarithmic Problem (DLP) [27]: Let g0, g1 be
two elements in G1. It is computationally intractable to
find an integer a, such that g1 = ga0 .

• Computational Diffie-Hellman (CDH) Problem [25]:
Given (g1, ga1 , gb1) for g1 ∈ G1 and unknown a, b ∈ Z∗

q ,

it is intractable to compute gab1 in a polynomial time.
• Decisional Diffie-Hellman (DDH) Problem [25]: Given

(g1, g
a
1 , g

b
1, g

c
1) for g1 ∈ G1 and unknown a, b, c ∈ Z∗

q ,
it is easy to tell whether c = ab mod q by checking if
e(ga1 , g

b
1) = e(gc1, g).

• l-BDHI Assumption [24]: Let G be a bilinear group gen-
erator, and G(1λ) → (q,G1, G2, GT , e, g, h). Let z ∈ Zq

be chosen uniformly at random. We say that the l-BDHI
assumption holds for G if for every probabilistic polyno-
mial time adversary A and any l = poly(λ) the proba-

bility Pr[A(q,G1, G2, GT , e, g, h, g
z, hz, ..., gz

l

, hzl

) =
e(g, h)1/z] is negligible.

3) BGV Homomorphic Encryption: BGV homomorphic en-
cryption is built upon the hardness of Learning with Errors
(LWE) problem, and can fully support both additive and
multiplicative homomorphisms [24], [28], [29]. In our scheme,
we only use the somewhat homomorphic of [29], which
includes four algorithms: ParamGen, KeyGen, Encpk and
Decdk. The details are given below [24].

• ParamGen: Given the security parameter λ, the algo-
rithm generates the message space Rp = Zp[X]/Φm(X)
and the ciphertext space Rq = Z/qZ[X]/Φm(X), where
p is a prime, and q is the same as above. Φm(X) is
the mth cyclotomic polynomial in Zp[X] of degree n.
Then, the algorithm defines two probability distributions,
DZn,σ and ZOn. The DZn,σ is a discrete Gaussian
distribution with parameter σ over Zn. The ZOn is the
distribution of random variable x = (x1, x2, ..., xn) with
xi ∈ {−1, 0, 1} and Pr[xi = −1] = Pr[xi = 1] = 1/4
and Pr[xi = 0] = 1/2.

• KeyGen: This algorithm chooses a ∈R Rq and s, e ∈R

DZn,σ . Consider s and e as elements in Rq , and compute
b = a · s + p · e, and set public key: pk = (a, b) and
decryption key: dk = s.

• Encpk: Given pk, m ∈ Rp, and r ∈R

(ZOn, ZOn, DZn,σ), the message m is parsed as
an element in Rq with infinity norm bounded by p/2
and the random r is parsed as r = (r1, r2, r3) ∈ R3

q .
The output is c = c0 + c1 · Y ∈ Rq[Y ], where
c0 = b · r2 + p · r3 +m and c1 = a · r2 + p · r1.

• Decdk: This algorithm takes as input c = c0 + c1 · Y
and outputs m = c0 − c1s mod p. The correctness is as
follows:

c0 − c1s

= (br2 + pr3 +m)− (ar2 + pr1)s

= (as+ pe)r2 + pr3 +m− ar2s− pr1s

= p(er2 + r3 + r1s) +m

= m mod p

4) Homomorphic Hash Functions [24]: Define H() :
Rq[Y ] → G1 × G2 (or GT ) as a collision-resistant homo-

morphic hash. If the input is μ =
∑2

j=0 μjY
j ∈ Rq[Y ], the

algorithm computes Hα,β(μ) as follows,

Hα,β(μ) =

2∑
j=0

n−1∑
i=0

(μjα
j)iβ

i

where α ∈R Rq and β ∈R Zq , and Hα,β() is a one-way
homomorphic hash function. We use degY (μ) to denote the
degree of μ with respect to Y . For example, if μ = c0 +
c1Y , then degY (μ) = 1. H() has two possible outputs: if
degY (μ) < 2, the algorithm outputs

H(μ) = (T, U) = (gHα,β(μ), hHα,β(μ)).

If degY (μ) = 2, the algorithm outputs

H(μ) = e(g, h)Hα,β(μ).

5) Pseudorandom Functions [19], [24], [30]: FK() :
{0, 1}∗ × {0, 1}∗ → G1 × G2 is a pseudorandom func-
tion with key K = (K1,K2), and it consists of two
other pseudorandom functions: FK1

: {0, 1}∗ → Z2
q and

FK2 : {0, 1}∗ → Z2
q . Given input tuple (I1, I2), FK1(I1) =

(uI1 , vI1) and FK2(I2) = (uI2 , vI2), and FK(I1, I2) =
(R,S) = (guI1

uI2
+vI1vI2 , huI1

uI2
+vI1

vI2 ).

B. Problem Formulation

The fundamental problem is how to enable a requester to
achieve data aggregation and analysis with the help of cloud in
a privacy-preserving and verifiable way. Here, privacy preser-
vation refers to workers’ identity and data privacy, as well
as the result privacy. Verifiability refers to requester’s ability
to verify the correctness of the results. Specifically, identity
privacy is achieved by ring signature. BGV homomorphic
encryption is used to protect workers’ data privacy. Given a
ciphertext c = c0 + c1 · Y encrypted with BGV homomorphic
scheme, it is intractable to find out the plaintext without
the decryption key. Data aggregation and analysis also rely
on BGV homomorphic encryption due to its homomorphism.
Given H(μ1) = (T1, U1) and H(μ2) = (T2, U2), and a
constant c ∈ Zq , the following homomorphic properties hold:
H(μ1 + μ2) = (T1 · T2, U1 · U2), H(c · μ) = (T c, U c),
and H(μ1 × μ2) = e(T1, U2). With the above homomorphic
properties, the cloud can do computations over the ciphertexts.
Verifiability can be achieved by using the homomorphic hash
functions. Due to the one-way and collision-resistant proper-
ties of the homomorphic hash functions, a requester can verify
the correctness of cloud’s computation results efficiently.

III. SYSTEM MODEL

A. System Model

Our model mainly consists of four entities, the mobile
workers (MW), the requester (R), the cloud (C), and the trusted
authority (TA), as shown in Fig.2.

• Trust Authority (TA): TA is responsible for initializing
the whole system which includes registering workers,
requesters and the cloud, generating public parameters,
and distributing keys and maintaining the system. TA will
be offline unless a dispute arises.
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• Requester: The requester wants to obtain aggregation
statistics over the workers’ data. However, due to his/her
limitation on the storage and computation capability, the
requester will delegate most of the computation to the
cloud.

• Cloud: The cloud receives the delegation requests from
the requester and the encrypted data from mobile workers,
then it computes the results for the requester. The cloud
is associated with some access points (APs), which act
as relays between cloud and the workers or requesters.

• Mobile Workers: Mobile workers refer to those who have
smartphones and are willing to contribute data to the
requester’s tasks. MWs may move randomly and send
the sensing data to the cloud after encryption.

B. Security Model
In our security model, the TA is fully trusted and will

not be breached by any adversary. We assume that workers,
requester and cloud are honest-but-curious, meaning that they
will strictly follow the predefined protocol but may also dig
out others’ privacy based on available information.

• Mobile Workers: In our scheme, a worker’s data should
be kept confidential from others.

• Requester: The requester should be able to verify the
correctness of the computation results received from the
cloud. However, the requester cannot learn any individual
worker’s plaintext data.

• Cloud: The cloud will honestly compute the aggregation
according to the requester’s ask, and will provide the
proof of correctness of the computation results to meet
the security requirement. Besides, the cloud should only
obtain the encrypted data from the workers and the
encrypted aggregation results.

In addition, the collusion attacks among any entities are out
of the scope of our paper.

C. Design Objectives
We have three main objectives for our privacy-preserving

verifiable data aggregation and analysis for cloud-assisted
mobile crowdsourcing. First, a requester can securely delegate
the computation of the aggregation statistics to the cloud so
as to offload the burden of storage and computation. Second,
workers can participate in the mobile crowdsourcing task with-
out leaking identity and data privacy to anyone else. Finally,
the requester can verify the correctness of the computation
results from cloud in an efficient way.

IV. OUR PROPOSED SCHEME

In this section, we introduce our privacy-preserving verifi-
able data aggregation and analysis for cloud-assisted mobile
crowdsourcing in detail. It mainly consists of the following
subsections: system initialization, basic scheme, and exten-
sions. Before diving into the details, we give a brief overview
of our proposed scheme.

A. Overview

During the system initialization, TA assigns a public/private
key pair to the requester, cloud and all workers. When the
requester wants to obtain the statistics of a specific type of
data, he sends his request and his homomorphic encryption
key pk to the cloud and waits for the results. The cloud
broadcasts the requester’s task and homomorphic encryption
key pk to all chosen workers asking for their data. The
chosen workers prepare the required data m from embedded
smartphone sensors or other data sources, and then encrypt
m with requester’s encryption key pk. Workers sign their data
before sending it to cloud. After all chosen workers send their
encrypted data Encpk(m) and signature to the cloud via APs.
The cloud verifies the authenticity of each data, and then it
computes the statistics over the ciphertexts and returns the
results with corresponding proof information to the requester.
Finally, if the requester successfully verifies the correctness of
the results he/she continues to decrypt the results. Otherwise,
the requester rejects the results.

B. System Initialization

In this phase, TA first generates necessary parameters and
keys for the system. Then, TA registers all workers, requesters
and cloud into the system. We present the two initialization
steps as follows.

1) General Setup: Given the security parameter
κ and λ, the TA generates the bilinear parameters
(q,G1, G2, GT , e, g, h) and the public homomorphic
encryption parameters (p, q, Rp, Rq) respectively. Then
TA chooses a secure symmetric encryption algorithm E(),
e.g., AES, and a hash function: H1 : Rq[Y ] → Zq .
Besides, TA chooses a master key mk = ε ∈ Z∗

q

and computes a public key Pmk = hε. Finally, TA
keeps the master key and publishes the public parameters
pps = {q,G1, G2, GT , e, g, h, p, Rp, Rq, Pmk, H1, E()}.

2) Entities Registration: Assume there are N mobile work-
ers in the system: MW = {W1,W2, ...,WN}. For each
worker Wi, TA assigns him a private/public key pair (ski, pki),
where ski = xi ∈R Zq and pki = hxi . TA registers the
cloud and the requester by sending the private/public key
pairs (skc, pkc) = (xc, h

xc) and (skr, pkr) = (xr, h
xr

) to
the cloud and the requester respectively, where xc and xr are
random number from Zq . Besides, both requester and workers
obtain encryption keys (α, β) for the homomorphic hash and
K = (K1,K2) for pesudorandom function FK() during this
phase.

C. Basic Scheme

In this subsection, we introduce our basic scheme which
can compute the sum of workers’ data in a privacy-preserving
and verifiable way. There are five steps.

Step 1: Task Generation



First, the requester generates the BGV homomorphic en-
cryption key pk = (a, b) and the decryption key dk = s
using the KeyGen algorithm described in the preliminaries.
Then, the requester sends {τ = “sum”, t, pk} to the cloud as
an request, where τ = “sum” is tag of the statistics to be
computed, and t ∈ Z is the total number of workers needed.
For i = 1 to t, the requester computes FK1(i) = (ui, vi),
ρi(x, y) = uix + viy, where x and y are variables, and

ω(x, y) =
∑t

i=1 ρi(x, y) as the witness of τ = “sum”. The
ω(x, y) will be used later in the correctness verification step.

Step 2: Task Forwarding
After receiving the delegated task {τ = “sum”, t, pk} from

requester, the cloud publishes pk to all chosen workers1.
Without loss of generality, we assume the chosen workers are
{W1,W2, ...,Wt}.

Step 3: Worker Participation
Assuming worker Wi has been chosen to participate. He

prepares ready his data mi, and encrypts it with requester’s
public encryption key pk to get

μi = Encpk(mi) = ci0 + ci1 · Y.
Then, worker Wi needs to compute the following values for
verification use. First, the homomorphic hash value of μi is
computed,

H(μi) = (Ti, Ui) = (gHα,β(μi), hHα,β(μi)), (1)

Then, he computes FK1
(i) = (ui, vi), FK2

(τ) = (u, v), and

FK(i, τ) = (Ri, Si) = (guiu+viv, huiu+viv), (2)

followed by

Xi = (Ri · T−1
i )1/d = (guiu

′+viv
′−Hα,β(μi))1/d,

Yi = (Si · U−1
i )1/d = (huiu

′+viv
′−Hα,β(μi))1/d.

(3)

Next, worker Wi generates σi = (Ti, Ui, Xi, Yi,Λi = 1). To
achieve identity privacy, Wi uses ring signature [31] to sign
μi. Given all chosen users’ public keys (pk1, pk2, ..., pkt), μi,
and private key ski, worker Wi randomly chooses aij ∈ Zp

for all Wj , where j �= i, and computes sj = gaij . Also, Wi

computes δi = gH1(μi), and

si =

(
δi

φ(
∏

j �=i pk
aij

j )

)1/ski

.

The ring signature for μi is sWi = (si1, si2, ..., sit). Finally,
worker Wi sends {μi, σi, sWi} to cloud.

Step 4: Data Aggregation
When cloud receives {μi, σi, sWi

} from all chosen workers
W1,W2, ...,Wt, it first verifies if the received data really
comes from the chosen workers by computing δi = gH1(μi),
and checking

e(δi, h)
?
=

t∏
j=1

e(sij , pki).

If the above equation holds, μi is signed by one of the t chosen
workers. Otherwise, it is not.

1Sometimes, not all workers are chosen for a specific task. For examle,
requester may only choose workers from points of interest, instead of all
areas. How to choose workers is out of our scope.

Proof of correctness:.
t∏

j=1

e(sij , pki) = e(sii, pki) ·
∏
j �=i

e(sij , pkj)

= e(

(
δi

φ(
∏

j �=i pk
aij

j )

)1/ski

, hxi) ·
∏
j �=i

e(gaij , hxj )

= e(
δi

φ(
∏

j �=i h
xjaij )

, h) ·
∏
j �=i

e(gxjaij , h)

= e(
δi∏

j �=i g
xjaij

, h) · e(
∏
j �=i

gxjaij , h)

= e(δi, h)

Then, cloud continues to compute μ =
t∑

i=1

μi and σ =

(T, U,X, Y,Λ), where

T =

t∏
i=1

Ti, U =

t∏
i=1

Ui, X =

t∏
i=1

Xi, Y =

t∏
i=1

Yi, Λ =

t∏
i=1

Λi.

Finally, the cloud sends a tuple of the computation result and
its verification information {μ, σ} to the requester.

Step 5: Result Retrieval and Verification
Based on the tag τ = “sum” of the task, the requester

computes FK2
(τ) = (u, v) , ω = ω(u, v) =

∑t
i=1(uiu+ viv)

and W = e(g, h)ω . After requester receives (μ, σ) from the
cloud, he computes H(μ) = (T ′, U ′). Then, he checks if the
following equations hold or not.

(T, U)
?
= (T ′, U ′), e(T, h) ?

= e(g, U),

e(X,h)
?
= e(g, Y ), W

?
= e(T, h) · e(X,h)d.

(4)

If any of the above equations does not hold, the requester
rejects the results. Otherwise, he accepts the results. If the
results are correct, those equations hold as follows,

Proof of correctness:.

(T, U) = (

t∏
i=1

Ti,

t∏
i=1

Ui)

= (g
∑t

i=1 Hα,β(μi), h
∑t

i=1 Hα,β(μi))

= (gHα,β(
∑t

i=1 μi), hHα,β(
∑t

i=1 μi))

= (T ′, U ′),

e(T, h) = e(gHα,β(μ), h) = e(g, hHα,β(μ))

= e(g, U),

e(X,h) = e(g
∑t

i=1(uiu+viv)−Hα,β(μ), h)1/d

= e(g, h
∑t

i=1(uiu+viv)−Hα,β(μ))1/d

= e(g, Y ),

e(T, h) · e(X,h)d = e(gHα,β(μ), h)

· e(g
∑t

i=1(uiu+viv)−Hα,β(μ), h)

= e(g, h)
∑t

i=1(uiu+viv) = W.



Then, the requester continues to derive the summation of all
chosen workers’ data

∑t
i=1 mi by decrypting μ as follows,

Decdk(μ) = Decdk(
t∑

i=1

μi) = Decdk(
t∑

i=1

ci0 +

t∑
i=1

ci1Y )

=
t∑

i=1

ci0 − s ·
t∑

i=1

ci1 =

t∑
i=1

mi.

D. Extensions
In addition to the computation of the summation, our also

show the efficient verifiable computation of a few other basic
aggregation statistics. Efficient data update is also provided.

1) Statistics: Here, we demonstrate the computation of the
mean, the variance, and the uncentered correlation coefficient.

Mean: The computation of mean is very useful in many
applications. One example is that the transportation bureau
can estimate the traffic condition in one area by computing the
average speed of the cars. The speed values are sensed by the
workers’ smartphones. Assume a requester wants to know the
mean value of t data m = (m1,m2, ...,mt), where mi is the
data contributed by worker Wi. The computation of the mean
is straightforward. The requester can use the above method to
get the verifiable computation results of the summation S�m =∑t

i=1 mi of all data from t workers and divides it by t to get
the mean

μ�m =
S�m

t
.

Variance: The computation of aggregation variance is also
very meaningful in many applications. The variance of t data
values m = (m1,m2, ...,mt) is computed as follows,

Var(m) =

∑t
i=1(mi − μ�m)2

t
=

∑t
i=1 m

2
i

t
− μ2

�m.

Apparently, the computation can be split into two parts, the
first part is the mean of m2

i , and the other part is the square
of the mean μ�m. Since we have already introduced how to
compute μ�m, then here we only need to find the computation
of μ�m2 = (

∑t
i=1 m

2
i )/t. Let S�m2 =

∑t
i=1 m

2
i , then the

computation of Var(m) is reduced to the computation of S�m2 .
Let f1 =

∑t
i=1 x

2
i , the requester precomputes ωf1(z1, z2) =

f1(ρ1(z1, z2), ρ2(z1, z2), ..., ρt(z1, z2)), ω̂ = ωf1(u, v) =∑t
i=1(uiu + viv)

2, and Ŵ = e(g, h)ω̂ . Requester sends
(τ = “sum of squares”, t, pk) to the cloud as a request.
Cloud collects (μi, σi) from workers in the same way as above,

and it computes μ̂ =
∑t

i=1 μ
2
i and σ̂ = (T̂ , X̂, Ŷ , Λ̂), where

T̂ =

t∏
i=1

e(Ti, Ui), X̂ =

t∏
i=1

e(Xi, Ui)
2,

Ŷ =

t∏
i=1

e(Ti, Yi)
2, Λ̂ =

t∏
i=1

e(Xi, Yi).

Then, cloud sends (μ̂, σ̂) to requester who computes H(μ̂) =
e(g, h)Hα,β(μ̂) and checks if the following equations hold.

T̂
?
= H(μ̂), X̂

?
= Ŷ , Ŵ

?
= T̂ · X̂d · Λ̂d2

.

If any of the above equation does not hold, the requester rejects
the results. Otherwise, the requester accepts the results. If the
results are correct, the equations hold as follows,

Proof of correctness:.

T̂ =
t∏

i=1

e(Ti, Ui) =

t∏
i=1

e(gHα,β(μi), hHα,β(μi))

= e(g, h)Hα,β(
∑t

i=1 μ2
i ) = H(μ̂),

X̂ =
t∏

i=1

e(Xi, Ui)
2 =

t∏
i=1

e(Ri · T−1
i , Ui)

2

=

t∏
i=1

e(g(uiu
′+viv

′)−Hα,β(μi), hHα,β(μi))2/d

=

t∏
i=1

e(gHα,β(μi), h(uiu
′+viv

′)−Hα,β(μi))2/d

= Ŷ ,

T̂ · X̂d · Λ̂d2

= e(g, h)Hα,β(
∑t

i=1 μ2
i )

· e(g, h)2
∑t

i=1(uiu
′+viv

′)Hα,β(μi)−2Hα,β(
∑t

i=1 μ2
i )

· e(g, h)
∑t

i=1(uiu
′+viv

′)2−2
∑t

i=1(uiu
′+viv

′)Hα,β(μi)

· e(g, h)Hα,β(
∑t

i=1 μ2
i ) = e(g, h)

∑t
i=1(uiu

′+viv
′)2

= Ŵ .

Then, requester continues to derive S�m2 =
∑t

i=1 m
2
i

by simply decrypting μ̂. Finally, the requester derives the
variance:

Var(m) = S�m2/t− S2
�m/t2.

Uncentered correlation coefficient: The uncentered cor-
relation coefficient is also an important statistics, which is
computed using the following formula.

r�m, �m′ =

∑t
i=1 mim

′
i√∑t

i=1 m
2
i ·

√∑t
i=1 m

′2
i

Since S�m2 =
∑t

i=1 m
2
i and S�m′2 =

∑t
i=1 m

′2
i can be

computed using the same method in the Variance part, where
m2 = (m2

1,m
2
2, ...,m

2
t ) and m′2 = (m′2

1 ,m
′2
2 , ...,m

′2
t ), the

requester only needs to obtain the scalar product of m and
m′: Sp =

∑t
i=1 mim

′
i.

Let f2(x, y) =
∑t

i=1 xiyi, and assume there
are two tags τ and τ̃ , where τ is the same as in
variance and summation parts but τ̃ is a new tag.
F ′
K2

(τ̃) = (u′′, v′′) The requester precomputes ωf2(z1, z2) =
f2((ρ1(z1, z2), ..., ρt(z1, z2)), (ρ̃1(z1, z2), ..., ρ̃t(z1, z2))),
ω̃ = ωf2(u

′, v′) =
∑t

i=1(uiu
′ + viv

′)(uiu
′′ + viv

′′), and

W̃ = e(g, h)ω̃ .

The requester sends (f2 =
∑t

i=1 xiyi, t, τ, τ̃ , pk) to the
cloud and waits for the results. Cloud collects (μi, σi)
and (μ′

i, σ
′
i) from workers, where μ′

i = H(m′
i), σ

′
i =

(T ′
i , U

′
i , X

′
i, Y

′
i ,Λ

′
i), for i = 1, 2, ..., t. Then, cloud computes

μ̃ =
∑t

i=1 μiμ
′
i and σ̃ = (T̃ , Ũ , X̃, Ỹ , Λ̃) as follows,

T̃ =

t∏
i=1

e(Ti, U
′
i), Ũ =

t∏
i=1

e(T ′
i , Ui), Λ̃ =

t∏
i=1

e(Xi, Y
′
i ),

X̃ =

t∏
i=1

e(Xi, U
′
i)e(X

′
i, Ui), Ỹ =

t∏
i=1

e(Ti, Y
′
i )e(T

′
i , Yi)



Then, cloud sends μ̃ and σ̃ = (T̃ , Ũ , X̃, Ỹ , Λ̃) to the requester.
When the requester receives the results from the cloud, he
computes the hash value H(μ̃) = e(e, h)Hα,β(μ̃) and checks
if the following equations hold.

T̃
?
= Ũ

?
= H(μ̃), X̃

?
= Ỹ , W̃

?
= T̃ · X̃d · Λd2

.

If all the equations hold, the requester accepts the results and
decrypts μ̃ to get Sp =

∑t
i=1 mim

′
i. Finally, the uncentered

correlation coefficient is

r�m, �m′ =
Sp√

S�m2 · √S�m′2
.

2) Efficient Data Update: The requester may need to up-
date the aggregated statistics periodically, which brings much
burden to workers if they have to participate from scratch. We
consider data update in two cases.

Case 1: The chosen workers stay the same, i.e.,
{W1, ...,Wt}, but a subset of them have new data to update.
We assume the subset is {W1, ...,Wn}, where n ≤ t. In
this case, only workers with new data need to participate
in the data aggregation, while the rest of workers do not
need to do anything. This reduces a lot of computation and
communication load of the whole system. Take computation
of sum as an example, Wi ∈ {W1, ...,Wn} has new data m′

i

and old data mi. Wi computes

μ′
i = Encpk(m

′
i)− Encpk(mi)

and δ′i = (T ′
i/Ti, U

′
i/Ui, X

′
i/Xi, Y

′
i /Yi,Λ

′
i/Λi) for m′

i, where
(T ′

i , U
′
i , X

′
i, Y

′
i ,Λ

′
i) is computed in the same way as Equations

(1)-(3). Then, Wi sends (μ′
i, δ

′
i) to cloud. Cloud computes μ′ =

μ+ μ′
i and δ′ = (T ′, U ′, X ′, Y ′,Λ′), where

T ′ = T ·T
′
i

Ti
, U ′ = U ·U

′
i

Ui
, X ′ = X·X

′
i

Xi
, Y ′ = Y ·Y

′
i

Yi
,Λ′ = Λ·Λ

′
i

Λi
.

Finally, cloud sends (μ′, δ′) to requester. Requester verifies
the correctness of results in the same way as Equation (4).
Data update is very efficient in this way, if only a subset of
workers have new data. Similar process can be applied to the
computation of mean, variance and correlation coefficient.

Case 2: Some of the chosen workers leave while some
new workers join, and the total number of chosen workers
is unchanged. In this case, a leaving worker Wi sends (μi, δi)
to a joining worker Wj , and Wj computes

μj = Encpk(mj)− Encpk(mi)

and δj = (Tj/Ti, Uj/Ui, Xj/Xi, Yj/Yi,Λj/Λi) for mj ,
where (Tj , Uj , Xj , Yj ,Λj) is computed in the same way as
Equations (1)-(3). Then, Wj sends (μj , δj) to cloud. Cloud
computes μ′ = μ+ μj and δ′ = (T ′, U ′, X ′, Y ′,Λ′), where

T ′ = T ·Tj

Ti
, U ′ = U ·Uj

Ui
, X ′ = X·Xj

Xi
, Y ′ = Y ·Yj

Yi
,Λ′ = Λ·Λj

Λi
.

Finally, cloud sends (μ′, δ′) to requester. The rest is the same
as in Case 1.

V. PROTOCOL EVALUATION

In this section, we first discuss how the security and privacy
requirements are achieved, then we demonstrate the efficiency
and feasibility of our scheme through extensive simulation.

A. Security Analysis

1) Data Privacy: In our scheme, a worker’s data mi is
encrypted by the BGV Homomorphic Encryption with the
requester’s public encryption key pk = (a, b) to a ciphertext
μi = c0+c1 ·Y , where c0 = br2+pr3+m and c1 = ar2+pr1.
When the workers participate in the aggregation task, they
will send their encrypted data μi to the cloud. The cloud will
not be able to derive mi from μi because there are only
two equations but with four unknown factors. After cloud
computes the summation, variance or uncentered correlation
coefficient, these values are still in encrypted form due to the
homomorphic property of the encryption method. Therefore,
only the requester who has the decryption key dk can get the
plaintext of the encrypted data. In our scheme, the workers
send their encrypted data to the cloud using IBE, so that even
if the message from a worker to the cloud is intercepted by the
requester or others, the message will not be decrypted because
it is encrypted using the cloud’s public key.

2) Correctness of Verification: Here, we analyze the cor-
rectness of verification for the summation computation. First
of all, when the requester receives μ and σ = (T, U,X, Y,Λ)
from the cloud, he first computes W = e(g, h)ωf (u

′,v′) =
e(g, h)

∑t
i=1(uiu

′+viv
′). Then, he checks if W = e(T, h) ·

e(X,h)d. According to the l-BDHI Assumption, this equa-

tion hold only when X contains
∑t

i=1(uiu
′ + viv

′) in the
exponent of g. If this is true, the requester knows that

X =
∏t

i=1 Xi = g
∑t

i=1(uiu
′+viv

′)−Hα,β(μ). Therefore, T
must be equal to gHα,β(μ). Then, according to DDH, if both
e(T, h) = e(g, U) and e(X,h) = e(g, Y ) hold, U and Y are
also correctly computed by the cloud. Until here, the requester
has verified that (T, U) is correct. Finally, if H(μ) = (T, U)
also hold, the requester knows that μ is indeed the summation∑t

i=1 mi. The correctness of verification for the variance and
uncentered correlation coefficient computation can be proved
in the same way.

3) Identity Privacy: According to [31], if there are t chosen
workers, and every worker signs his data with ring signature,
then the probability of identifying the owner of the signature
is at most 1/t, which is equal to random guessing.

B. Performance Analysis

1) Simulation Setup: We conduct our simulation based on
two libraries: PBC [32] and HElib [33]. In particular, in PBC,
we use the Type A elliptic curve, which has the form of y2 =
x3 + x. We use VMWare Workstation 10 Ubuntu 14.04 in
a desktop with Intel Core i5 processor and 4GB RAM for
the simulation. Our simulation dataset is an open dataset from
[34], and we use the data of weights here.

2) Simulation Results: We denote the schemes in [5], [6],
[16] as R5, R6 and R16 respectively.

• Cost of Encryption at Worker:
First, we compare the encryption cost of a worker in our
scheme with the other three schemes R5, R6, and R16. All the
encryption costs are averaged over 100 users. The comparison
is shown in Fig.3(a) and Fig.3(b). As we can see from Fig.3(a)
and Fig.3(b), the average encryption cost of each worker in
our scheme is the lowest. Low encryption cost is beneficial to
mobile workers, because it means longer battery usage.

• Cost of Sum at Requester:
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Fig. 3. Cost of Encryption at Worker

Next, we simulate the cost of sum at requester when there
are 100 chosen workers. The simulation results is given in
Fig.4(a). Since in our scheme the computation of sum is
outsourced to the cloud, there is no cost at the requester.
However, the requester in R5, R6, R16 needs to compute the
sum by herself.

• Cost of Decryption at Requester:
We also simulate the cost of decryption at requester when
there are 100 chosen workers. The simulation results is given
in Fig.4(b). The cost of decryption in our scheme is 5.89ms,
while the costs in R5, R6, and R16 are 1.005ms, 1.061ms,
and 4706ms respectively. To make figure look clear, the cost
of R16 is not given in Fig.4(b). It’s obvious that our decryption
cost is lower than R16, but higher than R5 and R6. The
comparatively high decryption cost in our scheme is a sacrifice
to achieve verifiability.
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Fig. 4. Cost at the Requester

• Cost of Verification at Requester:
The best feature of our scheme is the verifiability of cor-
rectness of outsourced computation. Intuitively, the cost of
verification at requester in our scheme is a constant regardless
of the number of workers. The reason is that requester always
verifies a single result retrieved from cloud whatever the
number of workers is. The simulation result is shown in
Fig.5(a).

• Cost of Three Statistics:
We simulate the total computational cost of our proposed
scheme regarding the computation of mean, variance and
uncentered correlation coefficient based on 100 workers. The
simulation results are shown in Fig.5(b). Here, the total
computational cost refers to the sum of costs at both workers
and requester. Because in our scheme the cloud is introduced
to ease computation burden of the requester, we are more
interested in the total cost at workers and requester. This total
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Fig. 5. Cost of Verification at Requester and Cost of Three Statistics

cost is crucial in reflecting the efficiency and feasibility of
our scheme. When there are 100 chosen workers, the costs
for mean, variance, and correlation coefficient are 10.366ms,
23.188ms, and 52.371ms respectively.

• Correctness Verification:
To provide a simple presentation for the correctness verifi-

cation, we assume that there are 150 workers and each reports
one datum encrypted with BGV homomorphic encryption to
the cloud. All data are generated according to the normal
distribution N (50, 20). The data are shown as the brown dots
and N (50, 20) the green curve in Fig.6. Since the data are
discrete values, when there are only limited number of them,
the real data distribution will slightly deviate from the original
ideal distribution. The real distribution in this simulation is
N (51.34, 19.38), which is shown as the red curve in Fig.6.
Based on the data from workers, cloud computes the mean and
variance for the requester. If the computation is correct, the
mean and variance should be the same as in N (51.34, 19.38).
As we can see from Fig.6, the retrieved data distribution
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is exactly overlapping with the real data distribution, which
means the retrieved distribution is statistically identical to the
original one.

• Update Efficiency:
Finally, we show the efficiency of our scheme in data updates.
We assume there are t = 6 × 103 workers, and simulate the
computational cost of the workers using our update scheme
and the computational cost of total recomputation. The sim-
ulation results are shown in Fig.7. The blue line shows the
computational cost of workers with total recomputation. The
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cost is high because all workers need to recompute everything
whatever the number of real updates is. The red line shows
the computational cost when our update scheme is used. It is
much more efficient when using our update scheme, because
only the workers who has a new data (in Case 1) and new
joining workers (in Case 2) need to compute again. While the
rest of the workers have no computational costs.

VI. CONCLUSION

In this paper, we propose a privacy-preserving and ver-
ifiable data aggregation scheme for cloud-assisted mobile
crowdsourcing. The proposed scheme enables a requester to
delegate data aggregation and analysis task to the cloud.
In this process, workers’ identity and data privacy are well
protected. Meanwhile, requester can verify the correctness of
the retrieved results. Simulation results show the efficiency and
feasibility of our scheme.
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