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Abstract —Last decade witnessed the explosive growth in mobile devices and their traffic demand, and thereby the significant increase
in the energy cost of the cellular service providers. One major component of the service providers’ operational expenditure comes from
the operation of cellular base stations using grid power or diesel generators when grid power is absent, which also cause adverse
environmental impact due to enormous carbon footprint. Therefore, from the service providers’ perspective, how to effectively reduce
the energy cost of base stations while satisfying cellular users’ soaring traffic demands has become an imperative and challenging
problem. In this paper, we investigate the minimization of the long-term time-averaged expected energy cost of cellular service providers
while guaranteeing the strong stability of the network. Specifically, we first formulate the problem by jointly considering flow routing, link
scheduling, and energy (i.e., renewable energy resource, energy storage unit, etc.) constraints. Since the formulated problem is a time-
coupling stochastic Mixed-Integer Non-Linear Programming (MINLP) problem, which is prohibitively expensive to solve, we reformulate
the problem by employing Lyapunov optimization theory. A decomposition based algorithm is developed to solve the problem and the
network strong stability is proven. We then derive and prove both the lower and upper bounds on the optimal result of the original
problem. Simulation results demonstrate the tightness of the obtained bounds and the efficacy of the proposed scheme.

Keywords —Green cellular network, Lyapunov optimization, network strong stability.
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1 INTRODUCTION much less expensive and more environmentally friendlys It i
S the mobile devices, such as smart phones, tablets >lg8ected that more than 8% of base stations will be powered
spreading around the’world, various applicati(')ns sucr’la renevyable energy by 2014 [4]. Particularly, Ericsso_n [5]

web browsing, video streaming, and online social network’@g'd Nokia [6] have_ developed green .BSS th"?‘t are running on

are shifted from computers to mobile devices, leading tosg_lar power and .wmd pOWer, respe(_:tlvely, without using any
' grid power. Mobile manufacturers like Samsung and Nokia

rocketing increase of data traffic in cellular networks. rdey . . .
to meet the subscribers’ tremendous traffic demand celluﬂ;nave released a series of future phones which contain solar
' panels [7].

service providers have to significantly increase the numbgér thi . tioate how t inimize th
their base stations (BSs), and bear the burden of much higheWt f|s plflrier, w?Wmvkes 'gﬁ‘.le ?IIIV °t.”}'r!'m'ze e,f(;nergy
energy costs. In particular, the number of cellular BSs adiro cost of ceflular networks whiie Stll salistying users ftra

the world has increased from a few hundred thousands to mgpénand by con5|de_r|ng engrgy-efﬂuent wireless grcmtgst
than 4 million, and each of them consumes an average of ewable energy integration, and network stability. Spec

MWh per year [2]. Studies show that the radio network itseff® ly, V\{Je CO?S'dﬁr Ia multi-hop cellular r]:egwork c;otr_13|stmfg d
adds up to 80% of an operator’s entire energy consumpticﬁﬁ,?urfn er_lo blce u artuserz, adgrovl\J/p of base ?hatlons,han da
which represents a significant portion of a network opeisato?e ot avarable spectrum bands. e envision that each node

overall expenditures [3]. Therefore, it is of great urgenay is equipped with a renewable energy resource, for example,

find effective solutions to reduce energy costs and devel éjsolar panel (e.g., for each mobile user) or a wind turbine

“green” cellular networks while satisfying mobile usersee- 9. for each base station), as well as an energy storage
- : . unit [5]—[7]. Both spectrum bandwidths and renewable eperg
increasing traffic demand. .
. . resource outputs are modeled as random processes. In this
In order to reduce the escalating energy cost in cellular . ! .

: .ngtwork, mobile users may communicate with each other or
networks, renewable energy, e.g., biofuels, solar and wij ith base stations via multiple hops, rather than a singfe ho
energy, has emerged as a feasible altemnative to the tr"’l\lﬁs‘_in traditional cellular netvF\)/orks pTF]us communicatio?ae
tional energy sources. For example, an off-grid base stali ke advantage of locall available S éctrums and link rate
consumes more than 1500 liters of diesel per month [Z].,~ g y. P .
Usi . daptivity, and hence provide much higher network capacity

sing renewable resources to power such cell sites would e fi : Lo
e first formulate an offline energy cost minimization prob-

o _ _ lem, by jointly exploring renewable energy resource alfimeg
. '[“l]prd'm”ary version of this paper was presented at IBEE ICDCS 2014 ting, and link scheduling, which turns out to be a time-
e W Liao, S Salinas and P. Li are with the Department of Electrical and ~ coupling stochastic Mixed-Integer Non-Linear Programgnin
Computer Engineering, Mississippi State University, Mississippi State, MS (MINLP) problem. Previous approaches usually solve such
39762. E-mail: {W373@, sas573@, |i @ece jmsstate.edu. . problems based on Dynamic Programming and suffer from the
e M. Li is with the Department of Computer Science and Engineering, [ . . - L. .
University of Nevada, Reno, NV 89557. E-mail: mingli@unr.edu. curse of dimensionality” problem [8]. Full statisticalforma-
e M. Pan is with the Department of Computer Science, Texas Southern  tion of the random variables is required to solve the problem

University, Houston, TX 77004. E-mail: panm@tsu.edu. which may be difficult to obtain in practice. Therefore, we
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reformulate the problem by employing Lyapunov optimizationetwork performance, which include deployment efficiency,
theory [9] and propose an online energy-source-aware ctistoughput guarantee, stability of the network, etc. In-par
minimization problem. ticular, the energy consumption of a BS can be reduced by

Considering that the formulated online energy-sourcerawamproving the BS hardware design, for example, the effigienc
cost minimization problem is an MINLP problem, which is inof power amplifiers (PAs) [14]. A PA dominates the energy
general NP-hard [10] and needs to be solved in each time slminsumption of a BS and its energy efficiency depends on the
we decompose it and propose an approximation algorithmftequency band, modulation and operating environment. [15]
solve it efficiently. Specifically, by introducing virtualigues, We can also reduce BSs’ energy consumption by including
we are able to decompose the reformulated problem into faadditional software and system features to balance between
subproblems: link scheduling, resource allocation, raytand energy consumption and network performance, e.g., slguttin
energy management. We develop three algorithms to sobldl@wvn BSs during low traffic hours, cell zooming or green
the first three subproblems, respectively, based on curréatse station [16]-[21]. Chiaravigle al. [16] first investigated
network states only. After the first three subproblems atke possibility of energy savings of BS switching-on/off by
solved, the fourth subproblem can be easily solved as well. \Wimulation. Niuet al. [17] proposed centralized and distributed
prove that the proposed decomposition based approximataigorithms for cell zooming to avoid coverage hole when
algorithm guarantees that all queues in the network arefiniBSs are turned off. Their another work in [18] studied the
i.e., network strong stability, which has rarely been aekie smaller and denser cell deployment when cell zooming is not
before. Moreover, while the approximation algorithm le&als sufficient. Ohet al. [19] proposed a distributed algorithm for
an upper bound on the optimal result of the original probleBS switching off by considering network-impact, which is
a lower bound is also found by solving a relaxed online Linean effect caused by turning off a BS. Ha&h al. [21] also

Programming (LP) problem. took advantage of green BSs by maximizing the green energy
The main contributions of this paper are briefly summarizagsage. However, such system level approaches degrade the
as follows: cellular network performance and some cellular users can ge

« We formulate an offline energy cost minimization probdisconnected.
lem by considering dynamic spectrum and renewable
energy resource availability, routing, link schedulingda
energy resource allocation. Beyond the advance of BS development and control itself, it
« We formulate an online energy-source-aware cost mii$- crucial to consider various paradigm-shifting techgas
imization problem and propose a decomposition baséle multi-hop relaying in order to enhance the energy effi-
algorithm to solve the problem efficiently while guaranciency of cellular networks. Particularly, multi-hop rgilag
teeing the strong stability of all queues in the networljas been introduced into cellular networks to improve netwo
i.e., network strong stability. throughput [22]-[27]. In fact, since multi-hop communioats
« We obtain and prove the lower and upper bounds @hvide direct paths between mobile terminals and BSs into
the optimal result of the original offline energy cosshorter links [28], in which wireless channel impairmentsts
minimization problem. as path loss are less destructive, lower transmission power
« Simulation results demonstrate that the obtained lowean be assigned to the BSs and relays and hence network
and upper bounds are very tight, and that the propose@ergy consumption can also be saved. It has been shown in
scheme results in noticeable energy cost savings.  [29] that using multi-hopping in CDMA cellular networks can

The rest of this paper is organized as follows. We discufgduce the average energy consumed per call. In this study,
related work in Section 2. Section 3 briefly introduces odp® Multi-hop relaying becomes much more challenging since
system models. The energy cost problem is formulated ifjs coupled with link scheduling and energy management.

Section 4 while considering network dynamics and energy

management. In Section 5, we reformulate an online energy- ) o
source-aware cost minimization problem, which is solved by Besides, although energy consumption optimization has
the proposed decomposition based algorithm. Proofs for thgen studied in wireless networks before [30]-[34], renew-
network strong stability and derivation of both the lowedan@ble energy has not been considered. In addition, stalslity
upper bounds on the optimal result of the offline optimizatioanother important concern in cellular networks, while abi
problem are given in Section 6. Extensive simulations apetworks result in big packet loss and the failure of service

conducted in Section 7, followed by the conclusion drawn felivery. In the literature, Lyapunov optimization tectiaes
Section 8. have been adopted to investigate such problems in wireless

networks [35]-[41]. Unfortunately, [35]-[37] cannot gaatee
that all queues are finite. [38]-[40] develop opportunistic
2 RELATED WORK scheduling schemes, which maintain finite queue sizes by

The rising energy costs and carbon footprint of cellulairopping some packets. [9], [41] propose joint stabilitydan
networks have led to many efforts to address the energy efftility optimization algorithms, but assume that the users
ciency issues and develop the “green cellular networks],[1input data rate is interior to the network capacity region.
[12]. Chen et al. in [13] have shown the breakdown ofThus, in spite of these existing studies, none of the deeglop
power consumption in a typical cellular network and ideatifi algorithms can be adopted to keep all queues finite in our
several key research components of energy efficiency wikistem.
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interfering nodek to its receiverv on bandm in time slott.
We also denote the maximum transmission power of node
by P¢,

ax*

3.3 Energy Consumption

For a nodes (i € N), its consumed energy in time slat
denoted byF;(t), is attributed to the energy needed to feed
the antenna denoted hi°"s*, the energy consumed when
staying in idle mode denoted b, and the energy for
Fig. 1. System architecture for green multi-hop cellular ~ serving the trafficE] X (¢), i.e. [45],

networks. )
E;i(t) = Eeonst 4 pidle L ETX (1), 2)
3 SYSTEM MODELS

3.1 Network Model

As shown in Fig. 1, we consider a multi-hop cellula
network that consists dff = {1,2,--- ,u,--- ,U} users and
B = {1,2,---,b,--- , B} base stations. Le\N = U U B.
We denote the set of available spectrum bandsMdy =  We assume that each node N has a renewable energy
{1,2,---,m,---, M}, and assume that the bandwidth of bantgsource, for example, a solar panel (e.g., for each mobéde) u
m is a random process denoted iy’ (t)}°,, which can be ©or a wind turbine (e.g., for each base station). The output of
observed at the beginning of each time slot. In addition, dii@de i's renewable resource, denoted B(t), is an i.i.d.
to their different geographical locations, different nedeay Stochastic process that satisfies< R;(t) < R;"**, where
have different available spectrum bands. DenoteMyC M~ R{"** is the maximum energy output and a constant. This
the set of available spectrum bands that nade A can IS because the output of a renewable energy resource mainly
access. Thus, it is possible th&t; # M; fori # j,i,5 € N. depends on meteorological conditions and is dynamic.
Assume the system operates in a time-slotted manner. SeippodVe also assume that every nodehas its own energy
there are a set of downlink Internet service sessions dénogorage unit, e.g., a battery, for storing energy obtaimethf
by S = {1,2,---,s,---,S}, each of which is denoted as aits renewable energy resource or drawn from the power grid,
tuple {ds, vs(t), ss(t)} whered, stands for the destination ofwhich can be used at later time slots. Thus, ndsleenewable
service sessiom, v, (t) is the required throughput (in termsresource outpuk;(t) can be used to charge the energy storage
of the number of packets) in time slatands,(t) stands for device or serve’s energy demand, i.e.:
the source base station of service sessian time slott. Ri(t) = 1 (t) +7i(8), 3)

3.2 Link Capacity wherec! (t) andr;(t) are the energy used for charging node
i's energy storage unit and serving nodle current energy
demand, respectively.

In addition, notice that nodés energy storage unit works

ETX(t) will be introduced later.

3.4 Renewable Energy Generation and Energy Stor-
age

A widely used model [42], [43] employed for power
propagation gain between nodeand j, denoted byg;;, is
gij = C - [d(i,7)]”7, wherei and j denote their locations, _

d(i, j) is the Euclidean distance betweesndj, - refers to the 32 ?Ozgfégyazugﬁ r,e\év:r(;/eqir;eurgyilzvel, denotedg), can
path loss exponent, ard is a constant related to the antenna T
profiles of the transmitter and the receiver, wavelengtt, et zi(t+1) = 2;(t) + ci(t) — di(2t). (4)

We adopt the Physical Model [42], [44] as the interference ) ]
model, i.e., a data transmission is successful only if tgheredi() is the energy discharged from the energy storage
received signal-to-interference plus noise ratio (SINRpo Unit for serving nodei's energy demand, and;(t) is the
less than a thresholB. Specifically, if nodei sends data to €nergy charging the energy storage unit, i.e.,

nodej on bandm in time slott, the capacity can be calculated Glt) = ) b)) -
as |
W™ (t)loga(1+T), if SINR(t) >T wilt) { 1,ifieB ©
mp "(t)loga(1+ 1), 1 ) > ; _ St e
i (t) = { 0, otherwise. ! (1) ()

. ) o wherec! (¢) is the energy drawn from the power grid andt)
whereSIN R7;(t), the SINR of the signal sent fromto j on  jngicates whether nodeis connected into the power grid in

bandm in time slott, is time slotz. Note that base stations are always connected to the
9i; P (1) grid while mobile terminals are only occasionally connedcte
SINR} (1) Thus, we assume thdt;(t)}s°, is an i.i.d. random process

B anm(t) + ZjeN,j;ﬁi gij,?g(t) whereg;(t) € {0, 1}.

Here,n; is the thermal noise power density at the recejyer Due to the fact that serving nodis energy demand; (t)
P7(t) is the transmission power of nodeo nodej on band by directly using energy from the grid or from the renewable
m in time slot¢, and P} (¢) is the transmission power of anenergy resource, is more efficient than by first charging the
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energy storage unit and then discharging it, we have tB& Definitions

following two constraints ] o
Next, we introduce some definitions and theorems that

7 would be used later in this paper [9].
Definition 1. The time average of a random proces$s),
denoted bya, is @ = limr 00 & 31— Ela(t)].
Li,w>0 + lez@y>0 <1 (8) Definition 2: A discrete time process(t) is rate stable
if limy o0 % = 0 with probability 1, and strongly stable if
700 sUp 1 3, Ella(t)]] < co.

Theorem1: Queue Rate Stability Let Q(t) denote the
gueue length of a single-server discrete time queueing@syst
whose initial state)(0) is a non-negative real-valued random

@) variable, and future states are driven by stochastic araive
server processes(t) and b(t) according to the following

. . dynamic equation:
Besides, denote by"** the maximum amount of energy 4 d

that can be stored by nod& energy storage unit. Then, we
need

Lo,ty>0 + Lerty>0 < 1

where 1, is an indicator function that is equal to 1 when.
the eventA is true, and zero otherwise. Notice that the
above constraints (7) and (8) will hold whenever the follogyi
inequality holds:

1. t)>0+ La;)>0 <1

Q(t +1) = max{Q(t) — b(t),0} + a(t) for t € {0,1,2,...}.

0 < y(t) < 2™ (10) ThenQ(t) is rate stable if and only ifi < b.
) Theorem?2: Necessity for Queue Strong Stabilitylf a
Denote byci"** and d;*** the maximum amount of energyqueue()(¢) is strongly stable, and there is a finite constant

that nodei’s energy storage unit can be charged with and thatsych that either(t) + b= (t) < ¢ with probability 1 for all
can be discharged from nods energy storage unit during a; (whereb=(t) £ — min[b(¢),0]), or b(t) — a(t) < ¢ with

single time slot, respectively. Thus, we have probability 1 for allt, thenQ(¢) is rate stable, i.eg < b.
Besides, we say that a network is rate stable or strongly
ci(t) < minfe"*, 2" — 24(1))] (11)  stable if all gueues in this network are rate stable or siyong
d;i(t) < min[d***, x;(t)]. (12) stable as described above.

From (11) and (12), we get;(¢) + d;(t) < x/** — z;(t) +

x;(t) = ", which should hold for any;(¢) andd;(¢) that

satisfy (11) and (12). Since;(t) < ¢ andd;(t) < d7*, 4 DyNAMIC ENERGY COST OPTIMIZATION

we also have the following constraint: . . . . .
In this section, we investigate the dynamic energy cost

Gras | qmas < gmaz (13) minimization problem in a multi-hop cellular network.

3.5 Energy Serving and Generation Cost 4.1 Network Layer Design

Node i's energy demand is satisfied by the energy from Recall that we consider downlink traffic in the network.
the power grid, its local renewable energy resource, and ﬁgecmcally, the destination nodes are served by the base
own energy storage device. Particularly, we havgt) — stations via multiple hops, with the help ofloth(_ar r}odes
wi(t)gs(t) +4(t) + di(t), whereg;(¢) is the amount of energy Therefore, as the network layer buffer, each néodeaintains

drawn from the power grid to satisfy usés energy demand a data queu€); for each service session The queueing law
for ()¢ is as follows:

in time slott.
Besides, the amount of energy that nadgraws from the i .\ .
power grid in time slot, denoted byp; (), satisfies Qit+1) = max{Q;(t)— > 15(t),0}
JEN j#i
0 < pi(t) = wi(t)(gi(t) + ¢ (1)) < pi"* (14) > L)+ k() - Lice ), (15)

JEN j#i

wherep™** is a constant determined by the physical charac-
teristics of useri’s connection to the grid. wherel;; (t) is the number of packets transmitted frano j

Since the energy needed from the power grid for mobifer service session in time slot¢, and k,(t) (0 < ky(t) <
terminals is negligible compared to that required for bade:"*") is the number of packets that the source base station
stations, the total amount of energy supplied by power grid of service session receives from the Internet. Note that the
time slott, denoted byP(t), is P(t) = 2166 (gl( )+l (t )), destination nodel, does not need to maintain a data queue
Thus, the energy cost of the cellular service provider iretinfor its own service since data will be directly passed on @ th
slot¢ can be calculated ag(P(t)), wheref(-) is assumed to Upper layers.
be a non-negative, non-decreasing, and convex function. Besides, at the source and destination nodes, we have the
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following routing constraints: different nodes. In particular, according to the Physicaldel
. L discussed in Section 3.2, if nodeses a frequency band for
Z Gi(t) = 0, ifi=s,(t),s €S, (16) transmitting data to another node, the cumulative interfee
JEN j#i from all the other nodes transmitting on at the same time
Z ;@) = 0,ifi=dss€S, (17) plus the noise power level should be low enough so that
JEN ,j#i the SINR of nodei’s transmission is above the threshold
S B0 = w) fizd,ses, @8 L b gl = TV 4> 0l ®).
SN ewriting the above expression in the form of a constraint
1 that accommodates all the link-band pairs in the network, we
D liewy = 1L (19) have
icB
Constraints (16) and (17) indicate that there is no incoming 9i; P} (t)a; ( )+ M?’?(l - a?;(t))
data and outgoing data at the source node and the destination > (me Z g P () (t)), (24)
node for service sessian respectively. Constraint (18) models kot vost

the throughput requirement of service sessipnvherew;(t)
is the number of packets required by sessio@onstraint (19) whereM" (1—aJ7(t)) is set as the sum of interferences from
indicates that there is only one source base station forosessall the other nodes and the noise, i.81,7 (1- afi(t)) =

s in any time slott. T (W™ (t) + Y ksi Ij Phia)-
Moreover, the flow rate over linki, j) should satisfy the
4.2 Link Layer Design following inequality, i.e.,
Next, we illustrate the channel allocation and link schedul s m m
0 Z l7;(t) < Z cij ()i (t) At (25)

ing constraints on data transmissions.

Assume that bandn is available at both nodé and node
J, i.e.,me M; N M;. We denote whered is the number of bits per packet. (25) indicates that the
total number of bits transmitted on a link during one timet slo
cannot exceed the link’'s capacity multiplied by the duratio
of one time slot.

seS mEMiﬁMj

1, if node: transmits to nodg using bandn
aii(t) = in time slott,
0, otherwise.

Since a node is not able to transmit to or receive from matipl ) S
nodes on the same frequency band in a single time slot, f Offline Energy-Source-Aware Cost Minimization

have Our objective is to minimize the time-averaged expected
me < 1 d mey < . o0) €nergy cost of the cellular service provider given the myti
Z aij(t) <1, an Z aij(t) < (20) link scheduling and energy capabilities, while guaramigei

the strong stability of the network. Thus, the offline energy

Besides, a node cannot use the same frequency band d@lirce-aware cost optimization problem can be formulased a
transmission and reception simultaneously, due to “sefgllows:

interference” at physical layer, i.e.,

JEN j#i i€NiF#]

Soanm+ > an <L (21) PL: Minimize ¢ = lim — Z E[f
e N L. Constraints (9)-(14), (16)-(19), (22)-(25}; > 0
Moreover, we consider that each node is only equipped with st Constraints (9)-(14), ( ) ( ) (22)-(25) =
one single radio, which means that each node can only transmi Q(t) andx(t) are strongly stable. (26)

or receive on one frequency band at a time. Thus, we have

where Q(t) = {Q:(t),Vi € N,s € S} and x(¢t) =
Z Z al( Z Z y<1. (22) A{zi(t),¥i € N}. We denote the optimal result &1 by %,
MEM; iEN i#] mEM; qEN ,q#j We can see that without the constraint (2B), is a time-
. . coupling stochastic Mixed-Integer Non-Linear Programgnin
Notice that (20) and (21) will hold whenever (22) holds. MINLP bl hich is alread hibitivel :
Recall that in (2),E7 % (t) is nodei’s consumed energy for( ) problem, which is already prohibitively expensive

T . \ ~~ to solve. Previous approaches usually solve such problems
serving its traffic. Thus, it can be calculated as follows: based on Dynamic Programming and suffer from the “curse

ETX(t) = Z Z (1) At of dimensionality” problem [8]. They also require detailed
' meM; JEN S statistical information on the random variables in the jeoh

recw i.e., the available spectrums, and output of renewableggner

+ Z Z P AL, (23) resources at each node, which may be difficult to obtain in

mEM; JEN .j#i practice. In addition, the constraint (26) makes an even

where node’s receiving power, i.e.P ¢’ is a constant, and more complicated problem. Next, we will reformulate this

At is the time duration of one time slot. problem into an online optimization problem using Lyapunov
In addition to the above constraints at a certain nodeptimization to break the time coupling iR1, and find a

there are also constraints due to potential interferenaangm feasible solution to it only based on the current networtesta
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5 ONLINE ENERGY-SOURCE-AWARE COST wheresci“*At is a constant. Therefore, if we can guarantee
MINIMIZATION the strong stability of this queue, we can ensure its rate
h:5tabi|ity, i.e., constraint (27), according to Theorem 2sigles,

In this section, we exploit Lyapunov optimization tec : rtual backlog is al ti dna t
nigues to design an online energy-source-aware algorithm ?e virtual queue backlog IS always nonnegative accorang

RN . .. the queueing law (28).
solve the energy cost minimization problem without reagri A . .
any priori knowledge of the network parameters. Ins_tead of utilizing Gi;(t) directly, we build anoth-
Before we delve into the details, we first reformuliteinto &7 Virtual quei“?ngz(t) T ﬁGij (1), _whlere gy -
an equivalent offline optimization proble®2. In particular, MaXijenjzi { 5¢ij*"At}. Thus, the queueing law df; (t)
summing the inequality (25) over alle {0,1,...T — 1}, and

taking expectation and limitation on both sides, we get H;;(t + 1)=max {H (1) — é Z e (t)alr (t)At O}
) - 3 1] 17 ’
1 Til Z Y meM;NM;
lim — E[6 Y (1) s
Tooo T g £ +BZ 17 (). (30)
1 T_1 seS
< lim = ) E| Z P (t)afr(t)At]. (27) Note that the strong stability off;;(t) implies the strong
Tooo TN = meMNM, stability of G;;(¢), and hence (27) would directly follow.
. 5 . 1 T-1 _
Thus, we defineP = limr o7, E[f(P(1)) 5.2 Reformulation of Dynamic Energy Cost Mini-

AD ees 2ienks(t) - Li—s )], where X is a coefficient that "~ . S
can be determined by the system operator. We then formulfr;\qlezat'o_n Usmg Lyapun9v Optimization
the following optimization problen2: We first define a shifted energy level(¢t) for any node
. _ 1 € N to better control its energy storage unit, i.e.,
P2: Minimize ¢ =P
st Constraints (9)-(14), (16)-(19), (22)-(2}t > 0. zi(t) = zi(t) = Vo™ — d",
We denote the optimal result of P2 hyy,. We formulate w_hereym‘” is the maximu_m first-c_;rder derivative qf(P(t)_)
o2 with respect taP(¢), andV’ is a positive constant to be defined

P2 in such a way to help ensure the strong stability of t _ . ;
network, which will be clear later. Besides, note that simil |&t€r- Thus, according to (4);(t) is updated following the
tqueueing law below:

to P1, P2 is also a time-coupling MINLP problem. In wha
follows, we will formulate a drift-plus-penalty problem $ed Zi(t+ 1) = zi(t) + ci(t) — di(t). (31)
on P2, which we callP3. .
Note that based on constraint (10), we have:
5.1 Modeling Virtual Queues _VAmaT _ qmaT < 4 (4) < gMeT _ |/ ymaz _ gmaz (32)
In order to guarantee that all queues in the network are
stable, we introduce virtual queues as follows. Consider a

virtual queue;; () at node; for each of its one-hop neighbor a 1 S/1\\2 L)) 2
4 with the following queueing law: Lew) = 2[2 Z(Qi )"+ Z Z (Hi; (1))

Next, we define a Lyapunov function [9] as

) s€ESIEN 1EN JEN j#i
Gij(t + 1)=max { Gy (t) — 5 > drt)ar(t)At,0} + > (z(1)7]
meM;NM; ieN
+> 15 (). (28) where ®(t) = {Q(t),H(t),z(t)}. We assumeQ(0) = 0,
s€S H() = 0, and z(0) = 0. This function represents a

This virtual queue can be understood as the link-layer bufféc@lar measure of queues in the systéif®(¢)) being small
for link (i, j). The queue backlog; (t) represents the total indicates that all queue backlogs are low, Whilé® (t))

number of packets stored at nodléo be transmitted to node P€iNg large implies that at least one queue backlog is high.
j at the beginning of time slot., Meanwhile, its one-slot conditional Lyapunov drift is defth

For queueG,;(t), we have as
1 Z T () (1) At — Zl?»(t) A(O(t) £E[L(O(t+ 1)) — L(O(1))|©(t)]. (33)
0 mEM;NM, K K s€ES K In order to minimize the long-term time-averaged expected
1 s total cost of energy from UC, instead of directly minimizing
< 3 > e At A(O(t)), we intend to minimize the upper bound of the drift-
meMNM; plus-penalty function, which is defined as:
1 max
S FeT A @9)  A©®) + VE[F(P(1) =AY D k() - Lia,n|O)]

seSieB
1.In order to guarantee that the queue size @f;(t) is an . .
integer in each time slot, the service rate of the queue shouvhereV > 0 is a constant that represents the weight on

in fact be |1 Pmeminm, ¢ (Wi (H)AL]. Here, we assume how much we emphasize on the energy cost minimization.
5 Zmenm,nm, ci (D)o} () At to be integers for simplicity. Such a scheduling decision can be explained as follows:
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we want to makeA(®(t)) small to push queue backlogcan have. Thus, according to (22), i.e., one node can transmi
towards a lower congestion state, but we also want to matkeat most one neighbor on at most one band at a time, we can

(f(P(t) =AY ses Dien ks(t) - 1,5, 1)) small in each time get Y jen i li(t) < maxjeN#Z{acm“At} Slmllarly,

slot so that the energy cost can be low. we also have): . .. 15(t) < maxjen jzi 1 T AL,
We can have the following lemma. Besides, we havé, (t] < K™, Thus, based on (15), (30),
Lemmal: Given A(G(t)) defined in (33), we have (31) and (36), we can obtain the following inequalities:
A(O(t) + VE[f —-A Es(t) - Li—s.(0)|©O(2)
PO 0O @) (e an)?
< B+ Wa(t) + Wa(t) + Us(t) + a(t), (34) 76/\/
H(m (LAl 4 K11, ()

where B is a constant, i.e.,

ZZ max {— cm‘”At}) +20Q5(1) - ( Z 15:(t)

JEN j#£i 0 i

ses ieN '76/\/ i7 JEN 371
max mazx 2 +k8(t) : 1i:55(t) - Z lzs_] (t)) (37)
+(Jer/1\1/a;(¢z{ AL I L )] JEN i
2 /3 max 2
3% B ar)’ (Hij (£ +1))° < (Hi (1)) + 2(5 " At)" + 2Hy (1)
T (Cs0-2 Y amama
mam max ﬂlzs t) — —= C? t Oézr»b t)At (38)
+= Z max { (¢]"*)%, (d"*)? } (35) i O mertim,
zEN 2 2 2 2
W+ 1)) <(z(t e RN (e
W, (t) is only related to the link scheduling variablef§ (¢)'s (e + 1)) (zt))” + max{ ("), ( Iy
ie., +22i(t) (ci(t) — di(t)) (39)
Uy (t) :—?]E[ Z Z (Hi;(t) Z cij(t)aii(t)  Applying these inequalities to the drift-plus-penalty étion,
iEN JEN j#i meM;NM, we have
At)[|O(1)],
Wy (t) is related to the resource allocation variableé) and AlG®) + VEIf - Z:sz% Fs(8) - Limo,n|O)]
11-:55(,5)’3, ie., Z Z seee
max {= cm‘”At}) ( max { ALY
—E[ZZ ((Qf(t) - /\V)(kS(t) 1= ss( t)))|®( )] ses ieN JEN g# € 07
seSieB
. : . - FEI Lo ) YD > m‘”At
W3(t) is only related to the routing variablés(t)'s, i.e., NN
=E[> Y @ >z - > 1501) ok Z max { (¢")2, ()2}
SESIEN JENjH#i JEN j#i 16/\/
NEY. D0 (BHs0_50)00],  +E[Y. Y @[ Y 5@+ k() L
PEN JEN j#i sES sESIiEN JEN j#i
and¥,(t) is related to the energy management variablés, - Z I5;m]e)
d;(t) and P(t), Vi € N, i.e., FEN j#i
a()=E[ 3 (zi(t)eit) — di(1)))|O(0)] TED D Him[ 850
ieN PEN JEN j#i s€S
B M)y
+VE[f(P(t)|©(1)]. 2 awanmaden)
Proof: Note thatVz,y,z with x > 0, 0 < vy < Ymaa, mEM;NM,
0 < 2 < Znas, We have FE[D 7 (2:(t)(ci(t) — di(1)) ©(1)]
(max{z —y,0} + 2)* < 2 + y* + 2% + 22(2 — ¥) N
< CEQ + y?nam + anam + 2(E(2 - y) (36) +VE —A ZS ZB k ’ ll:SS(t)|®(t)]
seS 1€
Due to (25), we know that
D jenjrilip(t) < Do jen jri 2uses b (t) < Thus, Lemma 1 directly follows. O
%Zjej\ﬂ#i ZmeMmMj cit(t)aft(t)At. Denote by cre® Based on the drift-plus-penalty framework, our objectise i

the maximum possible link capacity of linki, 7). Slnce to minimize the right-hand-side of (34), and hence to miaeni
cii(t) depends oni(i, j) and W™(t), among whichd(i,j) Wy (t)+W2(t)+W3(t)+Wa(t) sinceB is a constant, given the
is constant, thenc]?®” is determined bylWW™*, j.e., the current system statu®(¢) = {Q(t), H(¢),z(t)} in each time

maximum bandwidth that the channels available on [ink) slot. We now use the concept of opportunistically minimigin
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an expectation [9], which is to minimize: transform the problem to a linear programming (LP) problem.
. 8 Then, we solve this LP to obtain an optimal solution with
Uy(t) = -5 Z Z (Hyj(t) eachaf}(t) being between 0 and 1. Among all the values,
iEN JEN j#i we set the largest}(t) to 1. After that, based on the
Z an(t)a (t)At) (40) constraint (22), we can fixy (t)_: 0 gnd ag, (1) =0 for
meMIOM, anyn € M, andp,q € N. Besides, if the result includes
. . severalo; (t)'s with the value of 1, we can set thos¢! (t)’s
Uo(t) = Z Z ((Qi () = AV)(ks(t) - 11‘:55(@)) (41) to1and perform an additional fixing for the largest fracéibn
s€ESIEB variable in the current iteration as illustrated above. iHgv
Us(t) = D Y @@ >, Biy— > I5t) fixed someay(t)'s in the first iteration, we remove all the
sESEN FENj#£i JEN j#i terms associated with those already fimg(t)’s from the
. s objective function, eliminate the related constraints 22)(
+ Z%;jej\;# (H” ®) ;smij (t)) (42) and update the problem to a new one for the next iteration.
. ' The iteration continues until we fix ai]}(¢)’s to be either O
Uy(t) = D (u)(a) - di®) +VF(P[).  (43) or1.
1eEN

Therefore, the problem of online energy-source-aware c@B.2 Resource Allocation

minimization can be formulated as follows: Second, we minimizel»(t) by finding the source base

P3: Minimize Wy (t) + Wa(t) + Us(t) + Ua(t) station for each service sessien(s € S) and determining
st. Constraints (9), (11)-(14), (16)-(19), (22)-(25), ''S Incoming packet raté (1), i.e.,

(32), vt > 0. S2: Minimize Wy (t)

©(t) is strongly stable. (44) s.t. Constraints (19).

Note that the constraint (27) has been left ouPB(compared \we develop the following search algorithm to locally find
to P2) since it can be guaranteedH(¢) is strongly stable as 5 resource allocation policy. Specifically, at the begignin

mentioned before. of each time slot, given the current queue backlal$t)'s

(Vi € B) for each service session we find the base station
5.3 A Decomposition Based Approximation Algo- with the smallestQ:(¢) and choose it as the source base
rithm station. If there are multiple variables with the same sesall

In the following we decomposB3 into four subproblems dueue backlog, we randomly pick one of them as the source
(from S1 to S4) and solve them respectively. The intuition f2&Se station. After that, we can determine the source node’s
that since each subproblem has fewer variables comparbd WRCOMINg packet rate as follows:
thatinP3and can be solved easily, by solving the subprob_lems Ko, if QS ()= AV <0
one by one, the later subproblems can treat the variables ks(t) = :
that have been solved in previous subproblem as constants.

Consequently, we can obtain a feasible solutio8 533 Routing

5.3.1 Link Scheduling Third, after reorganizingvs(t), we minimize it by finding
by finding the optimal link the optimal routing policy, i.e., determining the variable
155(t)s (Vs € S,i,j € N, j # i), as follows:

0, otherwise.

First, we minimize ¥4 (t)
scheduling policy, i.e., determining the variableg}(t)’'s
(Vi,j € N,j #i,m e M; N M,), as follows:

S3: Minimize
S1: Minimize W (¢) Z Z Z (= Q)+ Q3(t) + BHy; (1)) - 15(1)
s.t. Constraint (22) SESIEN JEN j#i

) ) s.t. Constraints (16)-(18), (25)
Since the variables\;}(¢)’s can only take value of 0 or

1, the above subproblem is a Binary Integer Programmilde can see that S3 is an Integer Linear Programming (ILP)
(BIP) problem. In the following, based on the similar ideaproblem with the only variables beirig; (¢)'s. We notice that

in [43], [46], we propose a heuristic greedy scheme callélie total flow rated s [7;(t) over link (i, j) does not affect
the sequential-fix (SF) algorithm to find a suboptimal soluti the flow rates over other link§(p,q)|p # i Nq # j}, and

to this problem, the solution of which can be obtained ianly depends on its link capacity according to the constrain
polynomial time. The main idea of SF is to fix the binary25). Besides, the objective function of S3 can be viewed as
variablesa (t)'s sequentially through a series of relaxed lina weighted sum of the variabldg;(¢)'s. Therefore, we can
ear programming problems. Specifically, we first &¢t(t)'s determine the flow rate over any link, j) at node: locally,

to O if H;;(t) = 0, remove all the terms associated with suchased on its current queue backlo@$(t) and H;;(t), and

a7} (t)'s from the objective function, and eliminate the relatethe queue backlogs of nodg i.e., Q:(¢). In the following,
constraints in (22). Then, in each iteration, we first reldx ave will propose an algorithm to obtain the optimal solution
the 0-1 integer constraints oxf}(t)'s to 0 < «7(t) < 1 to for [$;(t)’s.
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In particular, we first set the variablég's (Vj = ss(t),i € Whent = 0, we haveQ;(0) =0 < AV + K7, ...
M\{j},s € S)andthoseXi = ds,j € N\{i},s € S)to0ac-  Assume that we hav@:(t) < \V + K$,,, in time slot¢
cording to constraints (16) and (17). Besides, if a npded; (¢t > 0). Then, we consider the following two cases to prove
(s € S) in time slott, then the variablé; (Vi € '\ {;j}) with  the stability ofQ ().
the smallest coefficient in the objective function of S3 istee 1) if i = s4(¢): According to the queueing law ap; (),
vs(t) due to constraint (18). In all the other cases, in order tee have
minimize the objective function, nodealso sets the variables s s R
I5(t)s (Vj € N,j # i,s € S) to O if their coefficients are Q(+1) = max{Q () - _ Z +.3(1),0}
non-negative. Otherwise, for arly;(¢)'s (s € S) over link JEN g8
(i,7), nodei sets the variable with the smallest coefficient +hs(2)- (45)

m

0 5 X menna, O (Dafi (1) At while the rest to 0, due t0 Based on the derived solution to the subprobléznwe have
the constraint (25). The intuition is that by doing so, thli the following two subcases:

(7,7) can be fully utiliz’ed while minimizing S3. Besides, if ¢ Q: (t) > AV, according to the optimal solution to S2,
ther_e are yanablel%(t) S with the_ same smallest coefficient we khow thatk, (t) = 0. Thus, we have

on link (4,7), node: randomly picks one of them and sets
it10 §3°,,c o, & (Haf} () At while the rest to 0. Note 41 <Qi () S AV 4K .
that} (t)'s are known from the link scheduling optimization
problem S1. It is possible that", ¢ v, a4, f (D)o} (1) At

is equal to 0 if3° (.~ @ff (t) = 0. Then, the corre-
sponding variabld; (t) is also equal to 0. Qs (t+1) Q5 (1) + Kjge S AV + K74
Therefore, we hav€); (t) < AV + K, ..

.34 Energy Management 2) if i # s5(t) andi # ds: We then explore the stability of

Fourth, in order to minimizel4(¢), we try to find the Q:(t) wheni # s, andi # d,, whose queueing law is:
optimal energy management for akk V, i.e., determining the

o If Q3 (t) < AV, according to the optimal solution to S3,
we get thatks(t) = K3 Following (45), we have

max”*

variablesP[! (t)'s, cf (t)'s, ¢](t)'s, ri(t)'s, di(t)'s, andg;(t)’s. Qi(t+1) = max{Q:(t) — Z 15;(t),0}
This problem can be formulated as follows: JEN j#i
S4: Minimize W,(t) +oY L) (46)
JEN j#i

s.t. Constraints (9), (11)-(14), (24).
. _ o . Since only one neighboring node can transmit to node
Notice that S4 is a convex optimization problem, which cafine slott, we denote it byj. Consider the coefficient in front
be easily solved, e.g., using CPLEX, given the system Statﬁsl;(t) in the objective function of S3.

and shifted energy levels (). _ o If Q3(t) < Q3(t) — BHj;(t), according to (46), we have
In summary, in each time slot, the online energy-source- J

aware minimization problen®3 can be solved after S1, S2, Qi (t+1) < Qi (t) +15;(t)

S3 and S4 are solved. The que@s), H(t) andz(t) are then <QS(t) — BHy(t) +15,(t) < Q3(t) S AV + Kipos

updated in each time slot according to the queueing laws (15) o . ) .

that all queues are strongly stable, and particulazlft) are two cases. _ .
within its limits, i.e., (32). We denote the correspondiimgé- — If Hy;(t) = 0, according to the solution to S1, we
averaged expected total energy costilyys. can know thata”}(t) = 0 Ym € M; N M;, and

hencels;(t) = 0. Thus, the inequality holds.
= If Hj;(t) > 1, we haveBH;;(t) > 13;(t), asl;;(t) <
max; jen,j-i{ 3" At} = 3 as defined before.
o If Qi (t) > Q;(t) — BH;;(t), according to our proposed
solution to S3, we know thdt;(t) = 0. Following (46),

6 PERFORMANCE ANALYSIS

In this section, we first prove that the proposed approxi-
mation algorithm can guarantee the network strong stgbilit
Then, we derive both the lower and upper bounds on the

optimal result ofP1 we have
Qi(t+1) Qi) <AV + Kp gy
6.1 Network Strong Stability Therefore, we also hav@?(t) < AV + K.

Our proposed algorithm finds a solution to P3 which satis- Note that the destination nodle does not need to maintain
fies the constraints (9), (11)-(14), (16)-(19), (22)-(28% can a data queue since data will be directly passed on to the upper
have the following theorem. layers. Consequently, based on the above results, we can see
Theorem3: Our proposed approximation algorithm guarthat an arbitrary queu@:(¢) is finite in any time slot. Thus,
antees that the queu€y(t), H(t) andz(?) are all strongly Q(¢) is strongly stable by Definition 2.

stable, and particularly;(t) are within its limits, i.e., (32). Second, we prove the strong stability df(¢), and particu-
Proof: First, we demonstrate the strong stability Qi(t) larly,
by considering an arbitrary queu®@;(t). Specifically, we Hi;(t) < B+ max 15(k) (47)

prove by induction that); (t) < AV + K3

0<k<t
max* seS
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for anyi, j € NV, by induction. We consider an arbitrary queue

H;j(t).
Whent = 0, we haveH;;(0) = 0, and hence (47) holds.
Whent = 1, we havel;;(1) = >, s17;(0) according to

the queueing law (30), and (47) holds.

Assume (47) holds in timet, ie., H;;(t) < S -

maxo<k<t ) 4es lij(k). Then, at the beginning of time slot

t+ 1, we have

Hij (t + 1) — max {HU (t) - % Z c;?(t)a?; (t)At, 0}

mEMiﬂMj

+B8 15 (1),

seS

If H;j(t) > %ZmeMmMj i (t)afr (t)At, with inequality
(25), we have

Hij(t+1) < Hy(t)

IN

B+ max 12:(k)

0<k<t K
seS

< - max 12.(k).
< B 0<k<t+1 = ”( )
S

If Hij(t) < §3,.camnm, 5 (Hafj ()AL, then

Hij(t+1) =Y _15(t) < 8-

seS

max 12:(k).
0<k<t+1 ”( )
sES

Therefore, (47) holds wheh=t¢ + 1 as well.
Since Yo, 5 15;(t) < ZcmarAt, we have thatH;(t) <
%cg‘”At and hence always finite and strongly stable.
Third, we prove the strong stability ef(t), i.e., (32), which
directly follows if the strong stability ok(¢), i.e., (10), holds.
Firstly, we define the maximum value &f as:

max max
VmeT — hin Z; -G
ieN ymar

max
—dr

Assume that for arbitrary nodg (10) holds in time slot.
Then we consider three cases when in the time sletl.

o If 0 < z(t) < d™*, Recall thate;(t) = w;(t)cd(t) +

i

10

we havex;(t) < z"®
we can obtain

— ¢ Thus, according to (4),

xi(t+1) < a™* — " 4 () — di(t) <

— K2

and

Il(t + 1) Z dznam + Cl(t) - dl(t) Z 0.

Vymer 4 dinet < g(t) < ai"*”. Note thatV <

i 73 " —d; , and hencd/,ymam + dmez < x;nam _
cr® < x**, The partial derivative of the objective
function of S4 with respect td;(¢) is

o If

max

oW (t)

i)

of(P(t))
adi(t) z(t)

0 — @i(t) + V™ 4 dros

0.

-V

<
<

Thus, our energy management scheme minimiﬁmgt)
results in control decisions that satisfy(t) = d/"**. Due
to constraint (9), we have;(t) = 0. Thus, according to
(4), we getz;(t + 1) = z;(t) — d7** and hence) <
zi(t+1) < gor — qras < gnee,

Therefore, we can see that (10) holds fortalt 0, and hence
(32) holds as well. O

6.2 Lower and Upper bounds on ¢},

In what follows, we obtain both lower and upper bounds on
the optimal results of P1, i.eyp,.

Theorem4: The solution obtained from our proposed algo-
rithm serves as a suboptimal yet feasible solutiofP1p and
the corresponding time-averaged expected amount of energy
cost works as an upper bound on the optimal resuRDbfi.e.,
1/)}31 < d’PB-

Proof: The proposed decomposition based algorithm finds

¢;(t). In this case, the partial derivative of the objectivg sqytion that satisfies all the constraintsP8, i.e., (9)-(14),

function of S4, i.e.W,(t), with respect ta (¢), is

o4 (1) o (P(1))

aan OV e
< zi(t) — Vymar  grer 4 g
< 0.

Thus, by solving S4, i.e., minimizing 4(¢), our energy

management scheme leads to the control decisions t\ﬁv%i

maximizesc] (t). Due to constraint (7), we havg(t) =
0. Therefore, according to (4), we gef(t+1) = x;(t)+
¢i(t) and hence
0<uzi(t+1) < I o
due to constraint (13).
o If dMo® < ;(t) < VA™e® 4 d"**, Since

pMaT _ omax _ Jmax
< ymaz o Ti ) i
14 — 14 — ,Ymaz ’

(16)-(19), (22)-(25), and (44). Thus, the solution is also a
feasible solution tdP1, and the corresponding time-averaged
expected energy cost, i.e/ps3, is no less than the optimal
result of PL, i.e.,¥ps > 5. O
Next, we find a lower bound om},,. We first present a
lemma as follows.
Lemma?2: The time-averaged expected amount of energy
t achieved by optimally solving3, denoted by}, is
in a constant gapé from the minimum time-averaged
expected energy cost achieved B, i.e., ¢},. Particularly,
we havey}, — £ < 4}, where B and V' are defined in
Section 5.2.

Proof: Denote by a7} (1), ku(t), Timy. oy, I55(0), G(0),
di(t), and f(P(t)) the results obtained by our proposed
scheme in time slot, i.e., based on the optimal solution to
P3. We also denote by }*(t), k:(t), 1;_ ), 15 (), cf(t),
di(t), and f*(P(t))(t) the results that we get for time slot
based on the optimal solution #®1 Thus, from Lemma 1,
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we can have according to Theorem 2. So we can have:
A@) + VEFPD) - A3 Y kD) o) R
* iz v B R
ses zeB Zﬂlij (t) — 5 Z Cij (t)aij (t)At <0

seS mEMiﬁMj

<B4+ Uy (1) + Wa(t) + Ts(0) + Va(t) ) —di) <0

<B+¥i(t) + 3()+‘1’3()+‘1’4()

_B 4 VE[F(P(t)) - A Z Z K015, ) Therefore, we can obtain
5 ieB E[L(®(t + 1))] E[L(©(t))]
+UE(t) + Uit +ZZ () 1525 1) +VE[f Azzk L, )]
seSieB seSieB
+37 (w0 (1) - i (1) SBAVE[f'(P(1) =AY k() 11, )]
ieN seSieB
=B + VE[f /\ZZk il Summing the above over € {0,1,2,..,7 — 1} for any
seSieB

e positive integerl” yields

£ @ Jim ST IO R0 i E[Z@(T»]—E[E(e(om

T—oo T
1EN JEN j#i t=0

+V E[f - A k “Lims. 1)
)Y Y Hyw m A3 (A Z ZZ !

i€EN jEN j#i t=0 seS8 Tzl Z Z

B m <TB+V Y E[f*(P(t) -\ ki) - 1%, )

-5 2 @AY =0 €S iEB
e S Since all queues are finite in all time slots, dividing boitlesi

+Z %(t) lim — Z (Cf (1) — d;‘(t)) of (48) by VT and taking limits a§" — oo lead to

1EN T_>OO t=0 -

Jim Z )\ZZk Tims, 0]
—oo T t=0 sES i€B

Note that the third step is due to the fact that the optimal .

solutions toP1 are obtained independent of the current queues Z E(f ) Z Z ke (t

©(t). The fourth step is due to the strong law of Iargt,r T~>00T

numbers If{a(t }t o are i.i.d. random variables, we have
Pr(Llimy 00 Y a(t) = E{a(t)}) = 1 almost surely. Which means)p; — B/V <1, O

Consequently, taking expectation of the above inequaiitiy ~ Recall thatl, P2andP3 are both Mixed-Integer Program-
s ming problems. We rela®2 to a Linear Programming (LP)

problem without the strong stability constraint (26) desubt
by P2, and formulate a corresponding online energy cost

B
)] Va
seS ieB

E[E(@(t + 1))] - E[f(@(t))] minimization problem denoted b#3. We can see thaP3 is
+VE[f Y Z Z k: A, Ss(t)] a relaxgd LP problgm based 6&3W|.th0ut the strong stability
pymyyer constraint (44), which can be easily solved. Denotedpf%\f
<B4+ VE[f ) K1) 1 and Vs the time-averaged expected amount of energy cost
+ Z:SZB ] obtained by optimally solving®1 and P3, respectively, based
seo e on Lemma 2, we can know thatt,, — £ < ¢*_. Since
1 o 1 obviously we also have)_ < 1%, < wpl, we can arrive
+_€ZN _GAX/:#_ ) i Z Bl (O i arthe following result.
IR Theorem5 The optimal result oP1 is lower bounded by
. s 5~ B/V, where 5 can be obtained by optimally solvin
NHOIED D10 hm—ZEZ s / Vpy y optimally solving
i€N jEN j#i t=0 seS
B m m*
=5 S art)an(t)At] 7 SIMULATION RESULTS
meMinM; . In order to complement the analysis in the previous sections
) i 1« Bl g we carry out extensive simulations to evaluate the perfagea
+2A:[ZZ o T tz% () = di (1)] of our proposed scheme. Our goals are to obtain the lower and
1€ =

upper bounds on the optimal resultRf, to examine the trade-

off between energy cost and queue size, and to demonstrate
Since we have prove the strong stability @f(¢), H(¢) and the energy efficiency of our scheme compared with that of
z(t), we know thatQ(¢), H(t) andz(t) are also rate stable, other similar energy management strategies. Simulatioas a
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Fig. 2. Performance evaluation of the proposed scheme.

conducted under CPLEX 12.4 on a computer with a 3.00 GH& f(P(t)) = aP?(t) + bP(t) + ¢, wherea = 0.8,b = 0.2
CPU and 4 GB RAM. andc = 0. All our results presented below are collected after
Specifically, we consider a square network of &2@@)m x  the experiments run for a period @f = 100 time slots, the
2000m, where 2 base stations are located at coordinatgdsration of each of which is set to 1 minute.
(500m, 500m), (1500n, 5007), respectively, and 20 users are In Fig. 2(a), we show both the upper and lower bounds
randomly distributed. Besides, we assume there is onélaellwon the optimal result oP1. Recall that the upper bound is
band with bandwidth 1 MHz and four other spectrum bandshieved by our proposed algorithm, i.¢x3, and the lower
whose bandwidth are independently and uniformly distedut bound is obtained by optimally solving the relaxed problem
within [1, 2] MHz in each time slot. Only a random subsef3, i.e., Yoz — B/V. We can find that the lower and upper
of the spectrum bands are available at each mobile usmunds get closer to each otheridsncreases.
while base stations can access all the bands. There are fourhen, we examine the tradeoff between energy cost and
service sessions whose destination nodes are randomlgrchothe queue backlog sizes incurred by our scheme. We find that
Each session has a traffic demand166 Kbps. Some other in Fig. 2(b) and Fig. 2(c), the data queue backlog sizes of
important simulation parameters are listed as follows. Jdid base stations and mobile users increase as time goes by and
loss exponent ist and C' = 62.5. The SINR threshold is are bounded. We can also get similar results in Fig. 2(d) and
I' = 1. The noise power spectral densityrjis= 10~2° W/Hz Fig. 2(e) for energy queues. Since the expected total sizes
at all nodes. All nodesv € U) have the same maximumof all data queues and energy buffers of both mobile users
transmission power, which i?! =~ = 1 W while base and base stations are all finite, each single data queue and
stations have much larger transmission power, 2@.W. In energy buffer in the network are finite in each time slot,
addition, nodes’ renewable energy generation capakildie therefore guaranteeing the strong stability of the network
determined according to the global horizontal irradianatad Besides, a largel” results in a larger queue backlog size.
in Las Vegas area from the Measurement and Instrumentatiims is because a largé means more emphasis on the energy
Data Center [47]. We assume that the energy conversioost minimization than on the queue size and that the system
efficiency is 15% and the maximum outputs of mobile userseeds to have a larger queue buffer so as to save more energy
and base stations’ renewable energy resources are 1 W aast. The results in Fig. 2(a)-2(e) together show the tréideo
15 W, respectively, in each time slot. The maximum chargifzgetween energy cost minimization and queue length in our
and discharging limits on each user’s energy storage devim®posed algorithm.
in a time slot, i.e.,c]**® and d;***, are both set t00.06 Next, we compare the time-averaged expected energy cost
kWh for mobile users and.1 kWh for base stations. The of our proposed architecture with those of other cellular ne
maximum amount of energy that each node can draw fromork architectures, i.e., multi-hop network without reradile
the power grid in a time slot, i.ep"**, is set to 0.2 kWh. energy, one-hop network with renewable energy, and one-hop
The energy generation cost function, i.(P(t)), is defined network without renewable energy. As shown in Fig. 3(a),
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Fig. 3. Performance comparison of different architectures.

our system has the lowest time-averaged expected energy sesvice provider while guaranteeing the strong stabilify o
among these four network systems whHémoes froml x 10° the network, we construct a time-coupling stochastic Mixed
to 5 x 10°. Specifically, compared with the multi-hop networknteger Non-Linear Programming (MINLP) problem, which
without renewable energy, our system can take advantageprohibitively expensive to solve. By employing Lyapunov
the renewable energy and the energy stored locally and heonpéimization theory, we reformulate the problem and develo
save energy cost. In addition, by comparing one-hop and-muli decomposition based scheme to solve the problem in each
hop networks, we can find that the latter have lower energiyne slot without priori knowledge of the network statistic
cost. This is because multi-hop technology enables nodesTine proposed scheme can ensure the network strong stability
the network to use lower transmission power to help eactrotligoth the lower and upper bounds on the optimal result of
with the transmissions and hence reduce energy consumptitve original optimization problem are obtained. Extensive
Similarly, in Fig. 3(b) and Fig. 3(c), we examine how thesimulation results validate the energy cost savings of the
time-averaged expected energy cost changes when the nunpiveposed scheme.
of base stations varies from 1 to 5 and the number of mobile
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