
MAC-Layer Selfish Misbehavior in IEEE 802.11
Ad Hoc Networks: Detection and Defense
Ming Li,Member, IEEE, Sergio Salinas, Student Member, IEEE, Pan Li,Member, IEEE,

Jinyuan Sun,Member, IEEE, and Xiaoxia Huang,Member, IEEE

Abstract—In ad hoc networks, selfish nodes deviating from the standard MAC (Medium Access Control) protocol can significantly

degrade normal nodes’ performance and are usually difficult to detect. In this paper, we propose detection and defense schemes to

identify and defend against MAC-layer selfish misbehavior, respectively, in IEEE 802.11 multi-hop ad hoc networks. Specifically, the

non-deterministic nature of the IEEE 802.11 MAC protocol imposes great challenges to distinguishing selfish nodes from well-behaved

nodes. Most traditional selfish misbehavior detection approaches are for wireless local area networks (WLANs) only. They either rely

on a large amount of historical data to perform statistical detection, or employ throughput or delay models that are only valid in WLANs

for detection. In contrast, we propose a realtime selfish misbehavior detection scheme for multi-hop ad hoc networks. It requires only

several samples, and hence is more efficient and can adapt to channel dynamics more quickly. Then, based on the proposed detection

scheme, we design three selfish misbehavior defense schemes against three typical kinds of smart selfish nodes. We find that the

smart selfish nodes cannot degrade normal nodes’ performance much without getting detected. Extensive simulation results are finally

presented to validate the proposed detection and defense schemes.

Index Terms—Selfish misbehavior, IEEE 802.11 MAC, detection, defense
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1 INTRODUCTION

COMMUNICATION protocols are usually designed under
the assumption that all participants would comply

with the regulations. However, in untrusted communication
environments, a misbehaving user can deviate from the reg-
ulations and cause damage to or obtain performance gain
over other honest parties. Thus, trustworthy communica-
tion is a crucial issue, especially in wireless ad hoc networks
where nodes need to fully cooperate with each other to
ensure correct route establishment, successful packet deliv-
ery, and efficient resource usage. Traditional approaches to
providing network security are mostly cryptography based.
Unfortunately, they cannot be used to address user misbe-
havior at the Medium Access Control (MAC) layer.

MAC layer misbehavior can be generally classified into
the following two categories: malicious misbehavior [1]-[4]
and selfish misbehavior [5]-[7]. Malicious misbehavior pri-
marily aims at disrupting the normal operations of a net-
work. One kind of malicious misbehavior is jamming attack
[1], [8], which is one particular type of Denial-of-Service
(DoS) attack [2], [9], [10]. The malicious users could either
constantly generate strong signals to overwhelm normal

nodes’ signals, or transmit fake packets to occupy the
shared channel and hence prevent the normal users from
communicating. Another kind of typical malicious misbe-
havior is Sybil attack [11], [12], where malicious users forge
a large number of pseudonymous identities, and use them
to substantially disturb or control the network. In contrast,
selfish users can deliberately deviate from the standard
MAC protocol to gain more network resources over well-
behaved nodes. Generally, selfish nodes can benefit in the
following two scenarios: first, obtaining a large portion of
channel sharing, and second, reducing power consumption,
e.g., by denying the forwarding of incoming packets. Com-
pared to the second scenario, the first one is more difficult
to detect, and can result in more serious problems and
greatly degrade normal users’ performances.

In this paper, we focus on the MAC layer selfish misbe-
havior problem in wireless ad hoc networks, in particular,
IEEE 802.11 ad hoc networks, where selfish nodes aim to
obtain higher MAC layer performance. We address this
issue from two perspectives: detection and defense.

Selfish misbehavior detection. In IEEE 802.11 networks, self-
ish nodes can manipulate the following MAC layer para-
meters to enhance their channel access probabilities: the
remaining transmission duration contained in frames, SIFS
duration, DIFS duration, and backoff time. The most chal-
lenging detection task is to detect backoff time manipulation
[13]. The difficulty primarily stems from the non-determin-
istic nature of IEEE 802.11 MAC that does not allow a
straightforward way of distinguishing between a normal
transmitter, which happens to select short backoff time, and a
selfish node that intentionally selects short backoff time [10].

In the literature, there are a few works on the detection of
backoff time manipulation. Radosavac et al. [5] propose a
sequential probability ratio test (SPRT) algorithm to address
the detection problem. However, SPRT is a parametric
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statistical approach which means that prior knowledge of
the selfish nodes’ behavior needs to be present at the detec-
tors. Compared to [5], some other detection schemes, such
as DOMINO [13], O-DOMINO [14], CUSUM [15], and [16],
do not require any prior knowledge of selfish nodes. But all
these schemes are designed for wireless local area networks
(WLANs) only and cannot be directly applied to multi-hop
ad hoc networks. The main reasons are as follows. First,
some previous schemes [13]-[15] rely on a large amount of
historical data to perform statistical detection. For example,
CUSUM [15] requires up to 106 samples to determine
whether a node is selfish or not. Compared with our detec-
tion scheme, which only requires several samples to make a
decision, the detectors of CUSUM should be rich in storage
and computation resources. Besides, since their schemes are
based on the analysis over a large amount of data, the detec-

tion may take a very long time. Specifically, to collect 106

data transmission samples from one node in IEEE 802.11
wireless networks may take thousands of seconds or even
more. These may not be affordable for normal nodes in ad
hoc networks. Second, many schemes like [13]-[16] are
based on throughput or delay models which are only valid
in WLANs.

Noticing the above problems, we propose a realtime
detection scheme for multihop ad hoc networks, which
requires only several samples and no prior knowledge of
selfish nodes. Specifically, instead of simply comparing the
backoff time of a node under observation with the expected
backoff time of normal nodes like in [13], [14], an observer
compares the joint probability Y of the events that normal
nodes would choose backoff times shorter than those in the
chosen samples with the expectation of the joint probability
E½Y � multiplied by a detection factor m. If Y � mE½Y �, the
observer then classifies the node under observation as a self-
ish node. We also define another parameter called confidence
level a to quantify the confidence of the detection results.
Thus, we can set m in the detection rule according to the
expected confidence level. Moreover, since one selfish node
is usually watched by multiple observers, they send their
reports to a local cluster head who employs the majority
rule to make the final decision. To complete our work, we
also briefly discuss how to detect the manipulation of the
other three MAC layer parameters as well.

In addition, the detection scheme is carried out periodi-
cally. Once a node is determined by a local cluster head as a
selfish node, a penalty scheme is applied to punish the
detected selfish node by decreasing its throughput. Specifi-
cally, all its one-hop neighbors will stop forwarding packets
for it until they receive another decision notice indicating
that this node is not selfish any more.

Selfish misbehavior defense. After detecting selfish nodes,
we then need defend against such selfish misbehavior. A
couple of papers exist in the literature addressing the
defense against backoff time manipulation problem.
Kyasanur and Vaidya [6] develop a scheme in which a
detected selfish transmitter would be required by the corre-
sponding receiver to use a longer backoff time, assuming
that the receiver is a normal node. A similar approach is
proposed in [17]. Konorski [18], [19] designs game theoretic
approaches for WLANs which are resilient to selfish misbe-
havior. Besides, with modifications to the IEEE 802.11

binary exponential backoff (BEB) scheme, Guang et al. [20]
propose to force each node to generate a predictable conten-
tion window (CW) size. Any node who picks a smaller
backoff value (contention window size) than the predicted
one would be regarded as a selfish node. Note that all the
above approaches need greatly modify the standard IEEE
802.11 MAC protocol.

In this paper, based on the proposed detection scheme,
we design three defense schemes against three typical kinds
of selfish nodes manipulating their backoff times, i.e., naive
selfish nodes, random selfish nodes, and g-persistent selfish
nodes. In particular, a naive selfish node always chooses a
small constant value as its backoff time. A random selfish
node randomly chooses its backoff time from a smaller fixed
contention window than that of normal nodes. A g-persis-
tent selfish node still follows the IEEE 802.11 BEB rule to
double its contention window size in case of retransmis-
sions. However, the backoff time will be determined by
multiplying a randomly chosen value in current contention
window by a control parameter g. Observers can tell which
kind of selfish node a node would be by monitoring its
transmissions. Besides, we consider these selfish nodes
smart in the sense that they aim to gain more channel access
under the condition that they do not get caught by the
observers (due to the penalty scheme), whose primary
objective is to prevent selfish nodes from causing damage to
the network. Under the proposed defense scheme, we find
that the selfish nodes cannot degrade normal nodes’ perfor-
mance much without getting detected.

The rest of this paper is organized as follows. In
Section 2, we introduce IEEE 802.11 MAC protocol and
the selfish misbehavior model discussed in this paper.
We then present the selfish misbehavior detection and
selfish misbehavior defense schemes in Sections 3 and 4,
respectively. Simulations are conducted in Section 5 to
evaluate the performance of the detection and defense
schemes. We finally conclude this paper in Section 6.

2 PRELIMINARIES

2.1 IEEE 802.11 MAC

IEEE 802.11 Distributed Coordination Function (DCF) uses
Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA) as the fundamental access scheme to resolve
the contention among multiple nodes accessing the same
channel [21]. In particular, before a node begins to transmit,
it has to sense the channel to determine if there is any ongo-
ing transmission. If the channel is busy, the node shall defer
its transmission until the channel is sensed idle for a period
of DIFS. After that, the node randomly chooses a backoff
period in the contention window ½0; CW � 1�, where CW is
maintained by each node, starts a backoff timer and counts
down. The backoff timer decreases by 1 after the channel is
sensed idle for the duration of a particular backoff slot. If
the channel is sensed busy during any slot in the backoff
interval, the backoff timer will be suspended. It can be
resumed only after the channel is sensed idle for a period of
DIFS again. After the backoff timer reduces to zero, the
node may start its transmission by following a four-way
handshake procedure (RTS/CTS/DATA/ACK). Specifi-
cally, the sender first sends an RTS to the receiver. After
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correctly receiving the RTS, the receiver responds with a
CTS a period of SIFS later. Similarly, after correctly receiv-
ing the CTS, the sender begins to transmit the DATA a
period of SIFS later. This transmission ends after the
receiver correctly receives the DATA and responses with an
ACK. In this process, all the four kinds of frames contain an
estimated duration of the rest of the transmission. Other
nodes that receive these frames update their Network Allo-
cation Vector (NAV) with the duration, and are only
allowed to transmit after they sense the channel idle for a
period of DIFS after their NAVs expire. Finally, if the four-
way handshake process is successful, the sender will reset
its contention window size to a minimum value CWmin.
Otherwise, if the transmission is unsuccessful (detected by
the absence of a CTS or an ACK), the sender will double its
contention window size, up to a maximum value CWmax.

2.2 Selfish Misbehavior Model

In a network, normal nodes follow network protocols to
transmit or receive messages, while selfish nodes manipu-
late their local protocols in order to achieve higher perfor-
mance (e.g., throughput). We classify selfish nodes into two
types: dumb selfish nodes and smart selfish nodes. Dumb selfish
nodes are aggressive and just aim to gain higher perfor-
mance. Smart selfish nodes, however, are more cautious
and intend to obtain better performance without getting
busted by normal nodes. For instance, smart selfish nodes
can learn normal nodes’ detection schemes and change their
own behavior adaptively. Comparing these two types of
selfish nodes, we can easily see that dumb selfish nodes are
much easier to detect than smart ones. In this study, we will
first develop a general detection scheme for both kinds of
selfish nodes and then propose some defense mechanisms
to make sure that smart selfish nodes cannot affect normal
nodes’ performance without getting caught. Note that most
previous detection schemes do not discuss what to do with
the selfish nodes after detecting them. In this paper, we
employ a simple penalty scheme to punish the detected self-
ish nodes, which is to let all their one-hop neighbors stop
forwarding packets for them until they receive a notice indi-
cating that these nodes are not selfish any more.

Besides, in this work we study MAC layer selfish misbe-
havior in IEEE 802.11 ad hoc networks. In such networks,
selfish nodes can manipulate the following MAC layer
parameters to enhance their channel access probability:
duration of the rest of the transmission (or the remaining
transmission duration), SIFS duration, DIFS duration, and
backoff time. Specifically, when sending RTS or DATA
frames, by increasing the included duration value, a selfish
node can claim to occupy the channel for a longer period to
prevent other normal nodes from contending for the channel.
A selfish node may also choose a smaller SIFS duration so as
to finish its current transmission sooner to initiate the next
one. In addition, by setting DIFS to a smaller value after sens-
ing the channel idle, a selfish node will wait a shorter time
interval to start the backoff process and may have higher
channel access probability. Moreover, when manipulating
backoff time, selfish nodes may employ many different strat-
egies in order to gain higher channel access probability. We
consider three typical strategies herein as follows:

� Naive strategy. A selfish node always chooses a small
constant value as its backoff time.

� Random strategy. Instead of choosing a small constant
backoff time, a selfish node randomly chooses its
backoff time from a smaller fixed contention window
than that of normal nodes, for example, ½0; CWmin=4�.
Thus, the selfish node’s expected backoff period is
smaller than that of normal nodes.

� g-Persistent strategy. Instead of choosing a fixed con-
tention window size, a selfish node still follows the
IEEE BEB rule to double its contention window size
in case of retransmissions. However, its backoff time
is determined by multiplying a randomly chosen
value in current contention window by a control
parameter g (0 � g � 1), i.e., TB ¼ tb � g where TB is
the backoff time and tb is the randomly chosen value
in current contention window.

Note that the proposed detection scheme can be used to
detect selfish nodes employing any strategies. We consider
the above three typical selfish strategies when designing
defense schemes against smart selfish nodes. The detection
and defense schemes are carried out by observers, i.e.,
neighbors of the node of interest, and coordinated by local
cluster heads who are known to be honest. For instance, the
local cluster heads can be determined based on nodes’ long-
term behavior histories.

3 SELFISH MISBEHAVIOR DETECTION

In this section, we propose to detect selfish misbehavior
through normal nodes’ observations. Specifically, we con-
sider a multi-hop wireless network working on a single
channel, in which every node is watched by all its neigh-
bors. Normal nodes will compare the observed data with
their counterparts under normal protocol operations, and
apply the detection rules to determine whether the node
under observation is a selfish node or not. Recall that in
IEEE 802.11 networks, selfish nodes can manipulate four
MAC layer parameters to gain higher channel access proba-
bility: the remaining transmission duration, SIFS duration,
DIFS duration, and backoff time. We will address each of
these issues in what follows.

3.1 Detection of Remaining Transmission Duration
Manipulation

Fig. 1 shows a scenario where node A is the node of interest,
while nodes B to F are all A’s one-hop neighbors, i.e.,
observers. In the remaining transmission duration manipu-
lation case, node A sets the duration contained in the RTS/

Fig. 1. Illustration of network topology.
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DATA frames it sends out to a larger value so that it can
claim to occupy the channel for a longer period. Denote the
duration contained in an RTS frame and the following
DATA frame by DRTS and DDATA, respectively. When over-
hearing a DATA frame, nodes B to F can determine if A is a
selfish node by checking the following two quantities:

TR ¼ DRTS � 3� SIFS � TCTS � TDATA � TACK

TD ¼ DDATA � SIFS � TACK;

where TCTS , TDATA, and TACK are the duration of CTS,
DATA, and ACK frames, respectively. TCTS and TACK can
be easily calculated based on the frame lengths specified in
the IEEE 802.11 standard and the transmission rate, while
TDATA can be measured by the observing nodes. If TR > 0 or
TD > 0, i.e., the duration contained in RTS or DATA frames
is larger than the real duration of the rest of the transmis-
sion, then A is a selfish node.

3.2 Detection of SIFS Manipulation

In this case, selfish nodes choose a smaller SIFS duration
after receiving a CTS so as to finish its current transmis-
sion sooner. Then, nodes B to F can infer A’s SIFS dura-
tion as follows:

TSIFS ¼ tDATA � tRTS � TRTS � SIFS � TCTS;

where tRTS and tDATA are the time instances at which an
observer starts overhearing an RTS and the following
DATA from A, respectively, and TRTS is the duration of RTS
frames. If TSIFS < SIFS, then node A is a selfish node.

3.3 Detection of DIFS Duration/Backoff Time
Manipulation

Both DIFS duration manipulation and backoff time manipu-
lation intend to shorten the waiting period to initiate trans-
missions after the channel is sensed idle. Reducing the DIFS
duration is equivalent to choosing a smaller backoff time.
Therefore, we can detect these two cases using the same
detection rules assuming the backoff time manipulation sce-
nario. Since the backoff time is inherently a random vari-
able, backoff time manipulation is much more difficult to
detect compared to the previous two cases.

Before presenting the detection scheme, we first intro-
duce how to estimate the observed node’s backoff time and
contention window size as follows.

� Backoff time estimation. Recall the operations of IEEE
802.11 DCF. If the channel is sensed busy during
backoff process, the backoff timer will be suspended
until the channel is sensed idle for a period of DIFS
again. Thus, one node’s transmission may be inter-
leaved with one or more other nodes’ transmissions.
In order to accurately estimate the backoff time of a
node under observation, we are interested in the
time instances when the node sends out a DATA
frame which is followed by an RTS frame from the
same node. We still take Fig. 1 as an example. Denote
the time instances at which node A starts transmit-
ting a DATA frame and the following RTS frame by
tDATA;i�1 and tRTS;i, respectively. During this period
between tDATA;i�1 and tRTS;i, as an observer, a normal

node may overhear (able to decode) or sense (unable
to decode) other transmissions, i.e., some other
nodes accessed the channel before A. The normal
nodes decide that several frames on the channel are
for the same transmission if the inter-frame period is
equal to SIFS. Denote the number of such transmis-
sions between tDATA;i�1 and tRTS;i by K (K � 0) and
the duration for each transmission by Tk where
0 � k � K and T0 ¼ 0. Then, node A’s backoff time,
denoted by BTA, can be estimated by

BTA ¼ tRTS;i �DIFS � ðtDATA;i�1 þ TDATA;i�1Þ

� SIFS � TACK �
XK
k¼0

Tk �K �DIFS
(1)

where TDATA;i�1 is the duration of the DATA frame
transmitted by A at tDATA;i�1.

1

� Contention window size estimation. In order to find the
contention window size for a transmitter, say node
A, a neighboring node, say node B, can keep tracking
the RTS frames A has transmitted. According to
IEEE 802.11 MAC protocol, when a node transmits
an RTS for a DATA frame for the first time, the con-
tention window size starts from CWmin. If any colli-
sion occurs, the node will double its contention
window size for its RTS retransmission. Therefore,
node B only needs to count the number of times it
overhears an RTS frame sent by A after A’s last
DATA transmission to infer A’s contention window
size assuming A is following the standard MAC
protocol.2

Next, we propose a detection scheme to detect the selfish
nodes manipulating their DIFS duration or backoff time to
access the channel with higher priority. We mainly rely on
the one-hop neighbors to perform the detection.

Note that a normal node randomly chooses its backoff
time, denoted by BT , from a contention window
½0; CW � 1�, where CW is its current contention window
size. Thus, the probability that a node’s BT is less than or
equal to an estimated backoff time t is3:

P½BT � t� ¼ tþ 1

CW
;

where CW can be inferred according to the discussions
above. Besides, the above probability itself can also be
considered a random variable, which we denote by X,
since t is essentially uniformly chosen in the contention
window. Thus, if a node is well-behaved, the expectation
of X should be

E½X� ¼
XCW�1

t¼0

tþ 1

CW
� 1

CW
¼ CW þ 1

2CW
:

1. Note that we assume selfish nodes always have packets to send so
that they do not stay idle at the MAC layer.

2. Notice that in the case that a DATA frame transmission fails or no
ACK is received, the DATA frame will be retransmitted. Since the
DATA frame will be labeled according to IEEE 802.11 MAC, observers
can know it is a retransmitted DATA frame and adjust their estimations
accordingly.

3. Note that this probability is in fact a conditional probability. We
just use the current notations for simplicity.
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SinceX is a random variable, it is very difficult to determine
whether a node is a selfish node based on one single sample
of X. Therefore, we extend the above expression to the case
of multiple observed samples in the following.

Note that the backoff times of consecutive observed sam-
ples are correlated if they are for the same DATA frame
(one DATA frame might be retransmitted several times
with multiple backoff processes). Thus, an observer chooses
multiple observation samples for different DATA frames
which are thus uncorrelated and independent. In particular,
consider n such chosen observation samples. Denote the
detected backoff time and the corresponding contention
window size for the ith (1 � i � n) sample by ti and CWi,
respectively, and

Xi ¼ P½BTi � ti� ¼ ti þ 1

CWi
:

Then, X1; . . . ; Xn are independent of each other. We can
have their joint cumulative distribution function (CDF),
which we denote by Y , as

Y ¼ P½BT1 � t1; . . . BTn � tn�
¼ P½BT1 � t1� � � � � � P½BTn � tn�
¼ t1 þ 1

CW1
� � � � � tn þ 1

CWn
;

and the expectation as

E½Y � ¼ E

�
t1 þ 1

CW1

�
� � � � � E

�
tn þ 1

CWn

�
¼

Yn
i¼1

CWi þ 1

2CWi
: (2)

Thus, if an observer detects that

Y � mE½Y �; (3)

it then considers the node under observation as a selfish
node, where m (0 < m � 1) is called the detection factor, a
control parameter. In the detection rule, different values
of m will lead to different detection probabilities. How to
set m depends on the design goal we want to achieve: if
we want to identify more selfish nodes in the networks, a
larger m is needed; on the other hand, if we allow a few
selfish nodes to exist and do not want the well-behaved
nodes to be wrongly classified as selfish nodes, a smaller
m is more appropriate.

Furthermore, we introduce another parameter called con-
fidence level to quantify the confidence of the detection
results given m, which is denoted by a and defined as fol-
lows:

a ¼ 1� P
�
Y � mE½Y �� ¼ P

�
Y > mE½Y ��: (4)

Notice that P
�
Y � mE½Y �� is the probability that a normal

node is classified as a selfish node. For example, suppose
according to the detection rule, we find that Y � mE½Y � and
hence classify the node under observation as a selfish node.

Assume P
�
Y � mE½Y �� ¼ 0:05. Then it means that if this

node is a normal node, the event that Y � mE½Y � occurs
with a probability of 0.05. Thus, we say that our confidence
level is 0.95 to classify the node as a selfish node. While in

another case, assume P
�
Y � mE½Y �� ¼ 0:95. Then if the node

under observation is a normal node, the event that
Y � mE½Y � occurs with a probability of 0.95. Therefore, we
are much less confident to classify the node as a selfish
node, or with a confidence level of only 0.05.

Clearly, confidence level a has a close relationship with
the detection factor m: a larger m leads to a smaller value of
a, and a smaller m results in a larger a. However, calculating
a is a non-trivial problem, and we present how to efficiently
calculate a in the following. Specifically, we take lnð�Þ on the
both sides of the inequality Y > mE½Y � in (4), which leads to

a ¼ P

�
ln

�
t1 þ 1

CW1

�
þ � � � þ ln

�
tn þ 1

CWn

�
> ln

�
mE½Y �	�:

Let Zi ¼ ln tiþ1
CWi

where 1 � i � n. Then Zi is a random
variable with probability density function (PDF):

pZi
ðziÞ¼ 1

CWi
where zi 2



ln j

CWi
j1 � j � CWi

�
. Conse-

quently, the confidence level a can be rewritten as

a ¼ PfZ1 þ � � � þ Zn > ug
where u ¼ lnðmE½Y �Þ. Since the observation samples are
uncorrelated, Z1; . . . ; Zn are independent random variables.

As we know, the PDF of the sum of two independent ran-
dom variables is the convolution of their individual PDFs.
This property can be easily extended to the sum of a number
of independent random variables. Let Z ¼ Z1 þ � � � þ Zn,
and pZðzÞ be the PDF of Z. Then, we can have

pZðzÞ ¼ 	
i2f1;...;ng

pZi
ðziÞ

where 	 denote the convolution operator. In order to effi-
ciently calculate the linear convolution, we can first zero-
pad all the sequences, and compute the Discrete Fourier
Transform (DFT) of each sequence using the fast Fourier
transform (FFT) algorithm (e.g., Cooley-Tukey algorithm).
After that, we point-by-point multiply the DFTs of all the
sequences, where the product represents the DFT of the
PDF convolution,4 i.e.,

F fpZðzÞg ¼
Y

i2f1;:::;ng
F fpZi

ðziÞg:

Finally, we compute the inverse DFT (IDFT) of F fpZðzÞg to
obtain pZðzÞ.

At last, we can obtain that

a ¼ P½Z > u� ¼
X

fzjz>ug
pZðzÞ;

which depends on CWi (1 � i � n) and m. Thus, when we
design the detection rules, we should also take the confi-
dence level into consideration. For instance, given a lower
bound on the confidence level, we then have an upper

4. The purpose of using the fast Fourier transform (FFT) to compute
the DTF is to reduce the computational complexity when calculating
the convolution among the PDFs of Zi’s. According to the results in
[22], the computational complexity of direct convolution between two
vectors, each with size ofK, isOðK2Þ. After applying FFT, the computa-
tional complexity to obtain the convolution becomesOðK log KÞ, which
is much less than OðK2Þ. Therefore, when calculating the convolution
among n sequences, the computational complexity can be greatly
reduced after applying FFT.
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bound on the detection factor m. Besides, usually one selfish
node is watched by several observers. Each observer will
employ the above detection scheme to perform detection
and send their decisions to a local cluster head (e.g., by pig-
gybacking), which then employs the majority rule to make
the final decision.

Note that the proposed scheme needs only several data
samples and no prior knowledge of selfish nodes. Thus, it is
more efficient and takes less time than previous schemes
[13]-[15], which rely on a large amount of historical data to
perform statistical detection. Moreover, the proposed detec-
tion is carried out periodically. Once a node is determined by
a local cluster head as a selfish node, a penalty scheme is
applied to punish the detected selfish node by decreasing its
throughput for a certain time period. Specifically, all its one-
hop neighbors will stop forwarding packets for it until they
receive another decision notice indicating that this node is
not selfish any more. In other words, each detection result is
effective until a new detection result is obtained.

Moreover, our scheme discussed above deals with a sin-
gle selfish node and does not include the scenario of collud-
ing nodes. Recall that observers will send their detection
results to a local cluster head, which then employs the
majority rule to make the final decision. Therefore, as long
as there are enough honest nodes (or more honest nodes
than selfish nodes), selfish nodes can still be detected even
though they collude with each other.

3.4 Hidden Terminal Problems

In addition, we notice that the hidden terminal problem
may affect the performance of the proposed detection
scheme. Hidden terminal problem is a common problem
in multi-hop wireless networks. Many schemes have been
proposed to address this problem, e.g., by using a out-of-
band busy tone [23], [24] or tuning physical carrier sens-
ing ranges [25], [26]. In fact, many previous detection
schemes proposed for WLANs, such as [13]-[16], are also
affected by the hidden terminal problem since some
nodes may not hear each other. In general, hidden termi-
nals can potentially result in the following two misdiag-
nosis cases in our scheme. Let us take Fig. 1 as an
example. Assuming that B cannot hear E, C, F which
have ongoing transmissions, E, C, F are hidden nodes to
B. In the first case of hidden terminal problems (HT-I)
where A is observing B, as B is unaware of E’s, C’s, and
F’s transmissions, it continues to count down its backoff
timer while A has suspended its. Then, B appears to A as
a selfish node as it has a shorter backoff time than it really
has. In the second case of hidden terminal problems (HT-
II) where B is observing A, A suspends its backoff timer
once it hears the transmissions from E, C, F. As B cannot
hear these transmissions, A would have a longer backoff
time than it really has according to (1). Consequently, if
A is a selfish node, it is possible that A appears to B as a
normal node.

For HT-I problems, recall that observers will send their
detection results to a local cluster head, which then employs
the majority rule to make the final decision in our scheme.
When multiple observers’ reports are jointly considered,
even though some observers may have misdiagnosis, the
final misdiagnosis probability could be greatly reduced.

Similarly, For HT-II problems, misdiagnosis probability can
also be mitigated by applying the majority rule. For exam-
ple, if E, C, F can hear A, and thus make correct detections,
then A can still be correctly identified if it misbehaves.
Moreover, due to the above reason, a selfish node does not
know whether it will finally be classified as being selfish or
not, and hence cannot leverage the hidden node problem
HT-II to increase its access probability. In addition, hidden
terminal problems only happen to a limited number of
nodes that are within the sensing range of one node and
outside the sensing range of the other. HT-I and HT-II prob-
lems also mitigate each other. Therefore, as will be shown in
Section 5, the confidential level and the detection probabil-
ity obtained when both HT-I and HT-II problems exist are
not very much different from those when there are no HT-I
and HT-II problems.

4 DEFENSE SCHEMES AGAINST SMART SELFISH

NODES

As mentioned in Section 2, selfish nodes may employ three
typical strategies: naive strategy, random strategy, and
g-persistent strategy to manipulate their backoff time,
which we call naive selfish nodes, random selfish nodes,
and g-persistent selfish nodes, respectively. In this section,
we propose defense schemes to prevent such selfish nodes
from degrading normal nodes’ performances. Recall that
according to the penalty scheme, the throughput of a node
will be reduced significantly if it is detected as being selfish.
Thus, we consider “smart” selfish nodes here in the sense
that they are afraid of being detected due to the penalty
scheme. Note that the proposed defense schemes can also
provide guidelines for defending other types of smart self-
ish nodes.

4.1 Naive Selfish Nodes and the Defense Scheme

Naive selfish nodes intend to choose a safe constant backoff
time ts so that they may gain higher channel access proba-
bility compared to normal nodes without getting busted by
the observers, i.e.,

ts þ 1

CW1
� � � � � ts þ 1

CWn
> mE½Y �:

Since an observer’s detection scheme is closely related to
its detection factor m, a naive selfish node would have to
adaptively change its transmission parameter based on
the detection factors m’s chosen at all its observers in
order not to be detected; otherwise, all its one-hop neigh-
bors would stop forwarding its packets once it is caught.
In this way, our defense schemes can effectually prevent
naive selfish nodes from deviating from the regulations
by having observers to reveal m’s through broadcasting.
Therefore, revealing observers’ detection factors is an
important component of our defense schemes. Besides, to
have selfish nodes know observers’ detection factors can
be easily realized by allowing each observer to broadcast
its m to its one-hop neighbors. This is sufficient to have
each node be aware of all its observers’ m’s because its
observers are all its one-hop neighbors. Then, based on
observers’ detection rule in (3), which are also
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broadcasted to one-hop neighbors, m’s, and E½Y � shown in
(2), naive selfish nodes can choose ts as follows:

ts >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Yn
i¼1

CWi

�
� mE½Y �n

s
� 1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Yn

i¼1

CWi

�
� m

Yn
i¼1

CWi þ 1

2CWi

n

s
� 1

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
Yn
i¼0

ðCWi þ 1Þn

s
� 1: (5)

Notice that the CWi in (5) may range from CWmin to CWmax.
Since selfish nodes cannot know which samples the observ-
ers will choose and hence what value CWi will have, they
need to choose the safest value for CWi, i.e., CWi ¼ CWmax,
in (5) so that they will not be detected. Besides, each selfish
node is usually observed by multiple observers with differ-
ent m’s. Since the majority rule is applied to make the final
decision based on multiple observers’ reports, a safe con-
stant backoff time can be chosen by

ts ¼

1

2
ðCWmax þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
medk2Nfmkgn

p �
; (6)

where N is the set of observers within one-hop of the selfish
node, mk is the detection factor of the kth observer, bxc is the
largest integer that is no larger than x, and medf�g is the
median function, i.e., given a set of numbers
Q ¼ fq1; q2; . . . ; qmg sorted in ascending order, medfQg
returns the dmþ1

2 eth number.

On the other hand, from an observer’s perspective, its
main concern is to prevent the selfish nodes from degrading
normal nodes’ performance. Towards this end, how to
choose a reasonable detection factor m is a critical issue.
From (6), we can see that a large m can force the selfish
nodes to choose a large ts, and hence reduce their channel
access probability. But, as shown in (4), a large m would
also result in degraded confidential level a of the detection
results. Therefore, the defense strategy here is to choose the
smallest m which can make selfish nodes’ chosen constant
backoff time, i.e., ts in (6), equal to or larger than the average
of normal nodes’ backoff time which we denote by E½t�, i.e.,

1

2
ðCWmax þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
medk2Nfmkgn

p �
� E½t�:

Thus, an observer, say k, will choose the following detection
factor in its detection rule to make sure the above inequality
holds:

mk ¼
2E½t�

CWmax þ 1

� �n

: (7)

However, there is still one question left regarding setting
mk in (7): how should an observer calculate E½t�? Since in
multihop IEEE 802.11 networks, the physical carrier sensing
range is larger than (usually around twice) the transmission
range, selfish nodes’ transmissions affect both their one-hop
and two-hop neighbors. Thus, at each observer, E½t� is calcu-
lated as the average of its one-hop neighbors’ backoff times

tj’s, excluding the node under observation’s, i.e.,
E½t� ¼ P

j2S tj=jSj, where S is the set of the current observ-

er’s one-hop neighbors excluding the node under observa-
tion, and jSj means the number of nodes in S. Notice that
every normal node’s backoff time is a random number and
depends on the local traffic conditions (since the contention
window size does). So every normal node’s instant backoff
time may change dramatically which makes the calculation
of E½t� and hence mk inaccurate. On the other hand, a long-
term average of tj will make E½t� insensitive to the changes
in the communication environment. Thus, to account for the
time-varying wireless environment as well as nodes’
dynamic traffic loads, we employ the following adaptive fil-
tering algorithm using the least mean-square (LMS) mecha-
nism [27], [28] to update mk after a certain interval D

mkðtÞ ¼ mkðt� 1Þ þ v � t

ts
� rstd

� �
(8)

for t � 1, where mkð0Þ is set based on (7), mkðtÞ and mkðt� 1Þ
are the current and last detection factors, respectively,

t ¼ P
j2S tj=jSj with tj being the observed average backoff

time of neighboring node j during the past time interval D,
rstd is the ratio of t=ts that we want to achieve, i.e., 1, and v

is the step size of this adaptive function. The observers
update their detection factors after each updating interval
D, and the selfish node changes its safe backoff time ts
accordingly each time. In addition, note that when the step
size v is large, the above adaptive filtering algorithm can
adapt to the environment rapidly and is suitable for very
dynamic channel conditions; while a small v makes mk

change slowly and is more suitable for wireless environ-
ments with mild channel dynamics.

4.2 Random Selfish Nodes and the Defense Scheme

Recall that random selfish nodes randomly choose a backoff
time from a small constant contention window so as to
make their expected backoff time smaller than that of nor-
mal nodes. Thus, different from naive selfish nodes which
try to find the minimum safe backoff time ts, random selfish
nodes aim to determine the minimum safe contention win-
dow size CWs so that they will not get caught by the
observers.

Consider the n samples chosen by an observer. Let

Y 0 ¼ t01 þ 1

CW1
� � � � � t

0
n þ 1

CWn
;

where t0i 2 U½0; CWs � 1� for 1 � i � n. Thus, a random self-
ish node needs to choose its contention window size so that
E½Y 0� > mE½Y �, where E½Y � is shown in (2) and similarly,

E½Y 0� ¼ E
t01 þ 1

CW1
� � � � � t

0
n þ 1

CWn

� �
¼

Yn
i¼1

CWs þ 1

2CWi
:

Therefore, the random selfish node chooses constant conten-
tion window size as follows:
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CWs >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Yn
i¼1

2CWi

�
� m

Yn
i¼1

CWi þ 1

2CWi

n

s
� 1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
Yn
i¼1

CWi þ 1ð Þn

s
� 1;

and similar to (6), a safe value of CWs is

CWs ¼

CWmax þ 1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
medk2Nfmkgn

p �
: (9)

On the other hand, along the line in Section 4.1, observ-
ers’ major concern is how to choose m to prevent the selfish
nodes from severely degrading network performance.
Therefore, the defense strategy here is to choose the smallest
mwhich can make selfish nodes’ chosen constant contention
window size, i.e., CWs in (9), equal to or larger than the
expectation of normal nodes’ contention window size which
we denote by E½CW �, i.e.,

CWmax þ 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
medk2Nfmkgn

p �
� E½CW �:

Thus, an observer k will choose the following detection fac-
tor in its detection rule to make sure the above inequality
holds

mk ¼
E½CW �

CWmax þ 1

� �n

: (10)

We also employ a similar adaptive filtering algorithm to
that shown in (8) to recursively update the detection factor
mk at each observer

mkðtÞ ¼ mkðt� 1Þ þ v � CW

CWs
� rstd

� �
;

where CW ¼ P
j2S CWj=jSj with CWj being the average

contention window size of neighboring node j during the

past time interval, rstd is the ratio of CW=CWs that we want
to maintain, i.e., 1, and mkð0Þ is set according to (10).

4.3 g-Persistent Selfish Nodes and the Defense
Strategy

As mentioned before, instead of choosing a constant conten-
tion window size, a g-persistent selfish node still follows
the IEEE 802.11 BEB rules to double its contention window
size in case of retransmissions. However, the backoff time
will be determined by multiplying a randomly chosen value
in current contention window by a control parameter g

(0 � g � 1). g-persistent selfish nodes’ objective is to choose
an appropriate g so that they can get higher channel access
probability without getting caught.

Again, consider the n samples chosen by an observer. Let

Y 00 ¼ gt001 þ 1

CW1
� � � � � gt

00
n þ 1

CWn
;

where t00i 2 U½0; CWi � 1� for 1 � i � n. Thus, a g-persistent
selfish node needs to choose g so that E½Y 00� > mE½Y �, where
E½Y � is shown in (2) and similarly,

E½Y 00� ¼ E
gt001 þ 1

CW1
� � � � � gt

00
n þ 1

CWn

� �
¼

Yn
i¼1

gðCWi � 1Þ þ 2

2CWi
:

Then, to make E½Y 00� > mE½Y � is to let

Yn
i¼1

gðCWi � 1Þ þ 2

2CWi
> m

Yn
i¼1

CWi þ 1

2CWi
:

For the above inequality to hold, it is sufficient to have

Yn
i¼1

gðCWi � 1Þ � m
Yn
i¼1

ðCWi þ 1Þ;

i.e., g � m
Qn

i¼1
CWiþ1
CWi�1 : Since CWi’s are unpredictable, a safe

g, denoted by gs, can be chosen as follows:

gs ¼ medk2Nfmkg
�
CWmin þ 1

CWmin � 1

�n

:

In this case, an observer k’s best strategy is to make the
g-persistent selfish node’s expected backoff time no less
than that of normal nodes, or gs � 1. To that end, it is suffi-
cient to let

mk

�
CWmin þ 1

CWmin � 1

�n

� 1;

which results in the following detection factor

mk �
�
CWmin � 1

CWmin þ 1

�n

:

We also use the same adaptive filtering algorithm as that
shown in (8) to recursively update the detection factor mk.

4.4 Selfish Misbehavior Classification

For the defense scheme, since smart selfish nodes may
employ three typical strategies, an observer needs to deter-
mine which strategy a smart selfish node employs. As a
smart selfish node’s transmission parameter is closely
related to the detection factors m’s of its observers, each
observer can fix its mwhen classifying a selfish node by ana-
lyzing its transmission parameter. Specifically, for a naive
selfish node, its backoff time will be the same during multi-
ple continuous samples if all its observers broadcast con-
stant m’s according to (6). Therefore, a naive selfish node
can be easily identified with several samples. For a random
selfish node, when m’s are fixed, each observer can calculate
the contention window size CWs of this node following (9).
As a random selfish node uniformly chooses its backoff
time from ½0; CWs � 1�, by applying statistical tests, e.g.
Anderson-Darling test [29], observers can determine
whether a set of backoff time samples satisfy uniform distri-
bution over ½0; CWs � 1�. In particular, it only takes around
200 samples for an observer to reach the decision when
applying Anderson-Darling test. For g-persistent selfish
nodes, we can follow the similar approach to identify them.
According to the analysis above, if a selfish node adopts the
same strategy, the selfish node classification process only
needs to be conducted once. If a selfish node adaptively
change its strategy, say, the change takes place before its
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observers determine which strategy it adopts in one round
of classification, we propose to have its observers choose a
stricter defense policy, i.e., to choose m’s by considering that
this selfish node is a g-persistent selfish node. (By compar-
ing m’s obtained at the observers when a selfish node takes
the three different strategies, we can easily know m for
g-persistent selfish node is the largest, leading to the strict-
est detection policy among the three.) Thus, under this pol-
icy, a selfish node who changes its strategies frequently will
not get a better performance, i.e., might have even higher
detection probability, than it sticks to one strategy. In sum-
mary, the smart selfish node classification process only
needs to run once in our defense scheme, which does not
bring much overhead. For example, given that the length of
DIFS, SIFS, a backoff time slot is 40, 10, and 20 us, respec-
tively, the payload size of a data packet is 512 bytes, the
data transmission rate is 2 Mbps, selfish misbehavior classi-
fication can be done in less than 1 second.

5 SIMULATION RESULTS

In this section, we conduct extensive simulations in NS-2
(version 2.33) to evaluate the performance of the proposed
detection, defense, as well as penalty schemes for IEEE
802.11 networks. Our network settings are as follows. We
consider a network area of 1; 000� 1; 000m2 with some ran-
domly distributed nodes (the number of nodes varies in dif-
ferent scenarios). We use the following shadowing channel
model to simulate the variations in channel conditions over
time and space:

PrðdÞ
Prðd0Þ

� �
dB

¼ �10blog
d

d0

� �
þXdB;

where b is the path loss exponent, d is the distance between
the transmitter and the receiver, Prðd0Þ is the power at some
reference distance d0, andXdB is a Gaussian random variable
with zero mean and standard deviation sdB. We set b to 2
and sdB to 1 in the simulations. Besides, each node is a source
for a flow and its corresponding destination is randomly cho-
sen. Each flow has a Constant Bit Rate (CBR) traffic with data
rate 500 Kbps and packet size 512 bytes. In addition, we
adopt the basic and common settings at the MAC layer in
NS-2. Some typical parameters are shown in Table 1.

Before presenting simulation results, we first define sev-
eral evaluation metrics in the following:

� Confidence level (a). As defined in Section 3, confi-
dence level is the probability that a normal node is
classified as a well-behaved node.

� Detection probability. This is defined as the probability
that a selfish node is detected as a selfish node.

� Channel occupation duration and channel occupation
ratio (r). These two parameters are used to evaluate
nodes’ channel usages. Specifically, we use normal-
ized value of channel occupation duration, and cal-
culate channel occupation ratio as one node’s
channel occupation duration divided by the average
of its neighboring nodes’ channel occupation
durations.

� Detection ratio. Note that one selfish node is observed
by multiple observers. The detection ratio is defined
as the number of observers classifying a node as a
selfish node divided by the total number of observ-
ers. Recall that a majority rule is employed by the
local cluster head to finally determine whether a
node under observation is selfish or not. In other
words, a node would be classified as a selfish node if
its detection ratio is larger than 0.5.

5.1 Selfish Misbehavior Detection

Here, we carry out simulations in a network of 20 nodes to
verify the performance of selfish misbehavior detection
schemes. Since the detection of remaining transmission
duration manipulation and of SIFS manipulation are com-
paratively easier, we focus on the detection of DIFS dura-
tion/backoff time manipulations.

Confidence level. We first demonstrate the relationship
between the confidence level a and the detection factor m.
During the simulation, the observed node works normally
according to the IEEE MAC protocol. Fig. 2 shows both the
theoretical results and the simulation results when the
detection factor m takes various values. We can see that a
drops from 0.95 to around 0.6 while m increases from 0.01 to
0.2. This shows that in order to obtain higher confidence
level a, observers need to adopt a relatively small detection
factor m. For example, to have a confidence level a no less
than 0.9, m should be set to be no bigger than 0.02. Besides,
we can find that the simulation results match theoretical
results well.

In addition, we show in Fig. 3 the confidence levels under
the four scenarios: with HT-I and HT-II, with HT-I without
HT-II, without HT-I with HT-II, and without HT-I or HT-II.
When there are only HT-I but not HT-II problems, the confi-
dential level a is a little bit lower than that obtained when
there are no HT-I or HT-II problems. It means when there

TABLE 1
Simulation Parameters

Parameters Value

Channel frequency 2.4 GHz
Basic rate 1 Mbps
Data rate 2 Mbps
Transmission range 250 meters
Carrier sensing range 550 meters
(CWmin; CWmax) (32, 1,024)
RTS retry limit 7

Fig. 2. The relationship between m and a.
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are HT-I problems, some normal nodes might be deter-
mined as selfish nodes. On the other hand, when there are
only HT-II but not HT-I problems, the confidential level a is
a little bit higher than that obtained when there are no HT-I
or HT-II problems. It means when there are HT-II problems,
more normal nodes would be determined as well-behaved
ones. Interestingly, we find that the confidence level a

obtained when both HT-I and HT-II problems exist is not
very much different from that when there are no HT-I or
HT-II problems. This is because the impact of both hidden
terminal problems can mitigate each other on the perfor-
mance of confidential level.

Channel occupation duration. We then study the channel
occupation durations of selfish nodes and of normal nodes.
Simulation results when selfish nodes are naive, random,
and g-persistent are shown in Figs. 4a, 4b, 4c, respectively.
In Fig. 4a, as the constant backoff value adopted by naive
selfish nodes grows, selfish nodes’ average channel occupa-
tion duration drops while normal nodes’ average channel
occupation duration slightly increases. In particular, when
selfish nodes set their backoff time to be 24 time slots, selfish
nodes and normal nodes have about the same channel occu-
pation durations, which means the selfish nodes do not
affect normal nodes’ performance in this case. Similar
results can be observed in Figs. 4b and 4c, where selfish
nodes and normal nodes have the same channel occupation
duration when CW ¼ 45 and g ¼ 0:96, respectively.
Besides, we denote the percentage of selfish nodes among
all the nodes as r, which we call “selfish node density”.
When r ¼ 50%, i.e., when 20� 50% ¼ 10 nodes are ran-
domly selected as selfish nodes, the channel occupation
durations of selfish nodes and of normal nodes are lower

than those of selfish nodes and of normal nodes, respec-
tively, when r ¼ 30% and when r ¼ 10%. The reason is that
the selfish nodes will compete with each other, besides with
normal nodes, to access the channel. The more selfish nodes
there are, the lower their average channel occupation dura-
tion would be.

Detection probability. Next, we explore the detection prob-
abilities when the detection factor m is equal to 0.02, 0.05,
and 0.1, and present the results in Fig. 5. Here, the selfish
node density r is equal to 50 percent, which means that half
of the nodes are selfish. In Fig. 5a, we can see that the detec-
tion probability decreases as the constant backoff time cho-
sen by naive selfish nodes increases, which is consistent
with our intuition. We also notice that the detection proba-
bility increases as m increases. This is because when m is
larger, the detection rule is stricter. Thus, the cutoff backoff
time beyond which the detection probability goes to 0 also
increases as m increases. Figs. 5b and 5c show similar
results. Taking the case when m ¼ 0:05 as an example, under
the naive selfish model, detection probability is equal to 1
when the chosen constant backoff time is less than 12. How-
ever, under the random selfish model, when the chosen con-
stant contention window size is 25 with expected backoff
time of 12, the detection probability is less than 1. The detec-
tion probability is even lower under the g-persistent selfish
model when the control parameter g � 25=32 
 0:78. Thus,
it means that g-persistent selfish nodes are smarter and
more difficult to be detected than random selfish nodes,
which are in turn smarter and more difficult to be detected
than naive selfish nodes.

Besides, we show in Fig. 6 the detection probabilities
under the following four scenarios: with HT-I and HT-II,
with HT-I without HT-II, without HT-I with HT-II, and
without HT-I or HT-II. We find that when there are only
HT-I problems but not HT-II problems, the detection proba-
bility is a little bit higher than that obtained when there are
no HT-I or HT-II problems. It means when there are HT-I
problems, more selfish nodes would be found. On the other
hand, when there are only HT-II problems but not HT-I
problems, the detection probability is a little bit lower than
that obtained when there are no HT-I or HT-II problems. It
means when there are HT-II problems, some selfish nodes
would be determined as normal nodes. Furthermore, we
also find that the detection probability when both HT-I and
HT-II problems exist is not very much different from that
when there are no HT-I or HT-II problems due to the similar
reason to that for the confidence level shown in Fig. 3.

Fig. 3. a obtained with or without hidden terminal (HT) problems.

Fig. 4. Average channel occupation duration when r ¼ 10, 30, and 50 percent. a) Naive selfish nodes. b) Random selfish nodes. c) g-persistent self-
ish nodes.
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Next, we compare in Fig. 7 our scheme with DOMINO
[15] when selfish nodes adopt different strategies as the
number of nodes varies from 10 to 30. We find that our
detection scheme can detect the selfish nodes with much
higher detection probability compared with DOMINO in
wireless ad hoc networks. Specifically, when there are
30 nodes, our detection scheme can achieve a detection
probability of 1, 0.97, and 0.82 when selfish nodes take naive
strategy, random strategy, and g-persistent strategy, respec-
tively; while DOMINO can only achieve a detection proba-
bility of 0.67, 0.58, and 0.53, respectively. This is because
DOMINO is based on comparing one node’s backoff time
with the expected value in a WLAN, which is derived based
on Bianchi’s classic model [30] for WLANs.

Detection efficiency. Recall that our proposed detection
scheme only requires a few samples. In what follows,
we study the impact of the number of samples, i.e., n, on the
detection performance. Due to page limit, we only give
the simulation results for naive selfish nodes in Fig. 8. The
results for the other two kinds of selfish nodes are similar.

Specifically, as shown in Fig. 8a, when n ¼ 2, in order to
achieve a � 0:9, observers should set their m � 0:12. At the
same time, we can see from Fig. 8b that the detection proba-
bility is less than 0.35. Consequently, n ¼ 2 may not be
appropriate in this network when we need high detection
probability. In the case of n ¼ 5, Fig. 8 shows that a � 0:9 is
achieved when m � 0:02, with which the achievable detec-
tion probability can be up to around 0.6 as shown in Fig. 8b.
Besides, when n ¼ 8, a � 0:9 can be achievedwhenm � 0:01,
while at the same time the detection probability can be up to
around 0.7. Comparing the results when n ¼ 5 with those
when n ¼ 8, we notice that the latter case can have better per-
formancewhenwe have strict requirement on the confidence
level. On the other hand, if we have high requirement on the
detection probability, say no less than 0.9, the detection factor
m needs to be no less than 0.07 when n ¼ 5 and no less than
0.02 when n ¼ 8 as shown in Fig. 8b. Then, according to
Fig. 8, we can find that under such conditions the confidence
level is up to 0.75 when n ¼ 5 and up to 0.8 when n ¼ 8,
whichmeans that the latter case achieves better performance.

Fig. 5. Detection probabilities of three typical kinds of selfish nodes under different detection factors m’s. (a) Naive selfish nodes. (b) Random selfish
nodes. (c) g-persistent selfish nodes.

Fig. 6. Detection probability of three typical kinds of selfish nodes with and without hidden terminal (HT) problems. (a) Naive selfish nodes. (b) Ran-
dom selfish nodes. (c) g-persistent selfish nodes.

Fig. 7. Detection probability comparison of our scheme with DOMINO [15] for three typical kinds of selfish nodes. (a) Naive selfish nodes. (b) Random
selfish nodes. (c) g-persistent selfish nodes.
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5.2 Selfish Misbehavior Defense

Recall that different from dumb selfish nodes, smart self-
ish nodes intend to choose safe misbehavior parameters
to avoid being caught by the observers. Our defense
scheme is, in general, to prevent the smart selfish nodes
from affecting normal nodes’ performance. In this section,
we conduct simulations to evaluate the performance of
the proposed defense scheme against the three typical
types of smart selfish nodes.

Defense results with different network sizes. We first study
the performance of our defense scheme with different net-
work sizes. In particular, we consider sparse, semi-sparse,
and dense networks with 10, 20, and 50 randomly distrib-
uted nodes, respectively, when selfish node density r is
equal to 30 percent, and show the channel occupation ratio r
in Figs. 9a, 9b, 9c for a randomly chosen naive, random, and
g-persistent selfish node, respectively. In the simulations, we

choose D ¼ 0:02 s and v ¼ 10�2 as the interval and step size
of the adaptive filtering algorithm in (8), respectively. We
find that our defense scheme can make selfish nodes’ chan-
nel occupation ratios around 1, i.e., they cannot affect normal
nodes’ performance. We also notice that as the number of
nodes in the network gets larger, the variance of r becomes
larger. The reason is that when the network gets more
crowded, the communication environment and the channel
condition becomemore dynamic. It hence becomesmore dif-
ficult to accurately estimate some of the parameters in the
defense scheme, e.g.,E½t�, andE½CW �. Thus, we need reduce
the interval D in the adaptive filtering algorithm (8) to
enhance the performance of the defense scheme.

In addition, we show the detection ratios of our defense
schemes in Figs. 9d, 9e, 9f for naive, random, and g-persis-
tent selfish nodes, respectively. Note that one selfish node is
observed by multiple observers and that the detection ratio
is defined as the number of observers classifying the selfish
node as a selfish node divided by the total number of
observers. Thus, if the detection ratio is above 0.5, it means
that the observed node will be finally classified as a selfish
node according to the majority rule mentioned in Section 3.
From the simulation results, we find that the detection ratio
is 0 for most of time, i.e., we cannot detect the selfish nodes,
and is larger when the selfish node gains channel occupa-
tion ratio higher than 1. In other words, the selfish nodes
cannot cause much performance degradation in the net-
work without being detected.

Fig. 8. Detection efficiency under different m’s and n’s.

Fig. 9. Defense results with different network sizes. (a)-(c) Channel occupation ratios of naive selfish node, random selfish model, and g-persistent
selfish node, respectively. (d)-(f) Detection ratios of naive selfish node, random selfish model, and g-persistent selfish node, respectively.
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Defense results with different selfish node densities. Next, we
verify the performance of our defense scheme against the
naive selfish nodes with different selfish node densities in a
network of 20 nodes. The results for the other two types of
selfish nodes are similar and omitted due to page limit. We
show the channel occupation ratio r when the selfish node
density r is equal to 10, 30, and 50 percent in Fig. 10a. We
can also find that our defense scheme makes selfish nodes’
channel occupation ratios around 1. We also notice that the
variances of r in all the three scenarios are almost the same.
It indicates that our defense scheme can work well in net-
works with different selfish densities. It also explains why
the number of times the selfish node is detected under these
three scenarios are the same, which are all equal to 1, as
shown in Fig. 10b.

5.3 Selfish Misbehavior Punishment

Then, we study the impact of our selfish misbehavior pen-
alty scheme on both selfish nodes and normal nodes. We
consider a network of 20 nodes with selfish node density r

equal to 30 percent. Besides, we consider both dumb selfish
nodes and smart selfish nodes. Due to page limit, we only
present the results for naive selfish nodes here. As men-
tioned before, once a node is determined as a selfish node,
all its one-hop neighbors will stop forwarding packets for it
until a different decision is made. In our simulations, we let
cluster heads collect detection results from observers and
feed back the decision results to the observers every 5
seconds.

Fig. 11a shows the throughput of a randomly selected
dumb selfish node, the throughput of one of its one-hop
normal nodes, along with that of one of the other normal
nodes. We can see that at the beginning, the dumb selfish
node obtains around 3.5 times as much throughput as its
neighboring node. Then, there follows a sharp decrease in
its throughput, which finally goes to 0. The reason is that
the dumb selfish node is very aggressive and just aims to
gain more channel resource, which makes it easy to be
detected. The dumb selfish node’s throughput remains 0
since the detection is conducted periodically. We also
notice that the dumb selfish node causes severe throughput
degradation of its neighboring normal node since it still
keeps trying to occupy the channel even though it has
been detected. However, the impact is limited to its neigh-
boring nodes only.

Moreover, Fig. 11b shows the throughput of a randomly
selected smart selfish node, the throughput of one of its
one-hop normal nodes, and that of one of the other normal
nodes. We can observe that the throughput of the three
nodes are nearly the same most of the time. Notice that the
throughput of the smart selfish node has two sharp drops.
We can infer that the selfish node is detected as being selfish
twice during the simulation period. The reason why the
throughput does not decrease to 0 is that some other nodes
in the network have buffered some packets for the selfish
node and can still forward these packets to the destinations.
The results in Fig. 11 show that the penalty scheme can
work well which will in turn motivate the smart selfish
nodes to avoid being detected.

In addition, Fig. 11c shows the throughput of a ran-
domly chosen normal node. We find that the normal
node’s throughput has two sharp drops, indicating that
it has been misjudged as a selfish node twice during the
entire simulation time. However, the penalty only lasts a
few seconds each time. This is because once the cluster
head finds the node as a normal node and sends this
decision notice to its observers, they start forwarding
packets for it again.

Fig. 10. Defense results under different selfish densities.

Fig. 11. Illustration of the proposed penalty scheme. (a) Dumb selfish nodes. (b) Smart selfish nodes. (c) Normal node.
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5.4 Communication Overhead

We further illustrate the communication overhead
incurred by our proposed schemes in this section. Specifi-
cally, in our selfish misbehavior detection scheme, the
communication overhead stems from observers’ upload-
ing their detection results and the IDs of the observed
nodes as well as their own to a local cluster head, and
the cluster head’s sending back its final decision.5 In our
selfish misbehavior defense scheme, the overhead
includes the observers’ broadcasting their detection fac-
tors mk’s to their two-hop neighbors.6 Fig. 12 compares
the total node throughput and the total communication
overhead of our scheme under different network sizes.
We find that the total throughput of all nodes is 3.55,
6.42, 8.75, 10.97 and 12.61 Mbps, while the corresponding
total communication overhead is 1.41, 10.71, 36.09, 85.48
and 166.89 Kbps, when the numbers of nodes in the net-
work are 10, 20, 30, 40 and 50, respectively. Thus,
the ratio of total communication overhead to total

throughput is 1.41 Kbps/3.55 Mbps ¼ 0.40 �10�3, 10.71

Kbps/6.42 Mbps ¼ 1.67 �10�3, 36.09 Kbps/8.75 Mbps ¼
4.12 �10�3, 85.48 Kbps/10.97 Mbps ¼ 7.79 �10�3, 166.89

Kbps/12.61 Mbps ¼ 1.32 �10�2, when the numbers of
nodes in the network are 10, 20, 30, 40 and 50, respec-
tively. Obviously, the total overhead incurred by our
schemes is negligible compared to total network through-
put, i.e., the proposed schemes have negligible impact on
network performance.

6 CONCLUSIONS

In wireless ad hoc networks, selfish nodes that deliberately
deviate from the standard MAC protocol may obtain an
unfair share of the channel resource and degrade the perfor-
mance of other well-behaved nodes. In this paper, we have
presented a distributed observation based selfish misbehav-
ior detection scheme, which has low computation complex-
ity and can quickly adapt to channel dynamics. We have
also developed three defense schemes against three typical
kinds of selfish nodes. These schemes can ensure that the
selfish nodes cannot degrade normal nodes’ performance
much without getting detected. Finally, we conduct exten-
sive simulations and the results show that the proposed
schemes can work well.
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