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Abstract —Last decade witnessed the explosive growth in mobile devices and their traffic demand, and thereby the significant increase
in the energy cost of the cellular service providers. One major component of the service providers’ operational expenditure comes from
the operation of cellular base stations using grid power or diesel generators when grid power is absent, which also cause adverse
environmental impact due to enormous carbon footprint. Therefore, from the service providers’ perspective, how to effectively reduce
the energy cost of base stations while satisfying cellular users’ soaring traffic demands has become an imperative and challenging
problem. In this paper, we investigate the minimization of the long-term time-averaged expected energy cost of cellular service providers
while guaranteeing the strong stability of the network. Specifically, we first formulate the problem by jointly considering flow routing, link
scheduling, and energy (i.e., renewable energy resource, energy storage unit, etc.) constraints. Since the formulated problem is a time-
coupling stochastic Mixed-Integer Non-Linear Programming (MINLP) problem, which is prohibitively expensive to solve, we reformulate
the problem by employing Lyapunov optimization theory. A decomposition based algorithm is developed to solve the problem and the
network strong stability is proven. We then derive and prove both the lower and upper bounds on the optimal result of the original
problem. Simulation results demonstrate the tightness of the obtained bounds and the efficacy of the proposed scheme.
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✦

1 INTRODUCTION

A S the mobile devices, such as smart phones, tablets, are
spreading around the world, various applications such as

web browsing, video streaming, and online social networks
are shifted from computers to mobile devices, leading to a
rocketing increase of data traffic in cellular networks. In order
to meet the subscribers’ tremendous traffic demand, cellular
service providers have to significantly increase the numbers of
their base stations (BSs), and bear the burden of much higher
energy costs. In particular, the number of cellular BSs all over
the world has increased from a few hundred thousands to more
than 4 million, and each of them consumes an average of 25
MWh per year [2]. Studies show that the radio network itself
adds up to 80% of an operator’s entire energy consumption,
which represents a significant portion of a network operator’s
overall expenditures [3]. Therefore, it is of great urgencyto
find effective solutions to reduce energy costs and develop
“green” cellular networks while satisfying mobile users’ ever-
increasing traffic demand.

In order to reduce the escalating energy cost in cellular
networks, renewable energy, e.g., biofuels, solar and wind
energy, has emerged as a feasible alternative to the tradi-
tional energy sources. For example, an off-grid base station
consumes more than 1500 liters of diesel per month [2].
Using renewable resources to power such cell sites would be
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much less expensive and more environmentally friendly. It is
expected that more than 8% of base stations will be powered
by renewable energy by 2014 [4]. Particularly, Ericsson [5]
and Nokia [6] have developed green BSs that are running on
solar power and wind power, respectively, without using any
grid power. Mobile manufacturers like Samsung and Nokia
have released a series of future phones which contain solar
panels [7].

In this paper, we investigate how to minimize the energy
cost of cellular networks while still satisfying users’ traffic
demand by considering energy-efficient wireless architectures,
renewable energy integration, and network stability. Specifi-
cally, we consider a multi-hop cellular network consistingof
a number of cellular users, a group of base stations, and a
set of available spectrum bands. We envision that each node
is equipped with a renewable energy resource, for example,
a solar panel (e.g., for each mobile user) or a wind turbine
(e.g., for each base station), as well as an energy storage
unit [5]–[7]. Both spectrum bandwidths and renewable energy
resource outputs are modeled as random processes. In this
network, mobile users may communicate with each other or
with base stations via multiple hops, rather than a single hop
as in traditional cellular networks. Thus, communicationscan
take advantage of locally available spectrums and link rate
adaptivity, and hence provide much higher network capacity.

We first formulate an offline energy cost minimization prob-
lem, by jointly exploring renewable energy resource allocation,
routing, and link scheduling, which turns out to be a time-
coupling stochastic Mixed-Integer Non-Linear Programming
(MINLP) problem. Previous approaches usually solve such
problems based on Dynamic Programming and suffer from the
“curse of dimensionality” problem [8]. Full statistical informa-
tion of the random variables is required to solve the problem,
which may be difficult to obtain in practice. Therefore, we
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reformulate the problem by employing Lyapunov optimization
theory [9] and propose an online energy-source-aware cost
minimization problem.

Considering that the formulated online energy-source-aware
cost minimization problem is an MINLP problem, which is in
general NP-hard [10] and needs to be solved in each time slot,
we decompose it and propose an approximation algorithm to
solve it efficiently. Specifically, by introducing virtual queues,
we are able to decompose the reformulated problem into four
subproblems: link scheduling, resource allocation, routing, and
energy management. We develop three algorithms to solve
the first three subproblems, respectively, based on current
network states only. After the first three subproblems are
solved, the fourth subproblem can be easily solved as well. We
prove that the proposed decomposition based approximation
algorithm guarantees that all queues in the network are finite,
i.e., network strong stability, which has rarely been achieved
before. Moreover, while the approximation algorithm leadsto
an upper bound on the optimal result of the original problem,
a lower bound is also found by solving a relaxed online Linear
Programming (LP) problem.

The main contributions of this paper are briefly summarized
as follows:

• We formulate an offline energy cost minimization prob-
lem by considering dynamic spectrum and renewable
energy resource availability, routing, link scheduling, and
energy resource allocation.

• We formulate an online energy-source-aware cost min-
imization problem and propose a decomposition based
algorithm to solve the problem efficiently while guaran-
teeing the strong stability of all queues in the network,
i.e., network strong stability.

• We obtain and prove the lower and upper bounds on
the optimal result of the original offline energy cost
minimization problem.

• Simulation results demonstrate that the obtained lower
and upper bounds are very tight, and that the proposed
scheme results in noticeable energy cost savings.

The rest of this paper is organized as follows. We discuss
related work in Section 2. Section 3 briefly introduces our
system models. The energy cost problem is formulated in
Section 4 while considering network dynamics and energy
management. In Section 5, we reformulate an online energy-
source-aware cost minimization problem, which is solved by
the proposed decomposition based algorithm. Proofs for the
network strong stability and derivation of both the lower and
upper bounds on the optimal result of the offline optimization
problem are given in Section 6. Extensive simulations are
conducted in Section 7, followed by the conclusion drawn in
Section 8.

2 RELATED WORK

The rising energy costs and carbon footprint of cellular
networks have led to many efforts to address the energy effi-
ciency issues and develop the “green cellular networks” [11],
[12]. Chen et al. in [13] have shown the breakdown of
power consumption in a typical cellular network and identified
several key research components of energy efficiency with

network performance, which include deployment efficiency,
throughput guarantee, stability of the network, etc. In par-
ticular, the energy consumption of a BS can be reduced by
improving the BS hardware design, for example, the efficiency
of power amplifiers (PAs) [14]. A PA dominates the energy
consumption of a BS and its energy efficiency depends on the
frequency band, modulation and operating environment [15].
We can also reduce BSs’ energy consumption by including
additional software and system features to balance between
energy consumption and network performance, e.g., shutting
down BSs during low traffic hours, cell zooming or green
base station [16]–[21]. Chiaraviglioet al. [16] first investigated
the possibility of energy savings of BS switching-on/off by
simulation. Niuet al. [17] proposed centralized and distributed
algorithms for cell zooming to avoid coverage hole when
BSs are turned off. Their another work in [18] studied the
smaller and denser cell deployment when cell zooming is not
sufficient. Ohet al. [19] proposed a distributed algorithm for
BS switching off by considering network-impact, which is
an effect caused by turning off a BS. Hanet al. [21] also
took advantage of green BSs by maximizing the green energy
usage. However, such system level approaches degrade the
cellular network performance and some cellular users can get
disconnected.

Beyond the advance of BS development and control itself, it
is crucial to consider various paradigm-shifting technologies
like multi-hop relaying in order to enhance the energy effi-
ciency of cellular networks. Particularly, multi-hop relaying
has been introduced into cellular networks to improve network
throughput [22]–[27]. In fact, since multi-hop communications
divide direct paths between mobile terminals and BSs into
shorter links [28], in which wireless channel impairments such
as path loss are less destructive, lower transmission power
can be assigned to the BSs and relays and hence network
energy consumption can also be saved. It has been shown in
[29] that using multi-hopping in CDMA cellular networks can
reduce the average energy consumed per call. In this study,
the multi-hop relaying becomes much more challenging since
it is coupled with link scheduling and energy management.

Besides, although energy consumption optimization has
been studied in wireless networks before [30]–[34], renew-
able energy has not been considered. In addition, stabilityis
another important concern in cellular networks, while unstable
networks result in big packet loss and the failure of service
delivery. In the literature, Lyapunov optimization techniques
have been adopted to investigate such problems in wireless
networks [35]–[41]. Unfortunately, [35]–[37] cannot guarantee
that all queues are finite. [38]–[40] develop opportunistic
scheduling schemes, which maintain finite queue sizes by
dropping some packets. [9], [41] propose joint stability and
utility optimization algorithms, but assume that the users’
input data rate is interior to the network capacity region.
Thus, in spite of these existing studies, none of the developed
algorithms can be adopted to keep all queues finite in our
system.
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Internet

Fig. 1. System architecture for green multi-hop cellular
networks.

3 SYSTEM MODELS

3.1 Network Model

As shown in Fig. 1, we consider a multi-hop cellular
network that consists ofU = {1, 2, · · · , u, · · · , U} users and
B = {1, 2, · · · , b, · · · , B} base stations. LetN = U ∪ B.
We denote the set of available spectrum bands byM =
{1, 2, · · · ,m, · · · ,M}, and assume that the bandwidth of band
m is a random process denoted by{Wm(t)}∞t=0 which can be
observed at the beginning of each time slot. In addition, due
to their different geographical locations, different nodes may
have different available spectrum bands. Denote byMi ⊆ M
the set of available spectrum bands that nodei ∈ N can
access. Thus, it is possible thatMi 6= Mj for i 6= j, i, j ∈ N .
Assume the system operates in a time-slotted manner. Suppose
there are a set of downlink Internet service sessions denoted
by S = {1, 2, · · · , s, · · · , S}, each of which is denoted as a
tuple {ds, vs(t), ss(t)} whereds stands for the destination of
service sessions, vs(t) is the required throughput (in terms
of the number of packets) in time slott, andss(t) stands for
the source base station of service sessions in time slot t.

3.2 Link Capacity

A widely used model [42], [43] employed for power
propagation gain between nodei and j, denoted bygij , is
gij = C · [d(i, j)]−γ , where i and j denote their locations,
d(i, j) is the Euclidean distance betweeni andj, γ refers to the
path loss exponent, andC is a constant related to the antenna
profiles of the transmitter and the receiver, wavelength, etc.

We adopt the Physical Model [42], [44] as the interference
model, i.e., a data transmission is successful only if the
received signal-to-interference plus noise ratio (SINR) is no
less than a thresholdΓ. Specifically, if nodei sends data to
nodej on bandm in time slott, the capacity can be calculated
as

cmij (t) =

{
Wm(t) log2(1 + Γ), if SINRm

ij (t) ≥ Γ
0, otherwise.

(1)

whereSINRm
ij (t), the SINR of the signal sent fromi to j on

bandm in time slot t, is

SINRm
ij (t) =

gijP
m
ij (t)

ηjWm(t) +
∑

j∈N ,j 6=i gkjP
m
kv(t)

Here,ηj is the thermal noise power density at the receiverj,
Pm
ij (t) is the transmission power of nodei to nodej on band
m in time slot t, andPm

kv(t) is the transmission power of an

interfering nodek to its receiverv on bandm in time slot t.
We also denote the maximum transmission power of nodei
by P i

max.

3.3 Energy Consumption

For a nodei (i ∈ N ), its consumed energy in time slott,
denoted byEi(t), is attributed to the energy needed to feed
the antenna denoted byEconst

i , the energy consumed when
staying in idle mode denoted byEidle

i , and the energy for
serving the trafficETX

i (t), i.e. [45],

Ei(t) = Econst
i + Eidle

i + ETX
i (t). (2)

ETX
i (t) will be introduced later.

3.4 Renewable Energy Generation and Energy Stor-
age

We assume that each nodei ∈ N has a renewable energy
resource, for example, a solar panel (e.g., for each mobile user)
or a wind turbine (e.g., for each base station). The output of
node i’s renewable resource, denoted byRi(t), is an i.i.d.
stochastic process that satisfies0 ≤ Ri(t) ≤ Rmax

i , where
Rmax

i is the maximum energy output and a constant. This
is because the output of a renewable energy resource mainly
depends on meteorological conditions and is dynamic.

We also assume that every nodei has its own energy
storage unit, e.g., a battery, for storing energy obtained from
its renewable energy resource or drawn from the power grid,
which can be used at later time slots. Thus, nodei’s renewable
resource outputRi(t) can be used to charge the energy storage
device or servei’s energy demand, i.e.:

Ri(t) = cri (t) + ri(t), (3)

wherecri (t) and ri(t) are the energy used for charging node
i’s energy storage unit and serving nodei’s current energy
demand, respectively.

In addition, notice that nodei’s energy storage unit works
as an energy buffer, whose energy level, denoted byxi(t), can
be modeled as an energy queue, i.e.,

xi(t+ 1) = xi(t) + ci(t)− di(t). (4)

wheredi(t) is the energy discharged from the energy storage
unit for serving nodei’s energy demand, andci(t) is the
energy charging the energy storage unit, i.e.,

ci(t) = cri (t) + ωi(t)c
g
i (t) (5)

ωi(t) =

{
1, if i ∈ B
ξi(t), if i ∈ U

(6)

wherecgi (t) is the energy drawn from the power grid andωi(t)
indicates whether nodei is connected into the power grid in
time slott. Note that base stations are always connected to the
grid while mobile terminals are only occasionally connected.
Thus, we assume that{ξi(t)}∞t=0 is an i.i.d. random process
whereξi(t) ∈ {0, 1}.

Due to the fact that serving nodei’s energy demandEi(t)
by directly using energy from the grid or from the renewable
energy resource, is more efficient than by first charging the
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energy storage unit and then discharging it, we have the
following two constraints

1di(t)>0 + 1cr
i
(t)>0 ≤ 1 (7)

1di(t)>0 + 1c
g

i
(t)>0 ≤ 1 (8)

where 1A is an indicator function that is equal to 1 when
the eventA is true, and zero otherwise. Notice that the
above constraints (7) and (8) will hold whenever the following
inequality holds:

1ci(t)>0 + 1di(t)>0 ≤ 1 (9)

Besides, denote byxmax
i the maximum amount of energy

that can be stored by nodei’s energy storage unit. Then, we
need

0 ≤ xi(t) ≤ xmax
i . (10)

Denote bycmax
i and dmax

i the maximum amount of energy
that nodei’s energy storage unit can be charged with and that
can be discharged from nodei’s energy storage unit during a
single time slot, respectively. Thus, we have

ci(t) ≤ min[cmax
i , xmax

i − xi(t)] (11)

di(t) ≤ min[dmax
i , xi(t)]. (12)

From (11) and (12), we getci(t) + di(t) ≤ xmax
i − xi(t) +

xi(t) = xmax
i , which should hold for anyci(t) anddi(t) that

satisfy (11) and (12). Sinceci(t) ≤ cmax
i anddi(t) ≤ dmax

i ,
we also have the following constraint:

cmax
i + dmax

i ≤ xmax
i . (13)

3.5 Energy Serving and Generation Cost

Node i’s energy demand is satisfied by the energy from
the power grid, its local renewable energy resource, and its
own energy storage device. Particularly, we haveEi(t) =
ωi(t)gi(t)+ ri(t)+di(t), wheregi(t) is the amount of energy
drawn from the power grid to satisfy useri’s energy demand
in time slot t.

Besides, the amount of energy that nodei draws from the
power grid in time slott, denoted bypi(t), satisfies

0 ≤ pi(t) = ωi(t)
(
gi(t) + cgi (t)

)
≤ pmax

i (14)

wherepmax
i is a constant determined by the physical charac-

teristics of useri’s connection to the grid.
Since the energy needed from the power grid for mobile

terminals is negligible compared to that required for base
stations, the total amount of energy supplied by power grid in
time slott, denoted byP (t), is P (t) =

∑
i∈B

(
gi(t)+ cgi (t)

)
.

Thus, the energy cost of the cellular service provider in time
slot t can be calculated asf(P (t)), wheref(·) is assumed to
be a non-negative, non-decreasing, and convex function.

3.6 Definitions

Next, we introduce some definitions and theorems that
would be used later in this paper [9].

Definition 1: The time average of a random processa(t),
denoted bya, is a = limT→∞

1
T

∑T−1
t=0 E[a(t)].

Definition 2: A discrete time processa(t) is rate stable
if limt→∞

a(t)
t

= 0 with probability 1, and strongly stable if
limT→∞ sup 1

T

∑T−1
t=0 E[|a(t)|] <∞.

Theorem1: Queue Rate Stability Let Q(t) denote the
queue length of a single-server discrete time queueing system,
whose initial stateQ(0) is a non-negative real-valued random
variable, and future states are driven by stochastic arrival and
server processesa(t) and b(t) according to the following
dynamic equation:

Q(t+ 1) = max{Q(t)− b(t), 0}+ a(t) for t ∈ {0, 1, 2, ...}.

ThenQ(t) is rate stable if and only ifa ≤ b.
Theorem2: Necessity for Queue Strong StabilityIf a

queueQ(t) is strongly stable, and there is a finite constant
c such that eithera(t) + b−(t) ≤ c with probability 1 for all
t (where b−(t) , −min[b(t), 0]), or b(t) − a(t) ≤ c with
probability 1 for all t, thenQ(t) is rate stable, i.e.,a ≤ b.

Besides, we say that a network is rate stable or strongly
stable if all queues in this network are rate stable or strongly
stable as described above.

4 DYNAMIC ENERGY COST OPTIMIZATION

In this section, we investigate the dynamic energy cost
minimization problem in a multi-hop cellular network.

4.1 Network Layer Design

Recall that we consider downlink traffic in the network.
Specifically, the destination nodes are served by the base
stations via multiple hops, with the help of other nodes.
Therefore, as the network layer buffer, each nodei maintains
a data queueQs

i for each service sessions. The queueing law
for Qs

i is as follows:

Qs
i (t+ 1) = max{Qs

i (t)−
∑

j∈N ,j 6=i

lsij(t), 0}

+
∑

j∈N ,j 6=i

lsji(t) + ks(t) · 1i=ss(t), (15)

wherelsij(t) is the number of packets transmitted fromi to j
for service sessions in time slot t, andks(t) (0 ≤ ks(t) ≤
Kmax

s ) is the number of packets that the source base station
of service sessions receives from the Internet. Note that the
destination nodeds does not need to maintain a data queue
for its own service since data will be directly passed on to the
upper layers.

Besides, at the source and destination nodes, we have the
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following routing constraints:
∑

j∈N ,j 6=i

lsji(t) = 0, if i = ss(t), s ∈ S, (16)

∑

j∈N ,j 6=i

lsij(t) = 0, if i = ds, s ∈ S, (17)

∑

j∈N ,j 6=i

lsji(t) = vs(t), if i = ds, s ∈ S, (18)

∑

i∈B

1i=ss(t) = 1. (19)

Constraints (16) and (17) indicate that there is no incoming
data and outgoing data at the source node and the destination
node for service sessions, respectively. Constraint (18) models
the throughput requirement of service sessions, wherevs(t)
is the number of packets required by sessions. Constraint (19)
indicates that there is only one source base station for session
s in any time slott.

4.2 Link Layer Design

Next, we illustrate the channel allocation and link schedul-
ing constraints on data transmissions.

Assume that bandm is available at both nodei and node
j, i.e.,m ∈ Mi ∩Mj . We denote

αm
ij (t) =





1, if node i transmits to nodej using bandm
in time slot t,

0, otherwise.

Since a node is not able to transmit to or receive from multiple
nodes on the same frequency band in a single time slot, we
have

∑

j∈N ,j 6=i

αm
ij (t) ≤ 1, and

∑

i∈N ,i6=j

αm
ij (t) ≤ 1. (20)

Besides, a node cannot use the same frequency band for
transmission and reception simultaneously, due to “self-
interference” at physical layer, i.e.,

∑

i∈N ,i6=j

αm
ij (t) +

∑

q∈N ,q 6=j

αm
jq(t) ≤ 1. (21)

Moreover, we consider that each node is only equipped with
one single radio, which means that each node can only transmit
or receive on one frequency band at a time. Thus, we have

∑

m∈Mj

∑

i∈N ,i6=j

αm
ij (t) +

∑

m∈Mj

∑

q∈N ,q 6=j

αm
jq(t) ≤ 1. (22)

Notice that (20) and (21) will hold whenever (22) holds.
Recall that in (2),ETX

i (t) is nodei’s consumed energy for
serving its traffic. Thus, it can be calculated as follows:

ETX
i (t) =

∑

m∈Mi

∑

j∈N ,j 6=i

αm
ij (t)P

m
ij (t)∆t

+
∑

m∈Mi

∑

j∈N ,j 6=i

αm
ji(t)P

recv
i ∆t, (23)

where nodei’s receiving power, i.e.,P recv
i , is a constant, and

∆t is the time duration of one time slot.
In addition to the above constraints at a certain node,

there are also constraints due to potential interference among

different nodes. In particular, according to the Physical Model
discussed in Section 3.2, if nodei uses a frequency bandm for
transmitting data to another node, the cumulative interference
from all the other nodes transmitting onm at the same time
plus the noise power level should be low enough so that
the SINR of nodei’s transmission is above the threshold
Γ, i.e., gijPm

ij (t) ≥ Γ
(
ηjW

m(t) +
∑

k 6=i,v 6=j gkjP
m
kv(t)

)
.

Rewriting the above expression in the form of a constraint
that accommodates all the link-band pairs in the network, we
have

gijP
m
ij (t)α

m
ij (t) +Mm

ij

(
1− αm

ij (t)
)

≥ Γ
(
ηjW

m(t) +
∑

k 6=i,v 6=j

gkjP
m
kv(t)α

m
kv(t)

)
, (24)

whereMm
ij

(
1−αm

ij (t)
)

is set as the sum of interferences from
all the other nodes and the noise, i.e.,Mm

ij

(
1 − αm

ij (t)
)
=

Γ
(
ηjW

m(t) +
∑

k 6=i gkjP
k
max

)
.

Moreover, the flow rate over link(i, j) should satisfy the
following inequality, i.e.,

δ
∑

s∈S

lsij(t) ≤
∑

m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t (25)

whereδ is the number of bits per packet. (25) indicates that the
total number of bits transmitted on a link during one time slot
cannot exceed the link’s capacity multiplied by the duration
of one time slot.

4.3 Offline Energy-Source-Aware Cost Minimization

Our objective is to minimize the time-averaged expected
energy cost of the cellular service provider given the routing,
link scheduling and energy capabilities, while guaranteeing
the strong stability of the network. Thus, the offline energy-
source-aware cost optimization problem can be formulated as
follows:

P1: Minimize ψ = lim
T→∞

1

T

T−1∑

t=0

E[f(P (t))],

s.t. Constraints (9)-(14), (16)-(19), (22)-(25),∀t ≥ 0

Q(t) andx(t) are strongly stable. (26)

where Q(t) = {Qs
i (t), ∀i ∈ N , s ∈ S} and x(t) =

{xi(t), ∀i ∈ N}. We denote the optimal result ofP1 by ψ∗
P1.

We can see that without the constraint (26),P1 is a time-
coupling stochastic Mixed-Integer Non-Linear Programming
(MINLP) problem, which is already prohibitively expensive
to solve. Previous approaches usually solve such problems
based on Dynamic Programming and suffer from the “curse
of dimensionality” problem [8]. They also require detailed
statistical information on the random variables in the problem,
i.e., the available spectrums, and output of renewable energy
resources at each node, which may be difficult to obtain in
practice. In addition, the constraint (26) makesP1 an even
more complicated problem. Next, we will reformulate this
problem into an online optimization problem using Lyapunov
optimization to break the time coupling inP1, and find a
feasible solution to it only based on the current network states.
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5 ONLINE ENERGY-SOURCE-AWARE COST
MINIMIZATION

In this section, we exploit Lyapunov optimization tech-
niques to design an online energy-source-aware algorithm to
solve the energy cost minimization problem without requiring
any priori knowledge of the network parameters.

Before we delve into the details, we first reformulateP1 into
an equivalent offline optimization problemP2. In particular,
summing the inequality (25) over allt ∈ {0, 1, ...T − 1}, and
taking expectation and limitation on both sides, we get

lim
T→∞

1

T

T−1∑

t=0

E[δ
∑

s∈S

lsij(t)]

≤ lim
T→∞

1

T

T−1∑

t=0

E[
∑

m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t]. (27)

Thus, we defineP = limT→∞
1
T

∑T−1
t=0 E[f(P (t)) −

λ
∑

s∈S

∑
i∈B ks(t) · 1i=ss(t)], whereλ is a coefficient that

can be determined by the system operator. We then formulate
the following optimization problemP2:

P2: Minimize ψ = P

s.t. Constraints (9)-(14), (16)-(19), (22)-(27),∀t ≥ 0.

We denote the optimal result of P2 byψ∗
P2. We formulate

P2 in such a way to help ensure the strong stability of the
network, which will be clear later. Besides, note that similar
to P1, P2 is also a time-coupling MINLP problem. In what
follows, we will formulate a drift-plus-penalty problem based
on P2, which we callP3.

5.1 Modeling Virtual Queues
In order to guarantee that all queues in the network are

stable, we introduce virtual queues as follows. Consider a
virtual queueGij(t) at nodei for each of its one-hop neighbor
j with the following queueing law:

Gij(t+ 1)=max
{
Gij(t)−

1

δ

∑

m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t, 0

}

+
∑

s∈S

lsij(t). (28)

This virtual queue can be understood as the link-layer buffer
for link (i, j). The queue backlogGij(t) represents the total
number of packets stored at nodei to be transmitted to node
j at the beginning of time slott1.

For queueGij(t), we have

1

δ

∑

m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t−

∑

s∈S

lsij(t)

≤
1

δ

∑

m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t

≤
1

δ
cmax
ij ∆t (29)

1. In order to guarantee that the queue size ofGij(t) is an
integer in each time slot, the service rate of the queue should
in fact be ⌊ 1

δ

∑
m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t⌋. Here, we assume

1

δ

∑
m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t to be integers for simplicity.

where 1
δ
cmax
ij ∆t is a constant. Therefore, if we can guarantee

the strong stability of this queue, we can ensure its rate
stability, i.e., constraint (27), according to Theorem 2. Besides,
the virtual queue backlog is always nonnegative according to
the queueing law (28).

Instead of utilizing Gij(t) directly, we build anoth-
er virtual queue Hij(t) = βGij(t), where β =
maxi,j∈N ,j 6=i {

1
δ
cmax
ij ∆t}. Thus, the queueing law ofHij(t)

is

Hij(t+ 1)=max
{
Hij(t)−

β

δ

∑

m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t, 0

}

+β
∑

s∈S

lsij(t). (30)

Note that the strong stability ofHij(t) implies the strong
stability of Gij(t), and hence (27) would directly follow.

5.2 Reformulation of Dynamic Energy Cost Mini-
mization Using Lyapunov Optimization

We first define a shifted energy levelzi(t) for any node
i ∈ N to better control its energy storage unit, i.e.,

zi(t) = xi(t)− V γmax − dmax
i ,

whereγmax is the maximum first-order derivative off(P (t))
with respect toP (t), andV is a positive constant to be defined
later. Thus, according to (4),zi(t) is updated following the
queueing law below:

zi(t+ 1) = zi(t) + ci(t)− di(t). (31)

Note that based on constraint (10), we have:

−V γmax − dmax
i ≤ zi(t) ≤ xmax

i − V γmax − dmax
i (32)

Next, we define a Lyapunov function [9] as

L(Θ(t)) ,
1

2
[
∑

s∈S

∑

i∈N

(Qs
i (t))

2 +
∑

i∈N

∑

j∈N ,j 6=i

(Hij(t))
2

+
∑

i∈N

(zi(t))
2]

whereΘ(t) = {Q(t),H(t), z(t)}. We assumeQ(0) = 0,
H(0) = 0, and z(0) = 0. This function represents a
scalar measure of queues in the system.L(Θ(t)) being small
indicates that all queue backlogs are low, whileL(Θ(t))
being large implies that at least one queue backlog is high.
Meanwhile, its one-slot conditional Lyapunov drift is defined
as

∆(Θ(t)) , E
[
L(Θ(t+ 1))− L(Θ(t))|Θ(t)

]
. (33)

In order to minimize the long-term time-averaged expected
total cost of energy from UC, instead of directly minimizing
∆(Θ(t)), we intend to minimize the upper bound of the drift-
plus-penalty function, which is defined as:

∆(Θ(t)) + V E
[
f(P (t))− λ

∑

s∈S

∑

i∈B

ks(t) · 1i=ss(t)|Θ(t)
]

where V ≥ 0 is a constant that represents the weight on
how much we emphasize on the energy cost minimization.
Such a scheduling decision can be explained as follows:
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we want to make∆(Θ(t)) small to push queue backlog
towards a lower congestion state, but we also want to make(
f(P (t))−λ

∑
s∈S

∑
i∈B ks(t) ·1i=ss(t)

)
small in each time

slot so that the energy cost can be low.
We can have the following lemma.
Lemma1: Given∆(Θ(t)) defined in (33), we have

∆(Θ(t)) + V E
[
f(P (t))− λ

∑

s∈S

∑

i∈B

ks(t) · 1i=ss(t)|Θ(t)
]

≤ B +Ψ1(t) + Ψ2(t) + Ψ3(t) + Ψ4(t), (34)

whereB is a constant, i.e.,

B=
1

2

∑

s∈S

∑

i∈N

[(
max

j∈N ,j 6=i
{
1

δ
cmax
ij ∆t}

)2

+
(

max
j∈N ,j 6=i

{
1

δ
cmax
ji ∆t}+ lmax

s · 1i=ss(t)

)2]

+
∑

i∈N

∑

j∈N ,j 6=i

[β
δ
(cmax

ij ·∆t)
]2

+
1

2

∑

i∈N

max
{
(cmax

i )2, (dmax
i )2

}
(35)

Ψ1(t) is only related to the link scheduling variablesαm
ij (t)’s,

i.e.,

Ψ1(t) =−
β

δ
E
[∑

i∈N

∑

j∈N ,j 6=i

(
Hij(t)

∑

m∈Mi∩Mj

cmij (t)α
m
ij (t)

·∆t
)
|Θ(t)

]
,

Ψ2(t) is related to the resource allocation variablesks(t) and
1i=ss(t)’s, i.e.,

Ψ2(t)=E
[∑

s∈S

∑

i∈B

(
(Qs

i (t)− λV )(ks(t) · 1i=ss(t))
)
|Θ(t)

]
,

Ψ3(t) is only related to the routing variableslsij(t)’s, i.e.,

Ψ3(t)=E
[∑

s∈S

∑

i∈N

Qs
i (t)

( ∑

j∈N j 6=i

lsji(t)−
∑

j∈N ,j 6=i

lsij(t)
)

| Θ(t)
]
+ E

[∑

i∈N

∑

j∈N ,j 6=i

(
βHij(t)

∑

s∈S

lsij(t)
)
|Θ(t)

]
,

andΨ4(t) is related to the energy management variablesci(t),
di(t) andP (t), ∀i ∈ N , i.e.,

Ψ4(t)=E
[∑

i∈N

(
zi(t)(ci(t)− di(t))

)
|Θ(t)

]

+V E
[
f(P (t))|Θ(t)

]
.

Proof: Note that∀x, y, z with x ≥ 0, 0 ≤ y ≤ ymax,
0 ≤ z ≤ zmax, we have

(max{x− y, 0}+ z)2 ≤ x2 + y2 + z2 + 2x(z − y)

≤ x2 + y2max + z2max + 2x(z − y). (36)

Due to (25), we know that∑
j∈N ,j 6=i l

s
ij(t) ≤

∑
j∈N ,j 6=i

∑
s∈S l

s
ij(t) ≤

1
δ

∑
j∈N ,j 6=i

∑
m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t. Denote by cmax

ij

the maximum possible link capacity of link(i, j). Since
cmij (t) depends ond(i, j) andWm(t), among whichd(i, j)
is constant, thencmax

ij is determined byWmax, i.e., the
maximum bandwidth that the channels available on link(i, j)

can have. Thus, according to (22), i.e., one node can transmit
to at most one neighbor on at most one band at a time, we can
get

∑
j∈N ,j 6=i l

s
ij(t) ≤ maxj∈N ,j 6=i{

1
α
cmax
ij ∆t}. Similarly,

we also have
∑

j∈N ,j 6=i l
s
ji(t) ≤ maxj∈N ,j 6=i

1
δ
cmax
ji ∆t.

Besides, we haveks(t) ≤ Kmax
s . Thus, based on (15), (30),

(31) and (36), we can obtain the following inequalities:

(
Qs

i (t+ 1)
)2
≤
(
Qs

i (t)
)2

+
(

max
j∈N ,j 6=i

{
1

δ
cmax
ij ∆t}

)2

+
(

max
j∈N ,j 6=i

{
1

δ
cmax
ji ∆t}+Kmax

s · 1i=ss(t)

)2

+2Qs
i (t) ·

( ∑

j∈N ,j 6=i

lsji(t)

+ks(t) · 1i=ss(t) −
∑

j∈N ,j 6=i

lsij(t)
)

(37)

(Hij(t+ 1))2≤
(
Hij(t)

)2
+ 2

(β
δ
cmax
ij ∆t

)2
+ 2Hij(t) ·

(∑

s∈S

β lsij(t)−
β

δ

∑

m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t

)
(38)

(
zi(t+ 1)

)2
≤
(
zi(t)

)2
+max{(cmax

i )2, (dmax
i )2}

+2zi(t)
(
ci(t)− di(t)

)
(39)

Applying these inequalities to the drift-plus-penalty function,
we have

∆(Θ(t)) + V E[f(P (t))− λ
∑

s∈S

∑

i∈B

ks(t) · 1i=ss(t)|Θ(t)]

≤
1

2

∑

s∈S

∑

i∈N

[(
max

j∈N ,j 6=i
{
1

δ
cmax
ij ∆t}

)2
+
(

max
∈N ,j 6=i

{
1

δ
cmax
ji ∆t}

+Kmax
s · 1i=ss

)2]
+

∑

i∈N

∑

j∈N ,j 6=i

(β
δ
cmax
ij ∆t

)2

+
1

2

∑

i∈N

max
{
(cmax

i )2, (dmax
i )2

}

+E
[∑

s∈S

∑

i∈N

Qs
i (t)

[ ∑

j∈N ,j 6=i

lsji(t) + ks(t) · 1i=ss(t)

−
∑

j∈N ,j 6=i

lsij(t)
]
|Θ(t)

]

+E
[∑

i∈N

∑

j∈N ,j 6=i

Hij(t)
[∑

s∈S

βlsij(t)

−
β

δ

∑

m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t

]
|Θ(t)

]

+E
[∑

i∈N

(
zi(t)(ci(t)− di(t))

)
|Θ(t)

]

+V E
[
f(P (t))− λ

∑

s∈S

∑

i∈B

ks(t) · 1i=ss(t)|Θ(t)
]

Thus, Lemma 1 directly follows.
Based on the drift-plus-penalty framework, our objective is

to minimize the right-hand-side of (34), and hence to minimize
Ψ1(t)+Ψ2(t)+Ψ3(t)+Ψ4(t) sinceB is a constant, given the
current system statusΘ(t) = {Q(t),H(t), z(t)} in each time
slot. We now use the concept of opportunistically minimizing



2168-6750 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TETC.2014.2386612, IEEE Transactions on Emerging Topics in Computing

8

an expectation [9], which is to minimize:

Ψ̂1(t) = −
β

δ

∑

i∈N

∑

j∈N ,j 6=i

(
Hij(t)

·
∑

m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t

)
(40)

Ψ̂2(t) =
∑

s∈S

∑

i∈B

(
(Qs

i (t)− λV )(ks(t) · 1i=ss(t))
)

(41)

Ψ̂3(t) =
∑

s∈S

∑

i∈N

Qs
i (t)

( ∑

j∈N j 6=i

lsji(t)−
∑

j∈N ,j 6=i

lsij(t)
)

+
∑

i∈N

∑

j∈N ,j 6=i

(
Hij(t)

∑

s∈S

βlsij(t)
)

(42)

Ψ̂4(t) =
∑

i∈N

(
zi(t)(ci(t)− di(t))

)
+ V f(P (t)). (43)

Therefore, the problem of online energy-source-aware cost
minimization can be formulated as follows:

P3: Minimize Ψ̂1(t) + Ψ̂2(t) + Ψ̂3(t) + Ψ̂4(t)

s.t. Constraints (9), (11)-(14), (16)-(19), (22)-(25),

(32), ∀t ≥ 0.

Θ(t) is strongly stable. (44)

Note that the constraint (27) has been left out inP3 (compared
to P2) since it can be guaranteed ifH(t) is strongly stable as
mentioned before.

5.3 A Decomposition Based Approximation Algo-
rithm

In the following we decomposeP3 into four subproblems
(from S1 to S4) and solve them respectively. The intuition is
that since each subproblem has fewer variables compared with
that inP3and can be solved easily, by solving the subproblems
one by one, the later subproblems can treat the variables
that have been solved in previous subproblem as constants.
Consequently, we can obtain a feasible solution toP3.

5.3.1 Link Scheduling
First, we minimize Ψ̂1(t) by finding the optimal link

scheduling policy, i.e., determining the variablesαm
ij (t)’s

(∀i, j ∈ N , j 6= i,m ∈ Mi ∩Mj), as follows:

S1: Minimize Ψ̂1(t)

s.t. Constraint (22).

Since the variablesαm
ij (t)’s can only take value of 0 or

1, the above subproblem is a Binary Integer Programming
(BIP) problem. In the following, based on the similar ideas
in [43], [46], we propose a heuristic greedy scheme called
the sequential-fix (SF) algorithm to find a suboptimal solution
to this problem, the solution of which can be obtained in
polynomial time. The main idea of SF is to fix the binary
variablesαm

ij (t)’s sequentially through a series of relaxed lin-
ear programming problems. Specifically, we first setαm

ij (t)’s
to 0 if Hij(t) = 0, remove all the terms associated with such
αm
ij (t)’s from the objective function, and eliminate the related

constraints in (22). Then, in each iteration, we first relax all
the 0-1 integer constraints onαm

ij (t)’s to 0 ≤ αm
ij (t) ≤ 1 to

transform the problem to a linear programming (LP) problem.
Then, we solve this LP to obtain an optimal solution with
eachαm

ij (t) being between 0 and 1. Among all the values,
we set the largestαm

ij (t) to 1. After that, based on the
constraint (22), we can fixαm

pj(t) = 0 and αn
jq(t) = 0 for

any n ∈ Mj and p, q ∈ N . Besides, if the result includes
severalαm

ij (t)’s with the value of 1, we can set thoseαm
ij (t)’s

to 1 and perform an additional fixing for the largest fractional
variable in the current iteration as illustrated above. Having
fixed someαm

ij (t)’s in the first iteration, we remove all the
terms associated with those already fixedαm

ij (t)’s from the
objective function, eliminate the related constraints in (22),
and update the problem to a new one for the next iteration.
The iteration continues until we fix allαm

ij (t)’s to be either 0
or 1.

5.3.2 Resource Allocation

Second, we minimizêΨ2(t) by finding the source base
station for each service sessions (s ∈ S) and determining
its incoming packet rateks(t), i.e.,

S2: Minimize Ψ̂2(t)

s.t. Constraints (19).

We develop the following search algorithm to locally find
a resource allocation policy. Specifically, at the beginning
of each time slot, given the current queue backlogsQs

i (t)’s
(∀i ∈ B) for each service sessions, we find the base station
with the smallestQs

i (t) and choose it as the source base
station. If there are multiple variables with the same smallest
queue backlog, we randomly pick one of them as the source
base station. After that, we can determine the source node’s
incoming packet rate as follows:

ks(t) =

{
Ks

max, if Qs
ss
(t)− λV < 0

0, otherwise.

5.3.3 Routing

Third, after reorganizinĝΨ3(t), we minimize it by finding
the optimal routing policy, i.e., determining the variables
lsij(t)’s (∀s ∈ S, i, j ∈ N , j 6= i), as follows:

S3: Minimize∑

s∈S

∑

i∈N

∑

j∈N ,j 6=i

(
−Qs

i (t) +Qs
j(t) + βHij(t)

)
· lsij(t)

s.t. Constraints (16)-(18), (25).

We can see that S3 is an Integer Linear Programming (ILP)
problem with the only variables beinglsij(t)’s. We notice that
the total flow rate

∑
s∈S l

s
ij(t) over link (i, j) does not affect

the flow rates over other links{(p, q)|p 6= i ∩ q 6= j}, and
only depends on its link capacity according to the constraint
(25). Besides, the objective function of S3 can be viewed as
a weighted sum of the variableslsij(t)’s. Therefore, we can
determine the flow rate over any link(i, j) at nodei locally,
based on its current queue backlogsQs

i (t) andHij(t), and
the queue backlogs of nodej, i.e., Qs

j(t). In the following,
we will propose an algorithm to obtain the optimal solution
for lsij(t)’s.



2168-6750 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TETC.2014.2386612, IEEE Transactions on Emerging Topics in Computing

9

In particular, we first set the variableslsij ’s (∀j = ss(t), i ∈
N\{j}, s ∈ S) and those (∀i = ds, j ∈ N\{i}, s ∈ S) to 0 ac-
cording to constraints (16) and (17). Besides, if a nodej = ds
(s ∈ S) in time slott, then the variablelsij (∀i ∈ N \{j}) with
the smallest coefficient in the objective function of S3 is set to
vs(t) due to constraint (18). In all the other cases, in order to
minimize the objective function, nodei also sets the variables
lsij(t)’s (∀j ∈ N , j 6= i, s ∈ S) to 0 if their coefficients are
non-negative. Otherwise, for anylsij(t)’s (s ∈ S) over link
(i, j), node i sets the variable with the smallest coefficient
to 1

δ

∑
m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t while the rest to 0, due to

the constraint (25). The intuition is that by doing so, the link
(i, j) can be fully utilized while minimizing S3. Besides, if
there are variableslsij(t)’s with the same smallest coefficient
on link (i, j), node i randomly picks one of them and sets
it to 1

δ

∑
m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t while the rest to 0. Note

thatαm
ij (t)’s are known from the link scheduling optimization

problem S1. It is possible that1
δ

∑
m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t

is equal to 0 if
∑

m∈Mi∩Mj
αm
ij (t) = 0. Then, the corre-

sponding variablelsij(t) is also equal to 0.

5.3.4 Energy Management
Fourth, in order to minimizeΨ̂4(t), we try to find the

optimal energy management for alli ∈ N , i.e., determining the
variablesPm

ij (t)’s, cri (t)’s, cgi (t)’s, ri(t)’s, di(t)’s, andgi(t)’s.
This problem can be formulated as follows:

S4: Minimize Ψ̂4(t)

s.t. Constraints (9), (11)-(14), (24).

Notice that S4 is a convex optimization problem, which can
be easily solved, e.g., using CPLEX, given the system states
and shifted energy levelszi(t).

In summary, in each time slot, the online energy-source-
aware minimization problemP3 can be solved after S1, S2,
S3 and S4 are solved. The queuesQ(t), H(t) andz(t) are then
updated in each time slot according to the queueing laws (15),
(30), and (31), respectively. We will show in the next section
that all queues are strongly stable, and particularly,zi(t) are
within its limits, i.e., (32). We denote the corresponding time-
averaged expected total energy cost byψP3.

6 PERFORMANCE ANALYSIS

In this section, we first prove that the proposed approxi-
mation algorithm can guarantee the network strong stability.
Then, we derive both the lower and upper bounds on the
optimal result ofP1.

6.1 Network Strong Stability

Our proposed algorithm finds a solution to P3 which satis-
fies the constraints (9), (11)-(14), (16)-(19), (22)-(25).We can
have the following theorem.

Theorem3: Our proposed approximation algorithm guar-
antees that the queuesQ(t), H(t) and z(t) are all strongly
stable, and particularly,zi(t) are within its limits, i.e., (32).

Proof: First, we demonstrate the strong stability ofQ(t)
by considering an arbitrary queueQs

i (t). Specifically, we
prove by induction thatQs

i (t) ≤ λV +Ks
max.

When t = 0, we haveQs
i (0) = 0 < λV +Ks

max.
Assume that we haveQs

i (t) ≤ λV + Ks
max in time slot t

(t ≥ 0). Then, we consider the following two cases to prove
the stability ofQs

i (t).
1) if i = ss(t): According to the queueing law ofQs

i (t),
we have

Qs
ss
(t+ 1) = max{Qs

ss
(t)−

∑

j∈N ,j 6=ss

lsssj(t), 0}

+ks(t). (45)

Based on the derived solution to the subproblemS2, we have
the following two subcases:

• If Qs
ss
(t) ≥ λV , according to the optimal solution to S2,

we know thatks(t) = 0. Thus, we have

Qs
ss
(t+ 1) ≤ Qs

ss
(t) ≤ λV +Ks

max.

• If Qs
ss
(t) < λV , according to the optimal solution to S3,

we get thatks(t) = Ks
max. Following (45), we have

Qs
ss
(t+ 1) ≤ Qs

ss
(t) +Ks

max ≤ λV +Ks
max.

Therefore, we haveQs
ss
(t) ≤ λV +Ks

max.
2) if i 6= ss(t) and i 6= ds: We then explore the stability of

Qs
i (t) when i 6= ss and i 6= ds, whose queueing law is:

Qs
i (t+ 1) = max{Qs

i (t)−
∑

j∈N ,j 6=i

lsij(t), 0}

+
∑

j∈N ,j 6=i

lsji(t). (46)

Since only one neighboring node can transmit to nodei in
time slott, we denote it byj. Consider the coefficient in front
of lsji(t) in the objective function of S3.

• If Qs
i (t) < Qs

j(t)−βHji(t), according to (46), we have

Qs
i (t+ 1) ≤ Qs

i (t) + lsji(t)

<Qs
j(t)− βHji(t) + lsji(t) ≤ Qs

j(t) ≤ λV +Ks
max,

The third inequality above can be proved in the following
two cases.

– If Hji(t) = 0, according to the solution to S1, we
can know thatαm

ji(t) = 0 ∀m ∈ Mj ∩ Mi, and
hencelsji(t) = 0. Thus, the inequality holds.

– If Hji(t) ≥ 1, we haveβHji(t) ≥ lsji(t), aslsji(t) ≤
maxi,j∈N ,j 6=i{

1
δ
cmax
ij ∆t} = β as defined before.

• If Qs
i (t) ≥ Qs

j(t) − βHji(t), according to our proposed
solution to S3, we know thatlsji(t) = 0. Following (46),
we have

Qs
i (t+ 1) ≤ Qs

i (t) ≤ λV +Ks
max.

Therefore, we also haveQs
i (t) ≤ λV +Ks

max.
Note that the destination nodeds does not need to maintain

a data queue since data will be directly passed on to the upper
layers. Consequently, based on the above results, we can see
that an arbitrary queueQs

i (t) is finite in any time slot. Thus,
Q(t) is strongly stable by Definition 2.

Second, we prove the strong stability ofH(t), and particu-
larly,

Hij(t) ≤ β · max
0≤k≤t

∑

s∈S

lsij(k) (47)
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for anyi, j ∈ N , by induction. We consider an arbitrary queue
Hij(t).

When t = 0, we haveHij(0) = 0, and hence (47) holds.
When t = 1, we haveHij(1) =

∑
s∈S l

s
ij(0) according to

the queueing law (30), and (47) holds.
Assume (47) holds in timet, i.e., Hij(t) ≤ β ·

max0≤k≤t

∑
s∈S l

s
ij(k). Then, at the beginning of time slot

t+ 1, we have

Hij(t+ 1) = max
{
Hij(t)−

β

δ

∑

m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t, 0

}

+β
∑

s∈S

lsij(t).

If Hij(t) >
β
δ

∑
m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t, with inequality

(25), we have

Hij(t+ 1) ≤ Hij(t) ≤ β · max
0≤k≤t

∑

s∈S

lsij(k)

≤ β · max
0≤k≤t+1

∑

s∈S

lsij(k).

If Hij(t) ≤
β
δ

∑
m∈Mi∩Mj

cmij (t)α
m
ij (t)∆t, then

Hij(t+ 1) =
∑

s∈S

lsij(t) ≤ β · max
0≤k≤t+1

∑

s∈S

lsij(k).

Therefore, (47) holds whent = t+ 1 as well.
Since

∑
s∈S l

s
ij(t) ≤ β

δ
cmax
ij ∆t, we have thatHij(t) ≤

β
δ
cmax
ij ∆t and hence always finite and strongly stable.
Third, we prove the strong stability ofz(t), i.e., (32), which

directly follows if the strong stability ofx(t), i.e., (10), holds.
Firstly, we define the maximum value ofV as:

V max = min
i∈N

xmax
i − cmax

i − dmax
i

γmax
.

Assume that for arbitrary nodei, (10) holds in time slott.
Then we consider three cases when in the time slott+ 1.

• If 0 ≤ xi(t) < dmax
i , Recall thatci(t) = ωi(t)c

g
i (t) +

cri (t). In this case, the partial derivative of the objective
function of S4, i.e.,Ψ̂4(t), with respect tocri (t), is

∂Ψ̂4(t)

∂cri (t)
= zi(t) + V

∂f(P (t))

∂cri (t)

≤ xi(t)− V γmax − dmax
i + 0

< 0.

Thus, by solving S4, i.e., minimizinĝΨ4(t), our energy
management scheme leads to the control decisions that
maximizescri (t). Due to constraint (7), we havedi(t) =
0. Therefore, according to (4), we getxi(t+1) = xi(t)+
ci(t) and hence

0 ≤ xi(t+ 1) ≤ dmax
i + cmax

i ≤ xmax
i

due to constraint (13).
• If dmax

i ≤ xi(t) ≤ V γmax + dmax
i , Since

V ≤ V max ≤
xmax
i − cmax

i − dmax
i

γmax
,

we havexi(t) ≤ xmax
i − cmax

i . Thus, according to (4),
we can obtain

xi(t+ 1) ≤ xmax
i − cmax

i + ci(t)− di(t) ≤ xmax
i

and

xi(t+ 1) ≥ dmax
i + ci(t)− di(t) ≥ 0.

• If V γmax + dmax
i < xi(t) ≤ xmax

i . Note thatV ≤
xmax
i −cmax

i −dmax
i

γmax , and henceV γmax + dmax ≤ xmax
i −

cmax
i < xmax

i . The partial derivative of the objective
function of S4 with respect todi(t) is

∂Ψ̂4(t)

∂di(t)
= −V

∂f(P (t))

∂di(t)
− zi(t)

≤ 0− xi(t) + V γmax + dmax
i

< 0.

Thus, our energy management scheme minimizingΨ̂4(t)
results in control decisions that satisfydi(t) = dmax

i . Due
to constraint (9), we haveci(t) = 0. Thus, according to
(4), we getxi(t + 1) = xi(t) − dmax

i and hence0 ≤
xi(t+ 1) ≤ xmax

i − dmax
i ≤ xmax

i .

Therefore, we can see that (10) holds for allt ≥ 0, and hence
(32) holds as well.

6.2 Lower and Upper bounds on ψ∗
P1

In what follows, we obtain both lower and upper bounds on
the optimal results of P1, i.e.,ψ∗

P1.
Theorem4: The solution obtained from our proposed algo-

rithm serves as a suboptimal yet feasible solution toP1, and
the corresponding time-averaged expected amount of energy
cost works as an upper bound on the optimal result ofP1, i.e.,
ψ∗
P1 ≤ ψP3.

Proof: The proposed decomposition based algorithm finds
a solution that satisfies all the constraints inP3, i.e., (9)-(14),
(16)-(19), (22)-(25), and (44). Thus, the solution is also a
feasible solution toP1, and the corresponding time-averaged
expected energy cost, i.e.,ψP3, is no less than the optimal
result ofP1, i.e.,ψP3 ≥ ψ∗

P1.
Next, we find a lower bound onψ∗

P1. We first present a
lemma as follows.

Lemma2: The time-averaged expected amount of energy
cost achieved by optimally solvingP3, denoted byψ∗

P3, is
within a constant gapB

V
from the minimum time-averaged

expected energy cost achieved byP2, i.e., ψ∗
P2. Particularly,

we haveψ∗
P3 − B

V
≤ ψ∗

P2 whereB and V are defined in
Section 5.2.

Proof: Denote by α̂m
ij (t), k̂s(t), 1̂i=ss(t), l̂

s
ij(t), ĉi(t),

d̂i(t), and ̂f(P (t)) the results obtained by our proposed
scheme in time slott, i.e., based on the optimal solution to
P3. We also denote byαm∗

ij (t), k∗s (t), 1
∗
i=ss(t)

, ls∗ij (t), c
∗
i (t),

d∗i (t), andf∗(P (t))(t) the results that we get for time slott
based on the optimal solution toP1. Thus, from Lemma 1,
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we can have

∆(Θ(t)) + V E[ ̂f(P (t)) − λ
∑

s∈S

∑

i∈B

k̂s(t) · 1̂i=ss(t)|Θ(t)]

≤B + Ψ̂1(t) + Ψ̂2(t) + Ψ̂3(t) + Ψ̂4(t)

≤B +Ψ∗
1(t) + Ψ∗

2(t) + Ψ∗
3(t) + Ψ∗

4(t)

=B + V E[f∗(P (t))− λ
∑

s∈S

∑

i∈B

k∗s (t) · 1
∗
i=ss(t)

]

+Ψ̂∗
1(t) + Ψ̂∗

3(t) +
∑

s∈S

∑

i∈B

(
Qs

i (t)(k
∗
s (t) · 1

∗
i=ss(t))

)

+
∑

i∈N

(
zi(t)(c

∗
i (t)− d∗i (t))

)

=B + V E[f∗(P (t))− λ
∑

s∈S

∑

i∈B

k∗s (t) · 1
∗
i=ss(t)

]

+
∑

i∈N

∑

j∈N ,j 6=i

Qs
i (t) lim

T→∞

1

T

T−1∑

t=0

(
ls∗ji (t) + k∗s (t) · 1

∗
i=ss(t)

−ls∗ij (t)
)
+

∑

i∈N

∑

j∈N ,j 6=i

Hs
ij(t) lim

T→∞

1

T

T−1∑

t=0

(∑

s∈S

βls∗ij (t)

−
β

δ

∑

m∈Mi∩Mj

cmij (t)α
m∗
ij (t)∆t

)

+
∑

i∈N

zi(t) lim
T→∞

1

T

T−1∑

t=0

(
c∗i (t)− d∗i (t)

)

Note that the third step is due to the fact that the optimal
solutions toP1 are obtained independent of the current queues
Θ(t). The fourth step is due to the strong law of large
numbers: If{a(t)}∞t=0 are i.i.d. random variables, we have
Pr( 1

T
limt→∞

∑T−1
t=0 a(t) = E{a(t)}) = 1 almost surely.

Consequently, taking expectation of the above inequality yield-
s:

E[L̂(Θ(t + 1))]−E[L̂(Θ(t))]

+V E[ ̂f(P (t))− λ
∑

s∈S

∑

i∈B

k̂s(t) · 1̂i=ss(t)]

≤B + V E[f∗(P (t))− λ
∑

s∈S

∑

i∈B

k∗s (t) · 1
∗
i=ss(t)

]

+
∑

i∈N

∑

j∈N ,j 6=i

Qs
i (t) lim

T→∞

1

T

T−1∑

t=0

E
[
ls∗ji (t) + k∗s (t) · 1

∗
i=ss(t)

−ls∗ij (t)
]
+

∑

i∈N

∑

j∈N ,j 6=i

Hs
i (t) lim

T→∞

1

T

T−1∑

t=0

E
[∑

s∈S

βls∗ij (t)

−
β

δ

∑

m∈Mi∩Mj

cmij (t)α
m∗
ij (t)∆t

]

+
∑

i∈N

zi(t) lim
T→∞

1

T

T−1∑

t=0

E
[
c∗i (t)− d∗i (t)

]

Since we have prove the strong stability ofQ(t), H(t) and
z(t), we know thatQ(t), H(t) andz(t) are also rate stable,

according to Theorem 2. So we can have:

ls∗ji (t) + k∗s (t) · 1i=ss − ls∗ij (t) ≤ 0
∑

s∈S

βls∗ij (t) −
β

δ

∑

m∈Mi∩Mj

cmij (t)α
m∗
ij (t)∆t ≤ 0

c∗i (t)− d∗i (t) ≤ 0

Therefore, we can obtain

E[L̂(Θ(t + 1))]−E[L̂(Θ(t))]

+V E[ ̂f(P (t)) − λ
∑

s∈S

∑

i∈B

k̂s(t) · 1̂i=ss(t)]

≤B + V E[f∗(P (t))− λ
∑

s∈S

∑

i∈B

k∗s (t) · 1
∗
i=ss(t)

]

Summing the above overt ∈ {0, 1, 2, ..., T − 1} for any
positive integerT yields

E[L̂(Θ(T ))]− E[L̂(Θ(0))]

+V

T−1∑

t=0

E[ ̂f(P (t)) − λ
∑

s∈S

∑

i∈B

k̂s(t) · 1̂i=ss(t)]

≤ TB + V

T−1∑

t=0

E[f∗(P (t))− λ
∑

s∈S

∑

i∈B

k∗s (t) · 1
∗
i=ss(t)].

Since all queues are finite in all time slots, dividing both sides
of (48) by VT and taking limits asT → ∞ lead to

lim
T→∞

1

T

T−1∑

t=0

E[ ̂f(P (t))− λ
∑

s∈S

∑

i∈B

k̂s(t) · 1̂i=ss(t)]

≤ lim
T→∞

1

T

T−1∑

t=0

E[f∗(P (t))− λ
∑

s∈S

∑

i∈B

k∗s (t) · 1
∗
i=ss(t)] +

B

V
,

which meansψ∗
P3 −B/V ≤ ψ∗

P2

Recall thatP1, P2 andP3 are both Mixed-Integer Program-
ming problems. We relaxP2 to a Linear Programming (LP)
problem without the strong stability constraint (26) denoted
by P2, and formulate a corresponding online energy cost
minimization problem denoted byP3. We can see thatP3 is
a relaxed LP problem based onP3 without the strong stability
constraint (44), which can be easily solved. Denoted byψ∗

P1
andψ∗

P3
the time-averaged expected amount of energy cost

obtained by optimally solvingP1 andP3, respectively, based
on Lemma 2, we can know thatψ∗

P3
− B

V
≤ ψ∗

P2
. Since

obviously we also haveψ∗
P2

≤ ψ∗
P2 ≤ ψ∗

P1, we can arrive
at the following result.

Theorem5: The optimal result ofP1 is lower bounded by
ψ∗
P3

−B/V , whereψ∗
P3

can be obtained by optimally solving
P3.

7 SIMULATION RESULTS

In order to complement the analysis in the previous sections,
we carry out extensive simulations to evaluate the performance
of our proposed scheme. Our goals are to obtain the lower and
upper bounds on the optimal result ofP1, to examine the trade-
off between energy cost and queue size, and to demonstrate
the energy efficiency of our scheme compared with that of
other similar energy management strategies. Simulations are
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(a) Time-averaged expected energy cost.
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(b) Total data queue backlog size of base stations
over time.
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(c) Total data queue backlog size of mobile users
over time.
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(d) Total energy buffer size of base stations over
time.
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(e) Total energy buffer size of mobile users over
time.

Fig. 2. Performance evaluation of the proposed scheme.

conducted under CPLEX 12.4 on a computer with a 3.00 GHz
CPU and 4 GB RAM.

Specifically, we consider a square network of area2000m×
2000m, where 2 base stations are located at coordinates
(500m, 500m), (1500m, 500m), respectively, and 20 users are
randomly distributed. Besides, we assume there is one cellular
band with bandwidth 1 MHz and four other spectrum bands
whose bandwidth are independently and uniformly distributed
within [1, 2] MHz in each time slot. Only a random subset
of the spectrum bands are available at each mobile user
while base stations can access all the bands. There are four
service sessions whose destination nodes are randomly chosen.
Each session has a traffic demand of100 Kbps. Some other
important simulation parameters are listed as follows. Thepath
loss exponent is4 and C = 62.5. The SINR threshold is
Γ = 1. The noise power spectral density isη = 10−20 W/Hz
at all nodes. All nodes (∀i ∈ U) have the same maximum
transmission power, which isP i

max = 1 W while base
stations have much larger transmission power, i.e.,20 W. In
addition, nodes’ renewable energy generation capabilities are
determined according to the global horizontal irradiance data
in Las Vegas area from the Measurement and Instrumentation
Data Center [47]. We assume that the energy conversion
efficiency is 15% and the maximum outputs of mobile users’
and base stations’ renewable energy resources are 1 W and
15 W, respectively, in each time slot. The maximum charging
and discharging limits on each user’s energy storage device
in a time slot, i.e.,cmax

i and dmax
i , are both set to0.06

kWh for mobile users and0.1 kWh for base stations. The
maximum amount of energy that each node can draw from
the power grid in a time slot, i.e.,pmax

i , is set to 0.2 kWh.
The energy generation cost function, i.e.,f(P (t)), is defined

as f(P (t)) = aP 2(t) + bP (t) + c, wherea = 0.8, b = 0.2
andc = 0. All our results presented below are collected after
the experiments run for a period ofT = 100 time slots, the
duration of each of which is set to 1 minute.

In Fig. 2(a), we show both the upper and lower bounds
on the optimal result ofP1. Recall that the upper bound is
achieved by our proposed algorithm, i.e.,ψP3, and the lower
bound is obtained by optimally solving the relaxed problem
P3, i.e., ψ∗

P3
− B/V . We can find that the lower and upper

bounds get closer to each other asV increases.
Then, we examine the tradeoff between energy cost and

the queue backlog sizes incurred by our scheme. We find that
in Fig. 2(b) and Fig. 2(c), the data queue backlog sizes of
base stations and mobile users increase as time goes by and
are bounded. We can also get similar results in Fig. 2(d) and
Fig. 2(e) for energy queues. Since the expected total sizes
of all data queues and energy buffers of both mobile users
and base stations are all finite, each single data queue and
energy buffer in the network are finite in each time slot,
therefore guaranteeing the strong stability of the network.
Besides, a largerV results in a larger queue backlog size.
This is because a largerV means more emphasis on the energy
cost minimization than on the queue size and that the system
needs to have a larger queue buffer so as to save more energy
cost. The results in Fig. 2(a)-2(e) together show the tradeoff
between energy cost minimization and queue length in our
proposed algorithm.

Next, we compare the time-averaged expected energy cost
of our proposed architecture with those of other cellular net-
work architectures, i.e., multi-hop network without renewable
energy, one-hop network with renewable energy, and one-hop
network without renewable energy. As shown in Fig. 3(a),
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(a) DifferentV ’s.
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(b) Different numbers of base stations.
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(c) Different numbers of mobile users.

Fig. 3. Performance comparison of different architectures.

our system has the lowest time-averaged expected energy cost
among these four network systems whenV goes from1×105

to 5×105. Specifically, compared with the multi-hop network
without renewable energy, our system can take advantage of
the renewable energy and the energy stored locally and hence
save energy cost. In addition, by comparing one-hop and multi-
hop networks, we can find that the latter have lower energy
cost. This is because multi-hop technology enables nodes in
the network to use lower transmission power to help each other
with the transmissions and hence reduce energy consumption.

Similarly, in Fig. 3(b) and Fig. 3(c), we examine how the
time-averaged expected energy cost changes when the number
of base stations varies from 1 to 5 and the number of mobile
users varies from 20 to 25 in these four systems mentioned
above. Specifically, in Fig. 3(b), we setV to 5 × 105 and
the number of mobile users to20. We find that when the
number of base stations increases, the time-averaged expected
energy costs decrease in all the four systems, an interesting
result. This is because first, more base stations means more
renewable energy resources, and second, when there are more
base stations, we can choose the optimal one as the source
for each destination node and thus save more energy. We can
clearly see that our architecture achieves the lowest energy
cost. Besides, when the number of mobile users increases
from 20 to 25, whereV is equal to5 × 105 and there are
two base stations, we can see in Fig. 3(c) that while the time-
averaged expected energy cost shows little change in one-hop
networks, it decreases noticeably in multi-hop networks. One
main reason is that more mobile users can result in more
efficient multi-hop relaying and hence lower energy consump-
tion. Our proposed architecture still achieves the lowest energy
cost. These three figures together demonstrate that under
different network settings, our proposed architecture allows
base stations and mobile users to schedule their transmissions
more flexibly based on current sizes of data queues and
energy queues, resulting in more energy savings. Therefore,
our proposed system can work efficiently and effectively in
cellular networks.

8 CONCLUSIONS

In this paper, we propose an energy cost minimization
framework for downlink data communication in multi-hop cel-
lular networks. In particular, with the objective of minimizing
the long-term time-averaged expected energy cost of cellular

service provider while guaranteeing the strong stability of
the network, we construct a time-coupling stochastic Mixed-
Integer Non-Linear Programming (MINLP) problem, which
is prohibitively expensive to solve. By employing Lyapunov
optimization theory, we reformulate the problem and develop
a decomposition based scheme to solve the problem in each
time slot without priori knowledge of the network statistics.
The proposed scheme can ensure the network strong stability.
Both the lower and upper bounds on the optimal result of
the original optimization problem are obtained. Extensive
simulation results validate the energy cost savings of the
proposed scheme.

ACKNOWLEDGMENT

This work was partially supported by the U.S. National
Science Foundation under grants CNS-1149786 (CAREER),
ECCS-1128768, CNS-1147851, and CNS-1343220/1343361.

REFERENCES
[1] W. Liao, M. Li, S. Salinas, P. Li, and M. Pan, “Optimal energy cost

for strongly stable multi-hop green cellular networks,” inProceedings
of IEEE ICDCS, Madrid, Spain, July 2014.

[2] Z. Hasan, H. Boostanimehr, and V. K. Bhargava, “Green cellular
networks: A survey, some research issues and challenges,”IEEE Com-
munications Surveys and Tutorials, vol. 13, no. 4, pp. 524–540, 2011.

[3] “Telecommunication predictions 2010, deloitte,” Technology, Media
and Telecommunications Industry Group, 2010. [Online]. Available:
http://www.deloitte.com/us/2010telecompredictions

[4] “Global technologies to integrate wind and solar to power mobile
communications,” CNN, March 2010. [Online]. Available: http:
//money.cnn.com/news/newsfeeds/articles/marketwire/0666813.htm

[5] “Sustainable energy use in mobile communications,” Ericsson Inc.,
August 2007.

[6] “E-plus, nokia siemens networks build germanys first off-grid
base station,” Nokia Siemens, 2011. [Online]. Available: https:
//www.youtube.com/watch?v=jcFX2P7yRGA

[7] “Samsung’s solar-powered blue earth touchscreen phonereview,”
mobileburn, 2010. [Online]. Available: https://www.youtube.com/watch?
v=oUxzt02LQHw

[8] D. P. Bertsekas,Dynamic Programming and Optimal Control, 2nd ed.
Belmont, Massachusetts: Athena Scientific, 2007, vol. 1 and2.

[9] M. J. Neely,Stochastic Network Optimization with Application to Com-
munication and Queueing Systems. Morgan and Claypool Publishers,
2010.

[10] Y. Pochet and L. Wolsey,Production Planning by Mixed Integer Pro-
gramming. Secaucus, 2006.

[11] “Telecommunication management; study on energy savings management
(esm),” 3GPP TR 32.826, March 2010. [Online]. Available: http:
//www.3gpp.org/ftp/Specs/html-info/32826.htm

[12] C. Luo, S. Guo, S. Guo, L. T. Yang, G. Min, and X. Xie, “Green
communication in energy renewable wireless mesh networks:Routing,
rate control, and power allocation,”IEEE Transactions on Parallel and
Distributed Systems, vol. PP, no. 99, January 2014.



2168-6750 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TETC.2014.2386612, IEEE Transactions on Emerging Topics in Computing

14

[13] Y. Chen, S. Zhang, S. Xu, and G. Y. Li, “Fundamental trade-offs on
green wireless networks,”Communications Magazine, IEEE, vol. 49,
no. 6, pp. 30–37, 2011.

[14] J. T. Louhi, “Energy efficiency of modern cellular base stations,” in
in proceedings of the 29th International Telecommunications Energy
Conference (INTELEC 2007), Rome, Italy, October 2007.

[15] ——, “Energy efficiency of modern cellular base stations,” in Telecom-
munications Energy Conference, 2007. INTELEC 2007. 29th Interna-
tional. IEEE, 2007, pp. 475–476.

[16] L. Chiaraviglio, D. Ciullo, M. Meo, and M. A. Marsan, “Energy-aware
umts access networks,” inThe 11th International Symposium on Wireless
Personal Multimedia Communications (WPMC08), 2008.

[17] Z. Niu, Y. Wu, J. Gong, and Z. Yang, “Cell zooming for cost-efficient
green cellular networks,”IEEE Communications Magazine, vol. 48,
no. 11, pp. 74–79, November 2010.

[18] Z. Niu, “Tango: traffic-aware network planning and green operation,”
IEEE Wireless Communications, vol. 18, no. 5, pp. 25–29, 2011.

[19] E. Oh, K. Son, and B. Krishnamachari, “Dynamic base station switching-
on/off strategies for green cellular networks,”IEEE transactions on
Wireless Communications, vol. 12, no. 5, pp. 2126–2136, May 2013.

[20] C. Peng, S.-B. Lee, S. Lu, H. Luo, and H. Li, “Traffic-driven power
saving in operational 3g cellular networks,” inProc. of the 17th
annual international conference on Mobile computing and networking
(Mobicom’11), Las Vegas, USA, September 2011.

[21] T. Han and N. Ansari, “On optimizing green energy utilization for
cellular networks with hybrid energy supplies,”IEEE Transactions on
Wireless Communications, vol. 12, no. 8, pp. 3872–3882, August 2013.

[22] H. Wu, C. Qiao, S. De, and O. Tonguz, “Integrated cellular and
ad hoc relaying systems: icar,”IEEE Journal on Selected Areas in
Communications, vol. 19, no. 10, pp. 2105–2115, 2001.

[23] Y. Lin and Y. Hsu, “Multihop cellular: a new architecture for wireless
communications,” inProceeding of the IEEE International Conference
on Computer Communications (INFOCOM’00), Tel Aviv, Israel, March
2000.

[24] J. Cho and Z. J. Haas, “On the throughput enhancement of the down-
stream channel in cellular radio networks through multihoprelaying,”
IEEE Journal on Selected Areas in Communications, vol. 22, no. 7, pp.
1206–1219, 2004.

[25] P. Li, N. Scalabrino, Y. M. Fang, E. Gregori, and I. Chlamtac, “How to
effectively use multiple channels in wireless mesh networks,” Parallel
and Distributed Systems, IEEE Transactions on, vol. 20, no. 11, pp.
1641–1652, 2009.

[26] P. Li, X. Huang, and Y. Fang, “Capacity scaling of multihop cellular
networks,” in Proceeding of the IEEE International Conference on
Computer Communications (INFOCOM’11), Shanghai, China, April
2011.

[27] M. Li and P. Li, “Crowdsourcing in cyber-physical systems: Stochastic
optimization with strong stability,”IEEE Transactions on Emerging
Topics in Computing, vol. 1, no. 2, pp. 218–231, July 2013.

[28] X. J. Li, B.-C. Seet, and P. H. J. Chong, “Multihop cellular networks:
Technology and economics,”Computer Networks, vol. 52, no. 9, pp.
1825–1837, June 2008.

[29] A. Radwan and H. S. Hassanein, “Does multi-hop communication extend
the battery life of mobile terminals?” inIEEE Global Telecommunica-
tions Conference, (GLOBECOM’06), San Francisco, USA, November
2006.

[30] M. Li, P. Li, X. Huang, Y. Fang, and S. Glisic, “Energy consumption op-
timization for multihop cognitive cellular networks,”IEEE Transactions
on Mobile Computing, accepted.

[31] M. Li, S. Salinas, P. Li, X. Huang, Y. Fang, and S. Glisic,“Optimal
scheduling for multi-radio multi-channel multi-hop cognitive cellular
networks,” IEEE Transactions on Mobile Computing, accepted.

[32] R. Deng, J. Chen, C. Yuen, P. Cheng, and Y. Sun, “Energy-efficient
cooperative spectrum sensing by optimal scheduling in sensor-aided
cognitive radio networks,”IEEE Transactions on Vehicular Technology,
vol. 61, no. 2, pp. 716–725, 2012.

[33] S. Buzzi and D. Saturnino, “A game-theoretic approach to energy-
efficient power control and receiver design in cognitive cdma wireless
networks,”IEEE Journal of Selected Topics in Signal Processing, vol. 5,
no. 1, pp. 137–150, 2011.

[34] S. Bayhan and F. Alagz, “Scheduling in centralized cognitive radio
networks for energy efficiency,”IEEE Transactions on Vehicular Tech-
nology, vol. 62, no. 2, pp. 582–595, 2013.

[35] H. Li, W. Huang, Z. L. C. Wu, and F. C. M. Lau, “Utility-maximizing
data dissemination in socially selfish cognitive radio networks,” in
Proceedings of IEEE MASS, San Francisco, CA, November 2011.

[36] V. Venkataramanan, X. Lin, L. Ying, and S. Shakkottai, “On schedul-
ing for minimizing end-to-end buffer usage over multihop wireless

networks,” in Proceeding of the IEEE International Conference on
Computer Communications (INFOCOM’10), San Diego, USA, March
2010.

[37] D. Xue and E. Ekici, “Guaranteed opportunistic scheduling in multi-
hop cognitive radio networks,” inProceeding of the IEEE International
Conference on Computer Communications (INFOCOM’11), Shanghai,
China, April 2011.

[38] M. J. Neely, “Intelligent packet dropping for optimal energy-delay trade-
offs in wireless downlinks,”IEEE Transactions on Automatic Control,
vol. 54, no. 3, pp. 565–579, March 2009.

[39] ——, “Opportunistic scheduling with worst case delay guarantees in
single and multi-hop networks,” inProceeding of the IEEE International
Conference on Computer Communications (INFOCOM’11), Shanghai,
China, April 2011.

[40] J. J. Jaramillo and R. Srikant, “Optimal scheduling forfair resource
allocation in ad hoc networks with elastic and inelastic traffic,” in
Proceeding of the IEEE International Conference on Computer Com-
munications (INFOCOM’10), San Diego, USA, March 2010.

[41] R. Urgaonkar and M. J. Neely, “Opportunistic scheduling with reliability
guarantees in cognitive radio networks,”IEEE Transactions on Mobile
Computing, vol. 8, no. 6, pp. 766–777, June 2009.

[42] Y. T. Hou, Y. Shi, and H. D. Sherali, “Spectrum sharing for multi-hop
networking with cognitive radios,”IEEE Journal on Selected Areas in
Communications, vol. 26, no. 1, pp. 146–155, January 2008.

[43] M. Pan, C. Zhang, P. Li, and Y. Fang, “Joint routing and link schedul-
ing for cognitive radio networks under uncertain spectrum supply,”
in Proceeding of the IEEE International Conference on Computer
Communications (INFOCOM’11), Shanghai, China, April 2011.

[44] P. Gupta and P. Kumar, “The capacity of wireless networks,” IEEE
Transactions on Information Theory, vol. 46, no. 2, pp. 388–404, March
2000.

[45] A. Bousia, E. Kartsakli, L. Alonso, and C. Verikoukis, “Energy efficient
base station maximization switch off scheme for lte-advanced,” in IEEE
17th International Workshop on Computer Aided Modeling and Design
of Communication Links and Networks (CAMAD), Barcelona, Spain,
September 2012.

[46] Y. T. Hou, Y. Shi, and H. D. Sherali, “Optimal spectrum sharing for
multi-hop software defined radio networks,” inProc. of IEEE Conference
on Computer Communications (INFOCOM’07), Anchorage, AL, May
2007.

[47] Measurement and Instrumentation Data Center, June 2014. [Online].
Available: http://www.nrel.gov/midc/

Weixian Liao received the B.E. degree in infor-
mation engineering from Xidian University, Xi’an,
China, in 2012. He is currently pursuing the
Ph.D. degree in the Department of Electrical
and Computer Engineering, Mississippi State
University. His current research interests include
network optimization, cybersecurity in wireless
networks, cyber-physical systems, and big data.

Ming Li received the B.E. degree in Electrical
Engineering from Sun Yat-sen University, Chi-
na, in 2007, the M.E. degree in Electrical En-
gineering from Beijing University of Posts and
Communications, China, in 2010, and the Ph.D.
degree in Electrical and Computer Engineering
from Mississippi State University, Starkville, in
2014, respectively. She is currently an Assis-
tant Professor in the Department of Computer
Science and Engineering, University of Nevada,
Reno. Her research interests include cybersecu-

rity, privacy-preserving data analysis, resource management and net-
work optimization in cyber-physical systems, cloud computing, mobile
computing, wireless networks, smart grid, and big data.



2168-6750 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TETC.2014.2386612, IEEE Transactions on Emerging Topics in Computing

15

Sergio Salinas received the B.S. degree in
telecommunications engineering from Jackson
State University, Jackson, in 2010. He is current-
ly working towards the Ph.D. degree in the De-
partment of Electrical and Computer Engineer-
ing, Mississippi State University. His research
interests include cyber-physical systems, cloud
computing, and online social networks. He is a
student member of the IEEE.

Pan Li received the B.E. degree in Electrical En-
gineering from Huazhong University of Science
and Technology, Wuhan, China, in 2005, and the
Ph.D. degree in Electrical and Computer Engi-
neering from University of Florida, Gainesville, in
2009, respectively. He is currently an Assistant
Professor in the Department of Electrical and
Computer Engineering, Mississippi State Uni-
versity. His research interests include network
science and economics, energy systems, se-
curity and privacy, and big data. He has been

serving as an Editor for IEEE Journal on Selected Areas in Communi-
cations – Cognitive Radio Series and IEEE Communications Surveys
and Tutorials, a Feature Editor for IEEE Wireless Communications, a
Guest Editor for IEEE Wireless Communications SI on User Cooperation
in Wireless Networks and International Journal of Distributed Sensor
Networks SI on Crowd and Mobile Sensing, and a Technical Program
Committee (TPC) Co-Chair for Ad-hoc, Mesh, Machine-to-Machine and
Sensor Networks Track, IEE VTC 2014, Physical Layer Track, Wireless
Communications Symposium, WTS 2014, and Wireless Networking
Symposium, IEEE ICC 2013. He received the NSF CAREER Award in
2012 and is a member of the IEEE and the ACM.

Miao Pan received his BSc degree in Electrical
Engineering from Dalian University of Technol-
ogy, China, in 2004, MASc degree in electrical
and computer engineering from Beijing Univer-
sity of Posts and Telecommunications, China, in
2007 and Ph.D. degree in Electrical and Com-
puter Engineering from the University of Florida
in 2012, respectively. He is now an Assistant
Professor in the Department of Computer Sci-
ence at Texas Southern University. His research
interests include cognitive radio networks, cyber-

physical systems, and cybersecurity.


