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Abstract—Due to its salient features including real time pricing
and distributed generation, the smart grid (SG) poses great chal-
lenges for energy management in the system. In this paper, we in-
vestigate optimal energy management for the SG, taking into con-
sideration unpredictable load demands and distributed energy re-
sources. Both delay intolerant (DI) and delay tolerant (DT) load
demands are studied. We aim to optimally schedule the usage of
all the energy resources in the system and minimize the long-term
time averaged expected total cost of supporting all users’ load de-
mands. In particular, we first formulate an optimization problem,
which turns out to be a time-coupling problem and prohibitively
expensive to solve. Then, we reformulate the problem using Lya-
punov optimization theory and develop a dynamic energymanage-
ment scheme that can dynamically solve the problem in each time
slot based on the current system state only. We are able to obtain
both a lower and an upper bound on the optimal result of the orig-
inal optimization problem. Furthermore, in the case of both DI and
DT load demands, we show that DT load demands are guaranteed
to be served within user-defined deadlines. Extensive simulations
are conducted to validate the efficiency of the developed schemes.

Index Terms—Delay, dynamic energy management, energy
storage device, renewable energy resource, smart grid.

NOMENCLATURE

User ’s available renewable energy resource in
time slot .

User ’s delay intolerant (DI) load demand in time
slot .

User ’s delay tolerant (DT) load demand in time
slot .

User ’s renewable energy used to satisfy its DI
load demand in time slot .

User ’s renewable energy sold to the power grid
in time slot .

User ’s renewable energy used to charge its
energy storage device in time slot .

Grid energy for charging user ’s energy storage
device in time slot .
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Total energy for charging user ’s energy storage
device in time slot .

Discharged energy from user ’s energy storage
device for satisfying its DI load demand in time
slot .

Discharged energy from user ’s energy storage
device sold to the grid in time slot .

Discharged energy from user ’s energy storage
device for satisfying its DT load demand in time
slot .

Total discharged energy from user ’s energy
storage device in time slot .

Energy level of user ’s energy storage device in
time slot .

Adjusted energy level of user ’s energy storage
device in time slot .

Total energy user draws from the power grid in
time slot .

User ’s DT load queue size in time slot .

User ’s virtual DT load queue size in time slot .

Maximum delay for satisfying user ’s DT load
demand.

Total energy generation cost in time slot .

Utility company’s available renewable energy
resource in time slot .

I. INTRODUCTION

L ARGELY underutilized generation capacity and high
transmission losses are two major sources of system

inefficiency in traditional power grids. Recent studies show that
the average utilization of the generation capacity is below 55%
[1] and 7% of generated energy is lost due to transmission in-
efficiencies [2]. In particular, since enough generation capacity
is required to be available to meet peak-hour load demand
plus a security margin, some power plants are largely unused
or underutilized. Besides, energy users are usually several
hundreds of miles away from power plants, which inevitably
results in a significant amount of energy loss due to transmis-
sion inefficiencies. Moreover, overall electricity consumption
is projected to increase by about 14% in the next 20 years [3],
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which will require a big investment to expand the generation
and transmission capacity to accommodate the new demand.
Recently, the smart grid (SG) has been proposed as a new

electrical grid to modernize current power grids and enhance its
efficiency, reliability, and sustainability. Particularly, in the SG,
a digital communication network is deployed to enable two-way
communications between users and system operators. It thus
makes it possible to shape the users’ load demand curves by
means of demand response (DR) strategies, i.e., to encourage
customers to change their usual electricity consumption patterns
by incentives [4]. One such strategy is real time pricing (RTP),
in which system operators charge users a price that varies ac-
cording to real-time energy generation cost. Since usually gen-
eration cost increases as the amount of generated energy in-
creases, users may want to shift their load demands from peak
hours to other times. Therefore, RTP can reduce the peak-hour
load demand in the power system, which in turn lowers the
requirement on system generation capacity. It can also reduce
users’ electricity bills by encouraging them to consume more
power during hours with lower electricity prices. Another fea-
ture of the smart grid is distributed generation (DG), where
users install and take advantage of renewable generation re-
sources (such as solar panels and wind turbines), and energy
storage devices (e.g., batteries). In DG, users determine whether
to immediately consume their own (generated or stored) energy,
store it, or sell it to the grid. Thus, DG can help reduce the en-
ergy loss due to transmission inefficiencies, alleviate congestion
during peak hours, reduce the system’s carbon footprints, and
lower users’ electricity bills.
Due to unpredictable realtime prices and distributed energy

resources, the smart grid poses great challenges for energy man-
agement (or load scheduling) with RTP and DG. Most previous
studies focus on obtaining load schedules for customers in day-
ahead scenarios based on the their load requirement. In partic-
ular, Goudarzi et al. [5] propose a mixed-integer optimization
problem to find a load schedule that minimizes a customer’s en-
ergy consumption cost plus an inconvenience function. Du et
al. [6] present a two-step optimization algorithm to minimize
a user’s energy cost to run thermostatically controlled appli-
ances. Gatsis and Giannakis [7] develop a day-ahead scheduling
scheme considering imperfect information between the utility
company and the customers due to packet loss. Mohsenian-Rad
et al. [8] employ game theory to find an optimal daily load
schedule for each user that minimizes the total energy gener-
ation cost. Shinwari et al. [9] design a water-filling based algo-
rithm, which results in almost flat total power consumption of a
neighborhood so as to minimize the changes in load demand per
hour and reduce the utility company’s operational costs. Salinas
et al. [10] investigate a constrained multi-objective optimiza-
tion problem (CMOP) to manage the energy consumption of a
group of users. They develop two evolutionary algorithms to ob-
tain the Pareto-front solutions and the -Pareto front solutions to
the CMOP, respectively. Joe-Wong et al. [11] formulate a linear
optimization problem to maximize the utility company’s rev-
enue. Note that all these studies require users to know exactly
their load demands ahead of time, which may not be always pre-
dicted and can be uncertain. Besides, none of the above studies
considers DG, energy storage management, or the possibility

of users selling energy to the grid, which are essential and ap-
pealing features of the SG. In contrast, Neely et al. [12] develop
an algorithm tominimize the long-term average expected cost of
a utility company, which supplies power by a traditional power
plant and a renewable energy resource. Individual user’s load
demand and energy storage devices are not considered. In [13],
Urgaonkar et al. study a similar problem for a data center with
an uninterruptible power supply that acts as an energy storage
device. Guo et al. [14] propose an algorithm to minimize one
user’s long term expected energy cost considering a renewable
energy resource and a battery. Note that essentially these works
deal with one single load demand.
In this paper, we investigate the optimal energy management

problem in the smart grid, taking into account customers’
uncertain load demands, and distributed renewable energy
resources and energy storage devices. Specifically, we consider
an electric power distribution network consisting of a set of
energy users, who have two-way real-time communications
with a utility company. Each user has a renewable energy re-
source, an energy storage device, and a connection to the power
grid, which collaboratively satisfy its load demand. The utility
company provides energy to the users from both a traditional
power plant (e.g., coal, gas) and a renewable energy resource
(e.g., solar bank, wind farm). We model users’ load demands
and all renewable energy resources’ as stochastic processes
to account for their uncertainty. Besides, we consider that the
system works in a time-slotted fashion. We aim to optimally
schedule the usage of all the energy resources in the network
and minimize the utility company’s long-term time averaged
expected total cost of supporting all users’ load demands.
Moreover, we study two cases of users’ load demands: first,

users have delay intolerant (DI) load demands which need to
be satisfied in the same time slot when they are requested, and
second, users have both DI and delay tolerant (DT) load de-
mands, the latter of which can tolerate being served within user-
defined deadlines. In each case, we first formulate an optimiza-
tion problem, which turns out to be a time-coupling problem.
Previous approaches usually solve such problems based on Dy-
namic Programming [15], [16] and suffer from the “curse of
dimensionality” problem [17]. They also require full statistical
information of the random variables in the problem, which may
be difficult to obtain in practice. Instead, we reformulate the
problem using Lyapunov optimization theory for event-driven
queueing systems [18]. We develop a dynamic energy manage-
ment scheme that can dynamically solve the problem in each
time slot based on the current system state only, i.e., without any
information about the future or past system states, and hence is
more efficient than previous approaches. With the results of our
dynamic energy management scheme, we are then able to ob-
tain both a lower and an upper bound on the optimal result of the
original optimization problem. Furthermore, in the case of both
DI and DT load demands, we also show that DT load demands
are guaranteed to be served within user-defined deadlines. Ex-
tensive simulations have been conducted to evaluate the perfor-
mance of the proposed dynamic energy management scheme.
Results show that the proposed scheme can lead to tight lower
and upper bounds on the optimal result, and can significantly
reduce the utility company’s cost.
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The rest of the paper is organized as follows. Section II
introduces system models considered in this study. We study
dynamic energy management with DI load demands in
Section III and with both DI and DT loads in Section IV.
Simulations are conducted in Section V. We finally conclude
this paper in Section VI.

II. SYSTEM MODEL

In this section we describe the considered smart grid network
and our mathematical models for users’ delay intolerant load
demand, distributed renewable energy generation, distributed
energy storage, load serving, and the utility company’s energy
generation cost. Note that we only introduce delay intolerant
load demand model here. Delay tolerant load demand model
will be discussed in Section IV.

A. Smart Grid Network

We consider an electric power distribution network consisting
of a set of residential and business energy users, denoted by

, who have two-way real-time communica-
tions with a utility company. Each user has a renewable en-
ergy resource, an energy storage device, and a connection to
the power grid, which collaboratively satisfy its load demand.
The utility company provides energy to the users from both
a traditional power plant (e.g., coal, gas) and a renewable en-
ergy resource (e.g., solar bank, wind farm). It aims to optimally
schedule the usage of all the energy resources in the network and
minimize its total cost of supporting all users’ load demands.
Besides, we consider that the system works in a time-slotted
fashion. Energy management decisions are made dynamically
by the utility company in each time slot. In particular, in each
time slot, users transmit their load requests along with other
state variables to a control center deployed by the utility com-
pany. Based on the collected data, the control center computes
a load servicing schedule and transmits to each user his/her cor-
responding actions needed to be executed in the current time
slot. Each user then follows the instructions and updates some
of his/her state variables.

B. Delay Intolerant Load Demand Model

DI load demands are very common in our daily life, such
as lighting and using electronic devices, and need to be sat-
isfied in the same time slot. Denote user ’s delay intolerant
(DI) load demand in time slot by . We assume
is an independent and identically distributed (i.i.d.) non-nega-
tive stochastic process, which is deterministically bounded, i.e.,

.

C. Distributed Renewable Energy Generation

Each user is equipped with a renewable energy resource,
which can be a set of solar panels or a wind turbine. The output
of a renewable energy resource is dynamic and difficult to
predict because it depends on meteorological conditions. In this
work, we assume that the output of user ’s renewable energy
resource, denoted by , is an i.i.d. stochastic process and
satisfies , where is the maximum energy
output of user ’s renewable energy resource and a constant.

In addition to serving user ’s load, can be used to charge
the user’s energy storage device, or sold to the power grid. In
particular, we have

(1)

where is the energy used to satisfy user ’s load demand
is the energy sold to the grid, and is the energy

used to charge user ’s energy storage device.

D. Distributed Energy Storage

Each user has an energy storage device which can store
some energy that can be used at a later time. Since the energy
storage device acts as an energy buffer, we can model its energy
level as a queue, i.e.,

(2)

In particular, is the energy charging the energy storage
device, i.e.,

(3)

where and are the energy drawn from the grid and
from the renewable energy resource, respectively. is the
energy discharged from the energy storage device, i.e.,

(4)

where is the energy sold to the grid, and is the energy
serving user ’s DI load demand.
Notice that it is more efficient to serve user ’s load demand
by directly using energy from the grid or from the renew-

able energy resource, than by first charging the energy storage
device and then discharging it. Thus, we have the following two
constraints

(5)

(6)

where the indicator function is equal to 1 when the event
is true, and zero otherwise.
On the other hand, it is more efficient to sell energy to the

grid by directly selling the output of the renewable energy re-
source, than by first charging the energy storage device and then
discharging it. Thus, we have

(7)

Similarly, discharging the energy storage device to sell energy to
the grid and charging it by drawing energy from the grid cannot
take place at the same time, i.e.,

(8)

The above constraints (5)–(8) will always hold when the fol-
lowing one holds:

(9)
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Besides, denote by themaximum amount of energy that
can be stored by user ’s energy storage device. Then, we need

(10)

Denote by the maximum amount of energy that user ’s
energy storage device can be charged with during a single time
slot, and the maximum amount of energy that can be dis-
charged from user ’s energy storage device during a single time
slot. Thus, we have

(11)

(12)

From (11) and (12), we get
, which should hold for any and that

satisfy (11) and (12). Since and ,
we also have the following constraint:

(13)

E. Load Serving

The utility company needs to supply enough energy to the
grid to satisfy all users’ load demands. The amount of energy
supplied by the utility company in time slot , denoted by ,
can be calculated as

(14)

User ’s load demand is satisfied by the energy from the power
grid, its local renewable energy resource, and its own energy
storage device. Particularly, we have

(15)

where is the amount of energy drawn from the power grid
to satisfy user ’s load demand in time slot . Note that user
’s connection to the power grid can only be in one of three
states: drawing energy from the grid, providing energy to the
grid, and idle, i.e., cannot draw and provide energy at the same
time. Therefore, we get

(16)

In addition, the total amount of energy that user draws from
the power grid in time slot , denoted by , satisfies

(17)

where is a constant determined by the physical charac-
teristics of user ’s connection to the grid. Similarly, the total
amount of energy that user provides to the power grid in time
slot , denoted by , satisfies

(18)

where is also a constant.

F. Energy Generation Cost

As mentioned before, the utility company provides energy to
the users from both a traditional power plant and a renewable
energy resource. Assume the output of the utility company’s re-
newable energy resource, denoted by , is an i.i.d. non-neg-
ative stochastic process. The cost of generating such renewable
energy is considered to be negligible. Thus, the utility company
will first use renewable energy and then traditional energy to
satisfy users’ load demands. The amount of traditional energy
the utility company needs in time slot , denoted by , is

(19)

If , then the utility company is able to sell the
excess power to other utility companies.
Consequently, a utility company’s energy generation cost can

be calculated as

(20)

where is a non-decreasing and convex function1.

III. DYNAMIC ENERGY MANAGEMENT WITH DELAY
INTOLERANT LOAD DEMANDS

In this section, we study the dynamic energy management
for the smart grid when users have delay intolerant (DI) load
demands.

A. Problem Formulation

Let be the vector
of decision variables in the system, where

. We also
denote the system state by a vector of random vari-
ables, i.e., where

. Thus, the utility company’s objective
is to design a dynamic energy management algorithm, which
can optimally control the decision vectors to
minimize the following long-term time averaged expected total
cost, i.e.,

(21)

under uncertain system states 2. We call this
problem and formally formulate it as follows:

We denote the optimal result, i.e., the minimum of the objective
function, of by . We can see that is a time-cou-
pling optimization problem due to constraints (2), (10)–(12).
Previous approaches usually solve such problems based on Dy-
namic Programming and suffer from the “curse of dimension-
ality” problem [17]. They also require detailed statistical infor-
mation of the random variables in the problem, which may be

1Note that our analysis herein still holds if we assume a concave cost function
. In that case, our objective function can be set to .
2Note that we use to denote the long-term time averaged expected value of

a stochastic process in this study.
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difficult to obtain in practice. Next, we reformulate this problem
using Lyapunov optimization theory for queueing systems [18]
so that it can be solved in each time slot based on the current
system state only.

B. Dynamic Energy Management Using Lyapunov
Optimization

In order to better control users’ energy storage devices, we
define a shifted energy level for user ’s energy storage
device in time slot as follows:

where is the maximum first-order derivative of with
respect to , and is a positive constant to be defined later.
We also denote by the minimum first-order derivative of

with respect to .
Thus, according to (2), is updated by the following

queueing rule:

(22)

Consequently, we can define a Lyapunov function [18] as

where . This function represents
a scalar measure of stored energy in the system.
being small implies that all stored energy levels are low, while

being large implies that at least one stored energy
level is high. Besides, the one-slot conditional Lyapunov drift
can be defined as

(23)

Since our objective is to minimize the long-term time averaged
expected total cost of the utility company, instead of taking a
control action to minimize , weminimize the following
drift-plus-penalty function:

We can have the following lemma.
Lemma 1: Given defined in (23), we have

(24)

where is a constant, i.e.,

Proof: Squaring both sides of (22), we get

Thus, we can obtain that

and (24) directly follows.
Our objective is to minimize the right-hand side of (24) in

each time slot given the current stored energy levels and
system state . Since is a constant, we aim to minimize

. Moreover, recall that in
, constraints (2), (10)–(12) couple the energy levels of users’

energy storage devices among all the time slots. We can break
this coupling by leaving (2), (10) out, and relaxing (11), (12)
into two constraints as follows:

(25)

(26)

Therefore, we can formulate a relaxed optimization problem
called in the following:

–

Our dynamic energy management is carried out as follows. The
utility company solves the problem in each time slot given

and collected from the users. It then sends the ob-
tained control decisions to the users, who follow the instructions
and update their stored energy levels according to (22) and
(2). We denote the corresponding long-term time averaged ex-
pected total cost, i.e., , by .
Theorem 1: Define the maximum value of as

For for all and any
, our dynamic energy management scheme has the fol-

lowing properties:
a) An arbitrary user ’s stored energy level satisfies the
constraint (10), i.e., , for all .

b) The obtained control decisions are feasible solutions to
.

c) .
Proof: a) We prove a) by induction. Particularly, assume

that for an arbitrary user , (10) holds in time slot . Then, we
consider the following cases to prove that (10) also holds in time
slot .
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First, . Recall that .
In this case, the partial derivative of the objective function of
, denoted by , with respect to , is

Similarly, we can have

Thus, by solving , i.e., minimizing , our energy man-
agement scheme leads to control decisions that satisfy

. Due to constraint (9), we have .
Therefore, according to (2), we get
and hence

due to constraint (13).
Second, . Since

we have . Thus, according to (2), we can
obtain

Third, . Note
that , and hence

. The partial
derivative of the objective function of with respect to
is

Similarly, we can also get that . Thus, our
energy management scheme minimizing results in con-
trol decisions that satisfy . Due
to constraint (9), we have . Thus, according to (2), we
get and hence

Therefore, we can see that (10) holds for all .
b) We have known from a) that constraint (10) holds. Be-

sides, according to (2), we have
. Due to constraint (9), we

have that when . Thus, we get
. Furthermore, we have

, which leads to . Sim-
ilarly, since when , we get .
Therefore, both (11) and (12) hold as well. In addition, our dy-
namic energy management scheme updates the stored energy
levels according to (22), which means (22) holds too. As
a result, the control decisions obtained by our dynamic energy
management scheme satisfy all the constraints of , and hence
are feasible solutions to .
c) Denote by , and the results obtained by

our dynamic energy management scheme in time slot , i.e.,
based on the optimal solution to . We also denote by

, and the results that we get for time slot based on
the optimal solution to . Thus, from Lemma 1, we can have

Note that the last step is due to the fact that the optimal solutions
to are obtained independent of the current stored energy
levels.
Besides, since the system state is i.i.d., it follows that

and are also i.i.d. stochastic processes. Recall the
strong law of large numbers: If are i.i.d. random vari-
ables, we have
almost surely. Consequently, we get

Taking expectation of the above inequality, we get

In addition, summing (2) over all the time slots
and taking expectation on both sides, we

have

(27)

Dividing the above equation by and taking limits as ,
we get . Therefore, we can obtain
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Summing the above inequality over all the time slots
, we get

Since for all is finite in all time
slots as well. Then, dividing both sides of the above inequality
by and taking limits as , we can obtain

which means .
Besides, as shown in b), the optimal solutions to are also a

feasible solution to . Thus, the value of the objective function
of calculated based on the optimal solution to , i.e., ,
is an upper bound on , i.e., .
We have now finished the proof.

IV. DYNAMIC ENERGY MANAGEMENT WITH MIXED LOAD
DEMANDS

In this section, we extend the basic systemmodel described in
Section II to the case that users have both delay intolerant (DI)
and delay tolerant (DT) load demands. In particular, the same as
before, DI load demands need to be satisfied in the same time
slots when they are requested without any delay. In contrast, DT
load demands just need to be served before some user-defined
deadlines. Examples for DT load demands are washer/dryer ma-
chines, dishwashers, etc.

A. Mixed Load Demand Model

Consider that an arbitrary user has both DI and DT load
demands. DI load demands are modeled in the same way as
described in Section II-B. We denote user ’s DT load demand
in time slot by . We also assume that is an
i.i.d. non-negative stochastic process, and
for all . Besides, we assume . It means that
the DT load demand that a user can have in one slot is no larger
than the maximum amount of energy it can draw from the power
grid, which is reasonable.
User ’s DT demand is placed in a local queue , which

is updated as follows:

(28)

where is the amount of service
received by the queue. Particularly, , and are
the energy drawn from user ’s energy storage device, the power
grid, and user ’s renewable energy resource in time slot to
support user ’s DT demand, respectively.
Due to the introduction of DT load demands, constraint (1)

changes into:

(29)

remains the same, while changes from (4) into:

(30)

remains the same, while changes from (17) into:

(31)

and (16) changes into

(32)

Besides, the amount of energy supplied by the utility company
in time slot changes from (14) into

(33)

B. Problem Formulation With Mixed Load Demand Model

Let
be the vector of decision variables in the system, where

.
We also denote the system state by a vector of random
variables, i.e., where

. Thus, the dynamic energy
management problem with mixed load demand model, which
we call , can be formulated as follows:

– –

–

We denote the optimal result, i.e., the minimum of the objective
function, of by . We notice that is also a time-cou-
pling optimization problem, which is prohibitively difficult to
solve as explained in Section III-A. Similarly, in what follows
we reformulate this problem based on Lyapunov optimization
theory such that it can be solved based on current system state
only.

C. Delay Aware Virtual Queue

In order to characterize the delay in serving users’ DT load
demand, we define a delay-aware virtual queue for each
user , whose queueing function is as follows:

(34)

In particular, has the same serving rate as , but a dif-
ferent arrival rate. is a constant related to user-defined service
deadline, which will be specified in Lemma 2. We also assume
that , i.e., the arriving rate is no larger than the max-
imum amount of energy user can draw from the power grid.
We have the following lemma.
Lemma 2: Assume that the queues and are con-

trolled in such a way that and for
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all and , where and are deterministic
positive constants. Then, an arbitrary user ’s DT load demand

can be served within a maximum delay of

(35)

Proof: In what follows, we prove (35) by contradiction.
Assume that the delay in serving an arbitrary user ’s DT de-

mand is larger than . Suppose in time slot .
Thus, we have according to (28), and
for . Referring to (34), we get

for . Summing over the time slots from
to yields

Since and , we can get

(36)

Consider that the DT loads are served in a first in first out (FIFO)
manner. Since and user ’s DT demand
has not been served by , we have

. Thus, from (36) we can get

Since , we have
, which is impossible. Thus, the as-

sumption that the delay in serving an arbitrary user ’s DT
demand is larger than is invalid, and Lemma 2 follows.
According to Lemma 2, each user can set based on

and to make sure that its DT load demand can be satisfied
by a certain deadline. We will describe and in detail
later. We are now ready to present our Lyapunov optimization
based energy management scheme.

D. Dynamic Energy Management Based on Lyapunov
Optimization

Notice that the queues that are maintained in the system can
be denoted by a vector . Thus, we
can define a Lyapunov function as

and the one-slot conditional Lyapunov drift is

(37)

Recall that . Since
, and ,

we have . We denote the

upper bound on as . Then, we can have the following
lemma regarding the drift-plus-penalty function.
Lemma 3: Given defined in (37), we have

(38)

where is a constant, i.e.,

Proof: We have obtained in Lemma 1 that

(39)

Besides, note that with
, we have

Thus, squaring both sides of (28), we get

(40)

Similarly, squaring both sides of (34), we have

(41)

Therefore, summing (39), (40), and (41) over all , taking
expectations conditioned on , and adding the cost function

, we arrive at Lemma 3.
Similar to that in Section III-B, we aim to minimize the right-

hand side of (38) in each time slots based on current system
state. Note that in (38) is a constant given the current
system state, and is a constant, too. Thus, removing the con-
stants and relaxing the constraints (2), (10)–(12), we formulate
a new problem as follows:
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–

–

Our dynamic energy management scheme works as follows.
The utility company solves the problem in each time slot
given and collected from the users. It then sends
the obtained control decisions to the users, who follow the in-
structions and update their queues , and in the
system according to (22) and (2), (28), and (34), respectively.
We denote the corresponding long-term time averaged expected
total cost, i.e., , by .
Theorem 2: Define the maximum value of as

where .
Assume . Suppose all DT
load demand queues and virtual queues start with zero backlogs,
i.e., for all , and all energy storage
devices start with feasible energy levels, i.e.,

for all . Then, for any , our dynamic
energy management scheme has the following properties:
a) For an arbitrary user , its queues and are
deterministically upper bounded by constants and

, respectively, for all where

(42)

(43)

b) For an arbitrary user , its stored energy level satis-
fies (10), i.e., for all .

c) For an arbitrary user , its DT load demand can be served
with a maximum delay of

(44)

d) The obtained control solutions are feasible solutions to
.

e) .
Proof: Please see the Appendix for detailed proof.

V. SIMULATION RESULTS

In this section, we evaluate the performance of our dynamic
energy management scheme using practical renewable energy
generation data. We study two cases: when users have DI load
demands only and when users have both DI and DT load de-
mands. In each case, we first obtain the lower and upper bounds
on the optimal result. Then, we calculate our total energy gen-
eration cost and compare it with that of a simple energy man-
agement strategy. We implement our proposed dynamic energy
management schemes on a general purpose PC with 64-bit Win-
dows 7, 25 GB RAM, and a 2.26 GHz CPU. Using CPLEX, we
solve optimization problems and for the two cases, re-
spectively.
Some simulation settings are as follows.We consider 10 users

using energy for a period of 10 days with 5-minute long time

slots, i.e., 3000 time slots in total. Users’ renewable energy gen-
eration capabilities are set based on the global horizontal irradi-
ance data for Las Vegas area available at the Measurement and
Instrumentation Data Center [19]. In particular, we assume the
energy conversion efficiency is 15% and the maximum output is
200 W. Besides, the maximum charging and discharging limits
on each user’s energy storage device in a time slot, i.e.,
and , are both set to 1.5 kWh. The maximum amount of
energy that each user can draw from the power grid in a time
slot, i.e., , is set to the maximum load request plus the
maximum charging limit in a time slot. The maximum amount
of energy that each user can sell to the grid, i.e., , is
set to be the same as . In addition, we ignore the utility
company’s renewable energy resource and focus on the man-
agement of users’ energy resources in this simulation. So the
utility company’s energy generation cost function is defined as

, where and
.

In the case that users have DI load demands only, we consider
that each user’s DI load demands are i.i.d. uniform random vari-
ables over the interval [1, 7] kWh. Fig. 1(a) shows the upper and
lower bounds on the optimal result. Note that the upper bound
is the time averaged expected total cost during the whole sim-
ulation period, obtained by our dynamic energy management
scheme. The lower bound is the upper bound minus as
shown in Theorem 1. In our simulations, we set .
Recall that according to Theorem 1, is independent of
while increases as increases. Thus, the performance
bounds get tighter as increases as we can see in Fig. 1(a).
In addition, we compare in Fig. 1(b) the total energy generation
cost of our dynamic energy management scheme since
with that of a simple energy management strategy. In particular,
the simple strategy satisfies users’ DI load demands in the same
time slot when they are requested. It does not consider users
selling energy to the grid or using energy storage devices. We
can observe noticeable savings using our scheme, which keep
increasing as time goes by.
In the case that each user has both a DI and a DT load de-

mands, we consider that each user’s both load demands are i.i.d.
uniform random variables over the interval [1, 3.5] kWh. We
set all DT load demand deadlines to 168 hours (7 days), i.e.,

, and set according to (44) for each energy
storage device size. We show the upper and lower bounds on the
optimal result in Fig. 2(a), and find that the bounds get tighter
as increases. We also compare the total energy generation
cost of our dynamic energy management scheme since
with that of a simple energy management strategy in Fig. 2(b).
In particular, the simple strategy satisfies users’ DI and DT load
demands in the same time slot when they are requested. It does
not consider users selling energy to the grid or using energy
storage devices. We can observe noticeable savings using our
scheme as well. Fig. 2(c) shows the time that it takes DT load
demands to be satisfied when each user has an energy storage
device with capability of kWh.We observe that all
DT loads can be served within 15 hours, much earlier than the
user-defined deadline. In Fig. 2(d), we present the energy level
of a user’s energy storage device which always remains within
its physical limits as described in Theorem 2.
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Fig. 1. The case of DI load demands. (a) Bounds on optimal time averaged expected total cost. (b) Total generation cost.

Fig. 2. The case of both DI and DT load demands. (a) Bounds on optimal time averaged expected total cost. (b) Total generation cost. (c) Service delays of DT
load demands when kWh. (d) Energy storage device behavior when kWh.

Moreover, although in our dynamic energy management
schemes, the optimization problems and need to be
solved once every time slot, we find that on average they
can be solved in about 0.3 seconds on the PC we use for our
simulations. The computation time is very low and can be even
lower on more powerful computers.

VI. CONCLUSION

In this paper, we have explored dynamic energy management
in the smart grid, considering unpredictable load demands, and
distributed uncertain renewable energy resources and energy
storage devices. We have studied two kinds of user load de-
mands: DI demands only, and both DI and DT demands. In par-
ticular, with the objective of minimizing the long-term time av-
eraged expected total cost of supporting all users’ load demands,
we formulate an optimization problem, which is a time-coupling
problem and prohibitively expensive to solve. Then, employing
Lyapunov optimization theory, we reformulate the problem and
develop a dynamic energy management scheme which can dy-
namically solve the problem in each time slot. The developed

scheme result in both a lower and an upper bound on the op-
timal result of the original optimization problem. Furthermore,
in the case of both DI and DT load demands, we show that DT
load demands are guaranteed to be served within user-defined
deadlines. Extensive simulation results are presented to validate
the efficiency of the proposed scheme.

APPENDIX A
PROOF OF THEOREM 2

a) We first prove (42) by induction. Obviously, (42) holds for
. Assume that (42) holds in time slot . In the following,

we show that (42) also holds in time slot .
First, . Since
, then according to (28), we have

Thus, we get
.
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Second,
. In this case, the par-

tial derivative of the objective function of , denoted by
, with respect to , is

(45)

Similarly, we can have

(46)

(47)

Since and
, we get

Thus, our dynamic energy scheme that minimizes will
choose to be its maximum value. Since

where , and
, the maximum of , denoted by , is

.
• If , we have

. Since , we
get and hence

.
• If , we have

.
As a result, (42) holds for all .
Next, we prove (43) by induction. Note that (43) holds for
. Assume that (43) holds in time slot . In what follows,

we show that (43) also holds in time slot .
First, . According to

(34), we have . Thus,
we get .
Second,

. From (45)–(47), we can
have

(48)

due to and . Thus, our
dynamic energy scheme minimizing will choose

as shown above.
• If , we have

. Since , we get
.

• If , we have
.

Therefore, (43) holds for all .
b) We prove b) by induction. Assume that for an arbitrary

user , (10) holds in time slot . Then, we consider the following
cases to prove that (10) also holds in time slot .
First, . This case is identical to the

first case of Theorem 1a. Thus, our energy management scheme
takes control decisions and , such that

. Due to constraint (9), we also have .
Thus, according to (2), we get and

due to constraint (13).
Second, .

Since

according to (42) and (43), we have

Thus, according to (2), we can obtain

Third, .
Note that we have shown above that

. The partial derivative of the
objective function of with respect to is

Similarly, we can also get that . The partial
derivative of the objective function of with respect to
is

After minimizing , our energy management scheme re-
sults in control decisions that satisfy



2150 IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 4, DECEMBER 2013

. Due to constraint (9), we have . Thus,
according to (2), we get and hence

Therefore, we can see that (10) holds for all .
c) The result (44) directly follows Lemma 2.
d) Part a) has shown that constraint (10) holds. The same as

Theorem 1b, we can show that (25) and (26) hold. Part b) of
this theorem has shown that DT load demands can be served
before user-defined deadlines. Thus, the control decisions ob-
tained by our dynamic energy management scheme satisfy all
the constraints of , and hence are feasible solutions to .
e) Denote by , and the results ob-

tained by our dynamic energy management scheme in time slot
, i.e., based on the optimal solution to . We also denote by

, and the results that we get for time
slot based on the optimal solution to . Thus, from Lemma
3, we can have

Note that the second step is based on the fact that the optimal so-
lutions to are obtained independent of the queue state .
Besides, since the system state is i.i.d., ,

and are also i.i.d. stochastic processes. Similar to the proof
of Theorem 1c, applying the strong law of large numbers and
taking expectation of both sides, we get

(49)

(50)

(51)

We have shown by (27) that
. Thus,

the component (49) is equal to 0. Since
for all where is a constant defined in (28),
we have ,
i.e., queue is strongly stable [18]. Since

, we know that queue
is also rate stable (Theorem 2.8, i.e., Strong Stability

Theorem, in [18]), i.e.,
, which means

the component (50) is no larger than 0. Similarly,
since , queue is rate
stable and

. Thus, we have
, i.e., the component

(51) is no larger than 0. Therefore, we have

Similar to the proof of Theorem 1c, summing the above in-
equality over all the time slots , dividing
both sides by , and taking limits as , we can get

.
Besides, as shown in d), the optimal solution to is also a

feasible solution to . Thus, the value of the objective function
of calculated based on the optimal solution to , i.e., ,
is an upper bound on , i.e., .
We have now completed the proof.
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