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Abstract—The explosive growth of Online Social Networks (OSNs) over the past few years has redefined the way people interact

with existing friends and especially make new friends. Some works propose to let people become friends if they have similar profile

attributes. However, profile matching involves an inherent privacy risk of exposing private profile information to strangers in the

cyberspace. The existing solutions to the problem attempt to protect users’ privacy by privately computing the intersection or

intersection cardinality of the profile attribute sets of two users. These schemes have some limitations and can still reveal users’

privacy. In this paper, we leverage community structures to redefine the OSN model and propose a realistic asymmetric social

proximity measure between two users. Then, based on the proposed asymmetric social proximity, we design three private matching

protocols, which provide different privacy levels and can protect users’ privacy better than the previous works. We also analyze the

computation and communication cost of these protocols. Finally, we validate our proposed asymmetric proximity measure using real

social network data and conduct extensive simulations to evaluate the performance of the proposed protocols in terms of computation

cost, communication cost, total running time, and energy consumption. The results show the efficacy of our proposed proximity

measure and better performance of our protocols over the state-of-the-art protocols.

Index Terms—Online social networks, asymmetric social proximity, private matching protocols
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1 INTRODUCTION

ONLINE Social Networks (OSNs) have had tremendous
growth over the past few years. OSNs such as Face-

book, Googleþ, Linkedin are some of the most visited sites
on the Internet [1], where users spend a significant fraction
of their online time. Besides, increasing popularity of smart
phones has extended the platforms used for accessing
online social networks and provided a plethora of opportu-
nities for mobile social networking. OSNs have redefined
the way people interact with existing friends, and more
importantly, make new friends. In particular, people can
now explore potential friendships via OSNs, by looking for
common interests, friends, and symptoms, close geographic
proximity, etc., between each other. A naive solution to
finding new friends in OSNs is using a server that stores all
the users’ information and conducting profile matching
through the server. In this case, however, the server knows
all the users’ private information and becomes a single point
of failure. Thus, if the server gets compromised, all users’
privacy is at risk. For example, Twitter was attacked in early
January 2013 and about 250,000 user accounts might have
been compromised, with names and e-mails possibly being
uncovered [2]. Facebook, Apple, Microsoft were under

similar attacks in February 2013 [3]. Moreover, users may
not have connectivity to the server all the time. Therefore,
there has been growing interests in new privacy-preserving
distributed solutions to finding friends in OSNs.

In OSNs and Mobile Social Networks (MSNs), many dis-
tributed solutions to privately finding the social proximity
between two users have been proposed. The most common
way of determining friendship between two people is
through profile matching, i.e., finding out if they have com-
mon profile attributes, like interests [4], [5], symptoms [6],
[7], [8], or some other social coordinates [9], [10]. In some
cases, the number of common friends also serves as the
proximity measure between two users [11], [12]. Such previ-
ous works employ various cryptographic tools to protect
the privacy of the profile information of the users in the pri-
vate matching process. After two strangers, say with profile
attribute sets X and Y; execute a private matching protocol,
the one, who initiates the protocol will know either X \ Y
or some function of X \ Y while the other, who responds
does not know anything. Thus, a malicious user can execute
the protocol with any user and leave without letting him/
her do the same.

Moreover, most previous schemes for profile matching in
online/mobile social networking are based on the premise
that two people are likely to establish a social relationship
only if they share similar profile attributes like interests,
symptoms, or some other social coordinates. While it is true
that people with similar profile attributes are likely to be
friends, this is not the only way of determining friendship.
For example, a doctor’s best friend may not necessarily
always be a doctor, but can be a writer who may share very
few common profile attributes. In another example, two stu-
dents who both have a lot of good friends studying in the
Electrical and Computer Engineering department may
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become good friends, although they do not share many
common profile attributes. We notice that whether two peo-
ple can become friends not only depends on whether they
have anything in common, but also is affected by whether
their friends have anything in common. The intuition
behind this is simple: a friend’s friend can also be a friend.

In this paper, we leverage community structures to rede-
fine the OSN model, and propose an asymmetric social
proximity between two users. In particular, we consider
that each OSN user is affiliated with some communities (or
groups),1 which the user weighs differently. We notice that
the communities can actually tell a lot about their members.
There can be a wide variety of communities in an OSN like
a university community, a department community, a fan
community of an artist, movies, or sports, and a community
of certain professions. Besides, we notice that in real life
people also value their friendships differently. Thus, we
propose an asymmetric social proximity between two users,
which is the cumulative weight of the common communi-
ties to one user considering both his/her and his/her
friends’ perceptions. We also design three different private
matching protocols based on the proposed asymmetric
social proximity. The main contributions of this paper can
be briefly summarized as follows:

� We define an asymmetric social proximity measure
between two users in an OSN, which considers both
each user’s and his/her friends’ perceptions on the
common communities between the two users. This
proposed asymmetric social proximity can better cap-
ture the characteristics of making friends in OSNs.

� Based on the asymmetric social proximity, we design
three different private matching protocols, i.e., L1P,
L2P/EL2P, and L3P, which provide users with dif-
ferent privacy levels. In particular, our protocol L3P
with the highest privacy level ensures that two users
will not know any of their common communities
before they become friends.

� We analyze the privacy, and computation and
communication cost of the proposed protocols.
Our protocols protect users’ privacy better than
the previous works based on symptoms, interests,
and the number of common friends, with lower
computation and communication costs. Particu-
larly, in most previous schemes, e.g., [4], [5], [6],
[7], [8], [9], [11], a malicious user A can request
friendship with another user B and then leave
with B’s private information before B knows any-
thing about A. In our schemes, when one malicious
user A requests friendship with another user B, A
can know some limited private information of B’s
only if B is willing to accept the request.

� We validate our proposed asymmetric proximity
measure using real social network data and conduct
extensive simulations to evaluate the performance of
the proposed protocols in terms of computation cost,
communication cost, total running time, and energy
consumption. The results show the advantages of
our protocols over state-of-the-art protocols.

The rest of the paper is organized as follow. We discuss
the related works in Section 2 and present our system model
in Section 3. We detail the proposed three asymmetric social
proximity based private matching protocols in Section 4.
We present simulation results in Section 5, and finally con-
clude the paper in Section 6.

2 RELATED WORK

In this section, we briefly introduce some previous studies
that are most relevant to our work.

Private Set Intersection (PSI) protocols. In PSI protocols,
two or more parties carrying their respective input sets
interact to privately find the intersection set. In a two party
(a server and a client) PSI protocol, the two parties interact
so that the client learns only the intersection of the two input
sets and the size of the server’s input set, while the server
learns nothing but the size of the client’s input set. Since the
introductory work of Freedman et al. [13], several PSI proto-
cols [14], [15], [16], [17], [18], [19] secure under semi-honest
and/or malicious adversary models have been proposed. In
such schemes, a client can artificially inflate its input set to
learn the server’s whole input set. Authorized PSI (APSI)
protocols [20], [21], [22] avoid this problem by verifying the
participants’ inputs using some trusted authority. They
involve expensive cryptographic processes, which lay
heavy burdens on users’ mobile devices.

Secure Multiparty Computation (SMC) protocols. SMC pro-
tocols allow two or more parties to privately calculate some
functions of their inputs such that no party knows more
than the function output and its own input. In particular,
Yao [23] proposes the first SMC protocol based on garbled
circuits. After that, there are a lot of works on improving
security [24] and/or computation and communication com-
plexities [25], [26], [27], [28], [29], [30]. We do not employ
SMC schemes for private proximity measurement in our
scheme for two reasons. First, the generic SMC protocols
are prohibitively expensive in both communication and
computation. Second, our proposed social proximity mea-
surement involves not only the users’ inputs (i.e., communi-
ties), but also their private parameters (i.e., a’s and b’s that
will be introduced Section 3) which cannot be fed into the
circuits to calculate proximity.

Social proximity. The graph structure of social networks
has been exploited to derive effective proximity measures.
Katz measure [31] uses an ensemble of all the paths between
two users in the network graph to derive the social proxim-
ity. Liben-Nowell and Kleinberg [32] and Tong et al. [33]
also employ path-ensemble based methods for the future
link prediction in social networks and proximity measure-
ment. The path-ensemble based proximity measures are
known to be effective in link prediction and proximity mea-
surement in social networks as they capture more informa-
tion about the underlying social network. However, they
require the knowledge of the snapshot of the social network
graph, and are prohibitively expensive in computation.
Thus, these methods are not applicable to distributed prox-
imity measurement as proposed in this paper.

Social proximity based private matching. Among distributed
measurements of social proximity, one of the most common
and simplest proximity measure is the number of common1. Inwhat follows,weuse “communities” and “groups” interchangeably.
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friends or profile attributes between two users [4], [6], [7],
[8], [9], [11]. Intuitively, as the overlap between two users’
profile attributes or friend spaces grows, their proximity
increases. Based on distributed social proximity measure-
ment, Zhang et al. [5] use homomorphic encryption to
obtain fine-grained profile matching for mobile social net-
works. Similar profile matching schemes are presented in
[4], [6], [9], [10], [11]. Profile matching in mobile health
social network is studied in [7], [8] to privately match health
profiles. Recently, Zhang et al. [34] propose a mechanism to
match-making profile search in a decentralized multi-hop
mobile social network, where a user submits his/her
“preference-profile” in order to search other users matching
the profile. Similarly, Nagy et al. [12] present a framework
for finding common friends in a private manner using
secure computation, set intersection, and bloom filters. Note
that most of these studies focus on profile matching under
the assumption that the social proximity between two users
is symmetric, i.e., the social proximity calculated by each
user is the same. In this paper, we utilize communities and
friend circles in an OSN to derive a realistic asymmetric
social proximity in a distributed manner.

3 SYSTEM MODEL

3.1 Network Model

Consider an online social network (OSN) where users store
their information on their own devices. Such an OSN can be
a decentralized OSN like that in [35], where no single server
has information about all users, and two users can commu-
nicate via the Internet to establish a friendship. It can also
be an MSN where two users’ in close proximity can utilize
bluetooth or Wi-fi to communicate for private matching. In
addition, the network considered herein also includes the
scenarios in centralized OSNs like Facebook, Google+,
where users may not always be connected to the servers
and can use the information stored in their mobile devices
to find friends without the servers’ involvement.

Note that we consider social friendships bidirectional,
mutual, and reciprocating. In other words, if A is a friend
of B’s, B is also a friend of A’s. Besides, we notice that in
real life people value their friendships differently. Thus, as
shown in Fig. 1, we propose that each user groups his/her

friends into different friend circles like hometown friends,
family friends, university friends, co-workers, and gym
friends. In addition, we consider that each user i is affili-
ated with a set of communities, denoted by Ci ¼ fC1

i ;
C2

i ; . . . ; C
ci
i g. The set of communities a user i or his/her

friends are affiliated with, called “the overall community
set” of user i and denoted by Ci, is Ci ¼

S
j2N i

Cj, where
N i ¼ N i [ fig and N i denotes the set of user i’s
friends. We call a community in Ci one of user i’s overall
communities.

3.2 Asymmetric Distributed Social Proximity
Measurement

In order to measure the social proximity (denoted by C)
between two users in an OSN without revealing their pri-
vacy, we utilize the users’ overall community sets instead of
their private profiles. The intuition behind this is that two
persons who both have a lot of close friends in the same sev-
eral communities can probably be friends. In particular, we
take the following parameters into account. First, as men-
tioned before, a user in an OSN divides his/her friends into
different friend circles, which represent different friendship
weights to the user. In particular, suppose a user i has a set
of friend circles FCi ¼ fFC1

i ; FC
2
i ; . . . ; FC

fi
i g. In order to

quantify the significance of a particular friend circle FCj
i

(1 � j � fi), user i assigns an integer value a
j
i (0 �

a
j
i � amax) to FCj

i . A larger a
j
i indicates higher importance

of the friend circle to the user. Second, each user, say i, also
assigns an integer weight factor to each of the communities
he/she is affiliated with, say Cj

i (1 � j � ci), which is
denoted by biðCj

i Þ (0 � b
j
i � bmax). Note that amax and bmax

are predefined system parameters (integers) that are known
to all the users.

Considering the above parameters, we define a commu-
nity based social proximity between two users A and B as
follows. Let CAB ¼ CA \ CB ¼ fC1

AB; C
2
AB; . . . ; C

cAB
AB g, and

FCði; jÞ denote a function which returns user i’s friend cir-
cle(s) that i’s friend, j, is in, i.e., j 2 FCk

i for any k 2 FCði; jÞ.
Besides, we define FCði; iÞ ¼ f0g for any i, and a0

j ¼ amax

for any j. Thus, the social proximity between A and B
gauged by A is

CA B ¼
PjCABj

i¼1
P

j2Ci
AB
\NA

�
bj

�
Ci

AB

�P
fkjk2FCðA;jÞg a

k
A

�
PjCAj

i¼1
P

j2Ci
A
\NA

�
bj

�
Ci

A

�P
fkjk2FCðA;jÞg a

k
A

� ;

(1)

and that gauged by B is

CB A ¼
PjCABj

i¼1
P

j2Ci
AB
\NB

�
bj

�
Ci

AB

�P
fkjk2FCðB;jÞg a

k
B

�
PjCBj

i¼1
P

j2Ci
B
\NB

�
bj

�
Ci

B

�P
fkjk2FCðB;jÞg a

k
B

� ;

(2)

where, 0 � CA B � 1 and 0 � CB A � 1. Evidently, the
social proximity measures defined above are rational num-
bers. In (1),

P
fkjk2FCðA;jÞg a

k
A is the total weight of friend j

to A considering the multiple friend circles of A that j is
in. bjðCi

ABÞ is the weight of one of the common communi-
ties, i.e., Ci

AB, shared by A and B to j. Thus, the numerator

Fig. 1. System model.
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of the right-hand-side (RHS) of (1) represents the total
equivalent weight of the common communities shared by
A and B to A, considering both A’s and A’s friends’ per-
ceptions. Similarly, the denominator of the right-hand-side
of (1) represents the total equivalent weight of A’s commu-
nities to A, considering both A’s and A’s friends’ percep-
tions. Thus, (1) is the normalized weight of the common
communities to A considering both A’s and A’s friends’
perceptions. In other words, (1) quantifies how important
the common communities are to A. Similarly, (2) is the nor-
malized weight of the common communities to B consider-
ing both B’s and B’s friends’ perceptions and quantifies
how important the common communities are to B. Notice
that when calculating CA B, A only needs his/her weights
on his/her own friend circles and his/her friends’ weights
on A’s communities. In general, a larger CA B indicates a
closer social relationship of B to A.

Note that the proposed social proximity measurement is
asymmetric, i.e., CA B and CB A are not necessarily equal.
This is different from most of the distributed proximity
measurements proposed for private matching, which are
symmetric. We contend that asymmetric social proximity is
more realistic, which is supported by a common intuition
that the fact that A is the best friend of B does not necessar-
ily mean B is the best friend of A.

3.3 Cryptographic Tools

3.3.1 Paillier Cryptosystem

Paillier designed an efficient asymmetric cryptosystem,
called Paillier cryptosystem [36], based on decisional com-
posite residuosity assumption. Due to its attractive additive
homomorphic property, Paillier cryptosystem has been
widely used in many applications like secure e-voting and
private information retrieval. In particular, letting ENCð�Þ
and DECð�Þ denote the encryption and decryption functions
of Paillier scheme, respectively, we have

� ENCðm1Þ � ENCðm2Þ ¼ ENCðm1 þm2Þ
� ENCðmÞc ¼ ENCðc �mÞ

The Paillier cryptosystem is semantically secure for sufficiently

large public keys, which means that it is infeasible for a com-

putationally bounded adversary to derive significant informa-

tion about a message (plaintext) when given only its ciphertext

and the corresponding public key. In this study, we assume

that the public key is of 1,184 bits for sufficient semantical

security of the Paillier cryptosystem [5]. Therefore, a ciphertext

is of 2,048 bits, a Paillier encryption needs two 1,024-bit expo-

nentiations and one 2,048-bit multiplication, and a Paillier

decryption’s cost is equivalent to one 2,048-bit exponentiation.

Note that the proposed protocols can in fact work with
any cryptosystem which is semantically secure and sup-
ports additive homomorphism. We employ Paillier crypto-
system to facilitate our illustrations in this paper.

3.3.2 The FNP Scheme

Freedman et al. [13] design a private matching and set
intersection protocol, called FNP, using homomorphic
encryption, on which our protocols are based. In FNP, a
client constructs a polynomial P ðzÞ ¼ ðx1 � zÞðx2 � zÞ:::::::
ðxnC � zÞ ¼PnC

k¼0 ukz
k, where x1; x2; . . . ; xnC are the

elements of the client’s input set X. The client
then encrypts the coefficients and sends
ENCðu0Þ;ENCðu1Þ; . . . ;ENCðuncÞ to the server. Utilizing
the homomorphic property, the server constructs and eval-
uates the encrypted polynomial ENCðP ðzÞÞ at each of the
element in its own input set Y . The server then chooses a
random number ri, and computes and returns to the client
ENCðriP ðyiÞ þ yiÞ for each yi 2 Y . When the client
decrypts the ciphertext received from the server, it can
find all yi 2 X \ Y as P ðyÞ ¼ 0 for all yi’s which are the
roots of the polynomial P ðzÞ constructed by the client.

3.4 Adversary Model

Although there could be outsider adversaries trying to
eavesdrop on the communications in the OSN, or modify,
replay and inject messages, we focus on insider adversaries
in our protocol design, who are the participators of the pro-
tocols and pose more challenges in protecting users’ pri-
vacy. We believe, in the context of social networks, semi-
honest or Honest But Curious (HBC) adversary model best
describes the characteristics of adversaries, which is consid-
ered as the adversary model in this study. A semi-honest
adversary faithfully executes the protocols correctly but at
the same time tries to gather more information about the
other party than the protocols intend to disseminate.

4 ASYMMETRIC SOCIAL PROXIMITY BASED

PRIVATE MATCHING PROTOCOLS

In this section, we propose three novel and efficient social
proximity based private matching protocols with different
privacy levels. Before we delve into details, we first present
some definitions below.

Definition 1 (Initiator). 2 An Initiator is an OSN user who ini-
tiates a protocol for calculating social proximity. In other
words, an Initiator is an OSN user who asks another user (a
Responder) for friendship.

Definition 2 (Responder). A Responder, upon the the request
from an Initiator, replies by following the protocol.

Besides, when an Initiator asks a Responder for friend-
ship, it should be the Responder who determines whether
or not to accept the request by executing the protocol to find
the social proximity.

4.1 Protocol for Level 1 Privacy (L1P)

The protocol ensuring level 1 privacy is suitable for users
who decide to make friends with each other simply based on
the common communities of their overall community sets. In
this protocol, we first let the Responder learn the mutual
communities and the size of the Initiator’s input set ðCIÞ (i.e.,
the Initiator’s overall community set), while let the Initiator
learn nothing but the size of the Responder’s input set ðCRÞ
(i.e., the Responder’s overall community set). Then, the
Responder securely sends the common communities to the
Initiator, if she confirms the request from the Initiator.

2. Without loss of generality, we use masculine pronouns for an Ini-
tiator and feminine pronouns for a Responder.
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4.1.1 Protocol Details

We divide the protocol in two stages: offline and online. In
order to speed up thematching process, the Initiator executes
part of the protocol offline. In particular, the Initiator uses his
input setCI to construct the following polynomial:

P ðzÞ ¼ �
C

1

I � z
��
C

2

I � z
�
:::::::

�
C
jCI j
I � z

�
¼

XjCI j

k¼0
ukz

k; (3)

where C
i

I 2 CI (1 � i � jCI j). He then encrypts the coeffi-
cients uk’s of the polynomial and obtains ENCIðu0Þ;
ENCIðu1Þ; . . . ;ENCIðujCI jÞ, where ENCIð�Þ is the Initiator’s
homomorphic encryption function.

As shown in Fig. 1 in Appendix A (available in the
online supplemental material, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPDS.2014.2329016), in
the online stage, the Initiator first sends the encrypted
coefficients along with his public key to the Responder.
The Responder subsequently constructs the encrypted
polynomial based on the encrypted coefficients utilizing
the homomorphic property, i.e.,

ENCIðP ðzÞÞ ¼ ENCIðu0Þz
0 � ENCIðu1Þz

1 � :::: � ENCIðujCI jÞ
zjCI j

:

(4)

The Responder then evaluates ENCIðP ðzÞÞ at each of her
own input element, computes the following function, and
sends it along with her public key to the Initiator:

ENCI

�
P
�
C

i

R

�þRi

� ¼ ENCI

�
P
�
C

i

R

�� � ENCIðRiÞ;
where Ri is a random ID generated by the Responder for the
community corresponding to C

i

R, and of the same length as
P ðCi

RÞ. Then, in the second step, the two parties engage in a
challenge response protocol to establish a shared secret key.
In particular, the Initiator chooses a random nonce K as the
key for a predefined symmetric encryption function Eð�Þ (e.
g., AES), encrypts it with the Responder’s public key, and
sends ENCRðKÞ to the Responder, where ENCRð�Þ is the
Responder’s homomorphic encryption function.
The Responder recovers K and acknowledges with
ENCIðK þ 1Þ to the Initiator. Both parties use K as the
shared secret key in the third step. Finally, in the third step,
the Initiator decrypts the data received from the Responder
in the first step, i.e., ENCIðP ðCi

RÞ þRiÞ’s, encrypts the
decrypted data with the symmetric key K using the sym-
metric encryption algorithm EKð�Þ, and then sends
EK

�
DECIðENCIðCi

RÞ þRiÞÞ
� ¼ EK

�
P ðCi

RÞ þRi

�
back to

the Responder. Note that P ðCi

RÞ ¼ 0 when the correspond-
ing community C

i

R is a mutual community between the Ini-
tiator’s and the Responder’s overall community sets. Thus,
after recovering P ðCi

RÞ þRi, the Responder can know the
mutual communities by checking the Ri’s. If she does not
want to make friends with the Initiator, she can either
ignore or decline the request. Otherwise, she encrypts the
mutual communities with the shared secret K and sends
EKðCI \ CRÞ to the Initiator, who can now find the shared
communities. If he would like to continue, he can finally
become friends with the Responder. Note that to prevent
some Initiators from possibly knowing some of the

Responder’s communities by colluding with each other, the
Responder generates a new Ri corresponding to C

i

R upon
each friendship request.

4.1.2 Protocol Analysis

In the following, we analyze the privacy of, and the commu-
nication cost and computation cost of the protocol.

Privacy analysis. Here we analyze the privacy of the
protocol.

Theorem 1. Before they become friends, the Initiator only learns
jCRj, and CI \ CR if the Responder confirms his request, while
the Responder only learns jCI j and CI \ CR.

Proof. The Initiator uses semantically secure homomorphic
encryption to encrypt the coefficients of the polynomial
P , whose roots are the elements of his input set CI . The
Responder cannot decrypt or distinguish the coeffi-
cients, and hence cannot know CI but can learn jCI j. Fol-
lowing the protocol, the Responder then sends
ENCIðP ðCi

RÞ þRiÞ’s back to the Initiator, where Ri’s are
random numbers of the same length as P ðCi

RÞ’s. Thus,
the Initiator can only learn jCRj but nothing more. After
receiving P ðCi

RÞ þRi from the Initiator, the Responder
will be able to figure out CI \ CR, and let the Initiator
know as well if she decides to confirm the request. Oth-
erwise, the protocol terminates and both parties do not
know anything further about each other. tu
Computation and communication costs. The total computa-

tion cost and communication cost in this protocol can be ana-
lyzed similar to those in [13]. Differently, in the proposed
L1P, the Initiator executes part of the protocol offline which
in turn reduces the online computation cost. Specifically, the
Initiator, in the offline stage, computes the polynomial P ðzÞ
and encrypts its coefficients with his public key. As the
computational complexity of the exponentiation operation
dominates the other operations like multiplication and addi-
tion, we analyze the computation overhead focusing on
exponentiation operations. Recall that the input set size of
the Initiator and of the Responder are jCI j and jCRj respec-
tively, the offline computation cost of the Initiator is OðjCI jÞ
exponentiations. In the online stage, the Initiator’s computa-
tion cost is OðjCRjÞ due to decrypting ENCIðP ðCi

RÞ þRiÞ’s
received from the Responder. The Responder’s computation
cost for constructing the encrypted polynomial and evaluat-
ing at each of her inputs is OðjCRjlog log jCI jÞ exponentia-
tions, considering that the polynomial can be efficiently
evaluated by Hornor’s rule and the balanced bucket alloca-
tion scheme presented in [13].

Regarding the communication cost, the Initiator first
transmits OðjCI jÞ encrypted coefficients and the Responder
returns OðjCRjÞ ciphertexts to the Initiator. Subsequently, in
the next step, the Initiator returns OðjCRjÞ decrypted mes-
sages and the Responder returns OðjCI \ CRjÞ common
communities. Thus, the total communication cost for the Ini-
tiator is OðjCI j þ jCRjÞ and that for the Responder is
OðjCRj þ jCI \ CRjÞ.

Moreover, the L1P protocol allows parallel processing in
communication and computation which can further reduce
the online execution time. In particular, the Responder does
not have to wait for all the coefficients before beginning the
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computation of the encrypted polynomial. Similarly, when
she starts returning the evaluated encrypted polynomial at
each of her input, the Initiator can start decrypting the
ciphertexts as soon as he receives one. Hence, if the commu-
nication cost is equal to or greater than the online computa-
tion overhead in time, the total communication cost would
approximately be the total execution time of the protocol.

4.2 Protocol for Level 2 Privacy (L2P)

In the protocol for level 1 privacy (L1P), the Responder
determines whether or not to accept the Initiator’s request
for a social friendship only based on their common overall
communities, which may not characterize the social proxim-
ity well. In this section, we design a protocol for level 2 pri-
vacy, called L2P, utilizing the proposed community based
asymmetric social proximity measurement. This protocol is
suitable for the case when the Initiator is willing to establish
a friendship relation with the Responder but the Responder
accepts the relationship only if her requirement on the
friendship is fulfilled. In particular, in L2P, the Responder
accepts the friendship request from the Initiator if the social
proximity measured by her, i.e, CR I , is greater than a
threshold predefined by herself, denoted byCRt . The proto-
col is detailed as follows.

4.2.1 Protocol Details

Similar to that in L1P, an Initiator and a Responder can exe-
cute part of the protocol offline in order to speed up the
matching process.

OFFLINE. The same as that in L1P, the Initiator constructs

the polynomial P , with his inputs CI ¼ fC1

I ; C
2

I ; . . . C
jCI j
I g

being the roots, and encrypts the coefficients using his own

homomorphic encryption function ENCIð�Þ. On the other

hand, the Responder calculates the partial social proximity

corresponding to each of her overall communities as follows:

Ci
R I ¼

P
j2Ci

R\NR

�
bj

�
C

i

R

�P
fkjk2FCðR;jÞg a

k
R

�
PjCRj

i¼1
P

j2Ci
R\NR

�
bj

�
C

i

R

�P
fkjk2FCðR;jÞg a

k
R

� (5)

for any C
i

R 2 CR (1 � i � jCRj). The Responder needs to

encrypt the partial social proximity for all C
i

R’s with her

public key. However, Ci
R I is a fractional number and gen-

eral additive homomorphic schemes cannot be used to

encrypt the fractional numbers. Note that since a’s and b’s

are integers,Ci
R I is a rational number. Besides, the denom-

inator in (5) is a constant for all C
i

R 2 CR. We denote the

denominator byDR. The Responder encrypts the numerator

(integer) of the partial social proximity with her public key,

i.e., computes ENCRðCi
R I �DRÞ, where ENCRð�Þ is her

homomorphic encryption function. In addition, the

Responder assigns a random ID, Ri, to each of her overall

communities upon each friendship request.
ONLINE.When an Initiator and a Responder decide to exe-

cute the protocol, the Initiator first sends the encrypted coeffi-
cients of the polynomial P to the Responder. Note that the
Initiator and the Responder exchange their public keys to
establish a shared secret keyK in the sameway as that in L1P.

The detailed description of shared key establishment is omit-
ted below to avoid redundancy. The Responder then con-
structs the encrypted polynomial according to (4), and
evaluates the polynomial at each of her input C

i

R 2 CR. Tak-
ing advantage of the homomorphic property of the encryp-
tion, the Responder further constructs the followingmessage:

ðAi;Bi; CiÞ ¼
�
ENCI

�
ri � P

�
C

i

R

��
;ENCI

�
P
�
C

i

R

�
þ ENCR

�
Ci

R I �DR

��
; Ri

�
(6)

for each C
i

R 2 CR, where ri is a random number of the same
length as P ðyiÞ, and sends ðAi;Bi; CiÞ to the Initiator.

The Initiator then decrypts Ai, and for each i with
DECIðAiÞ ¼ 0, calculates DECIðBiÞ ¼ ð0þ ENCRðCi

R IÞ �
DRÞ ¼ ENCRðCi

R I �DRÞ, which implies the corresponding
input C

i

R 2 ðCI \ CRÞ. After that, the Initiator can calculate
the encrypted social proximity for the Responder by aggre-
gating all Bi’s as follows:

ENCRðCR I �DÞ
¼

Y
fijDECI ðAiÞ¼0g

DECIðBiÞ

¼
Y

fijDECI ðAiÞ¼0g
ENCR

X
j2Ci

R\NR

bj
�
C

i

R

� � X
fkjk2FCðR;jÞg

ak
R

0
@

1
A

0
B@

1
CA

¼ ENCR

XjCIRj

i¼1

X
j2Ci

R\NR

bj
�
C

i

R

� X
fkjk2FCðR;jÞg

ak
R

0
@

1
A

0
B@

1
CA

¼ ENCRðCR I �DRÞ:
(7)

Obviously, we can see that when Ai ¼ 0, the term Bi gives
the numerator of the encrypted (by the Responder) partial
social proximity attributed to the community Ci

R that is
common to both the Initiator and the Responder. Thus, due
to homomorphic property, the product of the encryption
over all the communities with Ai ¼ 0 is equal to the encryp-
tion of the sum of the partial social proximities attributed to
all the common communities shared by the Initiator and the
Responder, as shown in (7). As is evident from (2), (7) is in
fact the encrypted (by the Responder) social proximity
between the Responder and the Initiator gauged by the
Responder timesDR, i.e., ENCRðCR I �DRÞ.

The Initiator sends ENCRðCR I �DRÞ to the Responder,
who decrypts it and checks to see if CR I �DR � CRt �DR,
i.e. CR I � CRt . If not, the Responder aborts the protocol
and informs the Initiator. Otherwise, the Responder con-
firms the Initiator’s request, who then encrypts the Ri’s, cor-
responding to the cases when DECIðAiÞ ¼ 0, with the
symmetric key K and sends EKðRiÞ’s to the Responder.
After decrypting EKðRiÞ, the Responder can then know
CI \ CR and sends EKðCI \ CRÞ back to the Initiator, who
can now become friends with the Responder if he still
would like to proceed.

4.2.2 Extended Protocol for Level 2 Privacy (EL2P)

In the above L2P protocol, it is possible that the Responder
may learn more than just the social proximity CR I when
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receivingCR I �DR and henceCR I (the Responder knows
DR) from the Initiator. For example, if there happens to be
only one common community between the Initiator and the
Responder, then it is possible for the Responder to find out
the common community by looking at the partial social
proximity Ci

R I value of each of her communities even if
CR I 6� CRt . Similarly, even if there are multiple common
communities shared by the Initiator and the Responder, the
Responder may learn the common communities by check-
ing if the sum of several partial social proximity is equal to
CR I received from the Initiator. Here, we extend the L2P
protocol so that the Responder only learns whether CR I �
CRt þ �=DR, where � is a small number such that �� CRt ,
instead of the value of CR I . The detailed process of EL2P
is described in Fig. 2, in Appendix A, available in the online
supplemental material.

Specifically, at the end of step 1) of the online phase, the
Responder sends ENCRðCRt �DRÞ in addition to ðAi;Bi;CiÞ
to the Initiator. The Initiator then computes ENCRðCR I �
DRÞ according to (7), and chooses three large positive random
numbers r1, r2, and r3 such that 0� r1 < r2 < r3 and
� < r2�r1

r3
� Cmin, whereCmin is a predefinedminimum social

proximity threshold and known to all the users. Note that

ðr1 þ r3ðCR I �DRÞÞ � ðr3ðCRt �DRÞ þ r2Þ

¼) CR I � CRt þ
ðr2 � r1Þ=r3

DR

� �

¼) CR I � CRt þ �=DR:

Therefore, the Initiator can compute ðM;NÞ ¼ �
ENCRðr1 þ

r3ðCR I �DRÞÞ;ENCRðr3ðCRt �DRÞ þ r2Þ
�
as follows:

ENCRðr1 þ r3ðCR I �DRÞÞ
¼ ENCRðr1Þ � ENCRðCR I �DRÞr3
ENCRðr3ðCRt �DRÞ þ r2Þ
¼ ENCRðCRt �DRÞr3 � ENCRðr2Þ

and sends ðM;NÞ back to the Responder (instead of sending
ENCRðCR I �DRÞ to her). The Responder then checks to
see if DECRðMÞ � DECRðNÞ and follows the rest of the pro-
tocol accordingly in the same way as presented above.

We can see that in this extended protocol EL2P, the
Responder is only able to learn if CR I � CRt þ �=DR, i.e.,
CR I > CRt (since �=DR � Cmin=DR � CRt ), and the
above problem can be addressed.

4.2.3 Protocol Analysis

In the following we analyze the EL2P protocol in terms of
privacy, and computation and communication cost.

Privacy analysis.We first analyze the privacy of the proto-
col EL2P.

Theorem 2. Before they become friends, the Initiator learns only
jCRj and jCI \ CRj, and the mutual communities CI \ CR if
CR I > CRt , while the Responder learns only jCI j, and the
mutual communities CI \ CR ifCR I > CRt .

Proof. The Initiator uses semantically secure homomorphic
encryption to encrypt the coefficients of the polynomial
P , whose roots are the elements of his input set CI . The
Responder cannot decrypt or distinguish the coefficients,

and hence cannot know CI but can learn jCI j. Following
the protocol, the Responder then sends ðAi;Bi; CiÞ’s to
the Initiator, who can then know jCRj. By decrypting
ðAi;Bi; CiÞ’s and counting all Ai’s that are decrypted to
be 0, the Initiator can then know the size of the mutual
community set, i.e., jCI \ CRj, but does not know which
the mutual communities are. He then computes the tuple
ðM;NÞ, and sends it to the Responder. If the Responder
finds CR I > CRt , she informs the Initiator who sends
her the random IDs Ri’s, and hence can know the mutual
communities CI \ CR. Otherwise, the protocol termi-
nates and both parties do not know anything further
about each other. Besides, similarly to that in Theorem 1,
the Initiator and the Responder cannot know all the com-
munities in each other’s overall community set by artifi-
cially extending their input sets.

Moreover, one may argue that it is possible for the Ini-
tiator to cheat by increasing M, for example, computing
M 0 ¼M � ENCRðr4Þ where r4 > 0 or M 0 ¼Mr4 where
r4 > 1, so that the Responder will get DECRðMÞ >
DECRðNÞ and hence accepts his request. However, the
Initiator will always be caught since the Responder can
verify in step 3) of the online phase whether or not
CR I > CRt by checking the received Ri’s from the Initi-
ator before revealing CI \ CR to the Initiator. Without
receiving the mutual communities, the Initiator cannot
finally be authorized to make friends with the
Responder. tu

Computation and communication costs. The Initiator and the
Responder execute part of the protocol offline, as in L1P,
which can reduce the online computation time. In particu-
lar, in the offline phase, the Initiator incurs OðjCI jÞ exponen-
tiations to compute the encrypted coefficients of P ðzÞ.
Similarly, the Responder has a computation load of OðjCRjÞ
exponentiations to compute the partial social proximity off-
line. In the online phase, the computation cost for the Initia-
tor is OðjCRjÞ exponentiations (in step 2 of the online phase
as shown in Fig. 2 in Appendix A, available online). The
Responder performs OðjCRjlog logjCI jÞ exponentiations in
step 1) of the online phase.

As for the communication cost, the Initiator sends
OðjCI jÞ encrypted coefficients in step 1) and OðjCI \ CRjÞ
IDs (Ri’s) in step 3) of the protocol. The Responder, on
the other hand, replies with OðjCRjÞ encrypted cipher-
texts in step 1) and OðjCI \ CRjÞ communities in step 3).
Thus, the total communication overhead for the Initiator
is OðjCI j þ jCI \ CRjÞ and that for the Responder is
OðjCRj þ jCI \ CRjÞ.

4.3 Protocol for Level 3 Privacy

In the L2P protocol, the Responder determines whether or
not to be friends with the Initiator based on the community
based social proximity, while the Initiator still can onlymake
his final decision based on their common communities.
Besides, in terms of privacy, in L2P the Responder will know
CI \ CR if CR I > CRt , no matter whether the social prox-
imity measured by the Initiator is large enough or not. In this
section, we develop a protocol for level 3 privacy, called L3P,
to address the above problems. This protocol is suitable for
users with very high privacy requirements. In this protocol,
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both the Initiator and the Respondermake sure their require-
ments on friendship are fulfilled before revealing anymatch-
ing information to each other. If either of the requirements is
not satisfied, neither of them knows the matching profile
information, i.e., the common communitiesCI \ CR.

4.3.1 Protocol Description

The same as that in L1P and L2P, part of the L3P protocol
can be completed offline. In what follows, we briefly
describe the offline and online phases of the protocol,
respectively, which are also shown in Fig. 3 in Appendix A,
available in the online supplemental material.

OFFLINE. In the offline phase, the Initiator constructs a
polynomial P with his input set CI being the roots, while
the Responder constructs a polynomial Q with her input set
CR being the roots (step 1)). Each of them encrypts the coef-
ficients of their polynomials using their own public keys in
step 2), and computes partial community based social prox-
imities in step 3).

ONLINE. In online phase, the Initiator and the Responder
exchange their encrypted coefficients in step 1). The Initiator
and the Responder construct ENCRðQðzÞÞ and ENCIðP ðzÞÞ,
respectively, based on the received ciphertexts, and evalu-
ate at each of their own inputs, and exchange their tuples
ðA0i; B0iÞ and ðAi;BiÞ, i.e.,
�
ENCR

�
r0i � P

�
C

i

I

��
;ENCR

�
r0i � P

�
C

i

I

�þ ENCI

�
Ci

I R �DI

��
�
ENCI

�
ri � P

�
C

i

R

��
;ENCI

�
ri � P

�
C

i

R

�þ ENCR

�
Ci

R I �DR

��
along with ENCIðCIt �DIÞ and ENCRðCRt �DRÞ, respec-
tively, in step 2). Note that r0i and ri are random numbers of
the same length as P ð�Þ, Similar to that in step 2) of the L2P
online phase, the Initiator and the Responder exchange the
tuples ðM 0; N 0Þ and ðM;NÞ in step 3), i.e.,

�
ENCR

�
r01 þ r03

�
CR I �DR

��
;ENCR

�
r03
�
CRt �DR

�þ r01
��

�
ENCI

�
r1 þ r3

�
CI R �DI

��
;ENCI

�
r3ðCIt �DI

�þ r1
��
;

where 0� r01 < r02 < r03 and � <
r0
2
�r0

1
r0
3
� Cmin, and 0� r1 <

r2 < r3 and � < r2�r1
r3
� Cmin. If at least one of the social prox-

imity criteria is not satisfied, i.e., if CI R <CIt

or=and CR I <CRt , they cannot become friends and the pro-

tocol stops at step 4) before either of them is able to learn any

matching information. Otherwise, i.e., if CI R > CIt and

CR I > CRt both hold, the Initiator and the Responder are

both assumed to be willing to establish a social friendship

and they can become friends now.

4.3.2 Protocol Analysis

Next, we present the analysis on the privacy, and computa-
tion and communication cost of the L3P protocol.

Privacy analysis. The privacy of the L3P protocol is ana-
lyzed as follows.

Theorem 3. Before they become friends, the Initiator learns jCRj
and jCI \ CRj, while the Responder learns jCI j and
jCI \ CRj.

Proof. The proof is similar to that of Theorem 2 and hence
omitted here. tu

Moreover, in most previous schemes, e.g., [4], [5], [6], [7],
[8], [9], [11], a user can request friendship with another
user, run some protocols, and then leave with the user’s pri-
vate information before the user can know anything. In our
schemes, as shown in Theorems 1-3, when one user requests
friendship with another, he/she can know some of the
user’s important private information only if the user is will-
ing to accept the request.

Computation and communication costs. A significant frac-
tion of the computation in L3P can be done offline. In partic-
ular, as shown in Fig. 3 in Appendix A, available online, the
Initiator performs ðjCI j þ 1Þ encryptions on the coefficients
of the polynomial P ðzÞ and also computes jCI j encryptions
on partial social proximity measurements. Thus, the Ini-
tiator’s total offline computation complexity is OðjCI jÞ
exponentiations. Similarly, the Responder’s total offline
computation complexity is OðjCRjÞ exponentiations. In the
online phase, following the similar analysis to that of the
previous two protocols, the Initiator’s computation com-
plexity in step 2) is OðjCI jlog logjCRjÞ exponentiations and
that in step 3) is OðjCRjÞ exponentiations. The Responder’s
computation complexity is OðjCRjlog logjCI jÞ and OðjCI jÞ
exponentiations in step 2) and step 3), respectively.

Moreover, the Initiator’s communication cost is OðjCI jÞ
and OðjCRjÞ in step 1) and step 2), respectively. Similarly,
the Responder’s communication cost is OðjCRjÞ and OðjCI jÞ
in step 1) and step 2), respectively. Therefore, both the Initi-
ator and the Responder have a total communication cost of
OðjCRj þ jCI jÞ. In addition, as mentioned before, some com-
putation and communication can be done in parallel, thus
reducing the overall protocol execution time.

5 PERFORMANCE EVALUATION

5.1 Asymmetric Social Proximity Measure
Validation

In Section 3.2, we propose an asymmetric social proximity
metric between two users, which is based on each user’s as
well as his/her friends’ perceptions on the common com-
munities between the two users. In this section, we design
an experiment to validate the proposed metric using one
author’s (whom we denote by A) Facebook ego-network as
shown in Fig. 2. The ego-network has 556 nodes (A’s
friends) and 7,856 edges (interconnections among A’s
friends). The degree of each node in the network gives the
number of common friends between A and the node (A’s
friend). Note that A is not in the network.

In order to quantify the proximity between A and any of
his friends according to the asymmetric proximity metric
proposed in this paper, A divides his friends into the fol-
lowing six friend circles: FCA ¼ fFC1

A; FC
2
A; FC

3
A; FC

4
A;

FC5
A; FC

6
Ag ¼ {Friends from hometown, Friends in the cur-

rent university, Friends from the previous university, Job 1
friends, Job 2 friends, Others}.3 Starting clockwise from the

3. Interestingly, the different clusters in the ego-network as shown
in Fig. 2 approximately represent these different friend circles of A
(except “Others”). This opens up the possibility of automating the pro-
cess of dividing one’s friends into different friend circles. The weights
on the friend circles can be estimated automatically, e.g., based on the
number of friends in them, and finally confirmed by the user. The
weights on the communities can be estimated similarly.
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large cluster in the lower right in Fig. 2, the clusters corre-
spond to FC1

A to FC5
A respectively. We look at each node

(A’s friend) in the network, and associate it with one or
more communities according to its current and previous
locations, occupations, academic institutions, etc. For exam-
ple, a node V in the network can be a member of city Ti and
city Tj communities, the ECE department of university Ui

community, and the organization Oi community. The val-
ues of a and b are set from 0 to 10. In this experiment, A
assigns a1

A ¼ 10;a2
A ¼ 9;a3

A ¼ 9;a4
A ¼ 7;a5

A ¼ 5, and a6
A ¼ 2.

Besides, for all V 2 N A and Cj
V 2 CV , we have bV ðCj

V Þ ¼ 10
if jCj

V j � 50, and bV ðCj
V Þ ¼ 5 otherwise.

Fig. 3 shows the social proximity values computed based
on the normalized number of common friends, the normal-
ized number of common profile attributes, and the asymmet-
ric proximity metric proposed in this paper for each of the
556 nodes (friends of A) in the network. In particular, the
normalized number of common friends is calculated as the
number of common friends betweenA and one ofA’s friends
divided by the total number of possible common friends, i.e.,
556, in this case. Similarly, the number of common profile
attributes (i.e., communities here) is normalized regarding
the total number of profile attributes (communities) ofA, i.e.,
jCAj. We contend that compared to the other twometrics, the
proposed asymmetric proximity measure can better describe
the friendship valuations. In the following, we choose four
nodes (W;X; Y; Z) to compare these three metrics in detail.

Specifically, the normalized number of common friends
cannot fully differentiate the importance of friends. For
example, Z and X share approximately the same number of
friends with A, and their normalized numbers of common
friends withA are 0.11 and 0.13, respectively. In contrast, the
proposed asymmetric proximity of Z is nearly twice as much
as that ofX (CA Z ¼ 0:39;CA X ¼ 0:20), since Z shares two
communities with A and belongs to two different friend
circles FC1

A, FC
2
A whileX only shares one community withA

and belongs to only one friend circle FC1
A .

The higher social proximity value of Z is justified from
the network theory perspective. Particularly, the ratio
of betweenness centrality4 of Z to that of X is 5.5 : 1, which
emphasizes the relative importance of node Z overX.

Similarly, the normalized number of common attributes
fails to well differentiate the importance of friends as well.
In our experiment, as shown in Fig. 3, most nodes have the
same normalized number of common attributes, and hence
cannot be differentiated based on this metric. More impor-
tantly, it also fails to fully establish friendships whenever
possible. For example, many of A’s friends do not have any
common attributes with A and hence their normalized num-
bers of common attributes are 0. On the other hand, the pro-
posed asymmetric proximity measure gives non-zero
values as those friends share attributes with some other
friends of A. The experiment confirms our argument in the
beginning that whether two people can become friends not
only depends on whether they have anything (attributes) in
common, but also depends on whether their friends have
anything in common.

To give another example, A’s friendsW and Y have same
normalized number of common friends (0.2) and the same
number of common attributes (0). In contrast, the proposed
asymmetric proximity measure is able to differentiate these
two friends, i.e., 0.18 and 0.11, respectively, as they are asso-
ciated with different communities and belong to different
friend circles with different sizes and weights.

Moreover, we conduct similar experiments on ego-net-
works of Z, and find that CZ A ¼ 0:46 which is larger than
CA Z , i.e., 0.39, as shown above. Apparently, the results
show that Z values the friendship with A more than A does.
This is because the size of the overall community set of A is
about 15 percent larger than that of the overall community
set of Z (jCAj ¼ 192; jCZ j ¼ 165). Besides, A is in two of the
total four different friend circles of Z, whereas Z is in two
of the six friend circles of A. This demonstrates the asym-
metric characteristics of friendships captured by our prox-
imity measure.

5.2 Performance Comparison of Private Matching
Protocols

In this section, we evaluate the proposed protocols’ per-
formances in terms of computation cost, communication
overhead, total running time, and energy cost, and compare
them with the performances of the protocols developed in
[5] and [4]. In particular, Zhang et al. [5] present fine-
grained private matching protocols using an additively sep-
arable function like l1 norm. [5] defines d as the size of the
public profile attribute set, which is the set of all possible
profile attributes in an OSN. To conduct fair comparisons,
we set the size of a user’s overall community set equal to d
in our proposed protocols. Another parameter g in [5]
denotes the range of the integer used to define a user’s level
of interest in a particular attribute in the public attribute set.
For a reasonably fine-grade private matching, we consider
g ¼ 10. Besides, [5] presents four protocols with comparable

Fig. 2. Facebook Ego-network of one author A.

4. Betweenness centrality is a measure of a node’s centrality in a net-
work [37]. The betweenness centrality of a node v in a network is equal
to the number of shortest paths from all nodes to all others that pass
through node v.
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computation and communication complexity. We compare
our protocols with their most efficient one: Protocol 1.
Similarly, Lin et al. [4] propose a privacy preserving friend
searching protocol where a user seeks to be introduced to
another user’s friends with certain attributes. We set attri-
bute size m ¼ g ¼ 10 and the number of friends equal to d
for fair comparisons. The parameters for the elliptic curve
cryptography in [4] are the same as those used in their
paper, i.e., we use type D curve of the form y2 ¼ x3 þ axþ b
and the base field is represented by 160 bits.

We have implemented our proposed protocols using a
Java implementation of Paillier’s cryptosystem [38]. We
carry out simulations on a notebook with an Intel Core 2
Duo CPU and 2 GB RAM. In the simulations, the same as
that in [5], we focus on two wireless nodes communicating
with each other, which both use IEEE 802.11 DCF as the
MAC protocol with a data rate of 2 Mbps. Besides, the
energy consumption analysis neglects the energy consumed
in computation and only considers the energy cost due to
communications. In particular, we follow the energy model
in QualNet [39] and assume the Transmission: Reception: Idle
energy consumption ratios are 1.57 : 1.14: 1 [40].

We conduct two sets of simulations in this study. In the
first simulation, we vary the size of the overall community
set/the public profile attribute set/the number of friends
while keeping the percentage of shared community con-
stant at 10 percent, and g, m at 10. For simplicity, we con-
sider the Initiator and the Responder have the same overall

community set size. Fig. 4a compares the total of online and
offline computation cost. We can see that our most expen-
sive protocol L3P has much lower computation cost than
the most efficient protocol, Protocol 1, of [5] and the proto-
col of [4]. The reason is that each party in [5] needs to com-
pute OðdgÞ exponentiations which is very expensive.
Similarly, a larger number of ciphertexts due to Zero
Knowledge Proof of Knowledge (ZKPoK) and blind key
extraction in [4] result in a higher computation complexity.
As shown in Fig. 4b, the communication overhead in [5]
and [4] increases faster than our protocols when d/the num-
ber of friends increases. The communication cost of [4] is
lower than that of [5] because of the smaller size of cipher-
texts. Fig. 4c compares the total protocol running time. Note
that parallel processing between the communication and
computation is implemented whenever possible in the pro-
tocols. Besides, the total running time takes into account the
packet overheads at different layers. In addition, Fig. 4d
shows the energy consumption of the protocols. We can eas-
ily find that our protocols require less running time and
consume less energy than Protocol 1 in [5] and the protocol
in [4]. We further extend the first experiment by breaking
down the computation, communication, and energy costs to
those for the Initiator and those for the Responder as shown
in Fig. 5. Note that the protocols in [5] and [4] need to run
twice in order for both the Initiator and the Responder to
obtain the private matching results, and the cost for the Ini-
tiator and that for the Responder are the same. We can see

Fig. 4. Comparison of total computation, communication, energy costs, and protocol running time (jCI j ¼ jCRj ¼ d ¼ no. of friends; jCI \ CRj ¼ 10% �
jCI jðjCRjÞ and g ¼ m ¼ 10). The X-axis represents the size of overall community set ðjCI j ¼ jCRjÞ, the size of public profile attribute set (d), and the
number of friends in our proposed protocols, [5], and [4] respectively.

Fig. 3. Calculated proximity between A and A’s friends using three different metrics.
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that both the Initiator and the Responder are subject to
lower costs in our protocols.

In the second set of simulations, we analyze the perform-
ances of our protocols when the percentage of common
communities between the Initiator and the Responder
varies between 0 and 100 percent . Fig. 6a shows the compu-
tation cost. In particular, L1P’s computation cost is irrele-
vant to the percentage of common communities since the
computation cost of L1P does not depend on jCI \ CRj.
Besides, both EL2P’s and L3P’s computation cost increase
only a little as jCI \ CRj increases. Regarding the communi-
cation overhead, Fig. 6b shows that the communication
overhead of the three protocols almost remains the same
even when jCI \ CRj increases from 0 to 100 percent of the
size of the overall community set. Fig. 6c shows the impact
of the percentage of common communities on the total pro-
tocol running time. EL2P and L3P experience slight increase
in total protocol running time since the computational (and
communication too in L2P) overhead increases with the
increase of jCI \ CRj. Similarly, there is slight increase in
the energy consumption of L1P and of EL2P when the

fraction of the common communities over the size of the
overall community set increases as shown in Fig. 6d. The
energy consumption of L3P remains constant since there is
no increase in communication, and hence no additional
energy consumption, when the percentage of common com-
munities increase. We further divide the computation, com-
munication, and energy cost in this set of experiments into
the corresponding cost incurred by the initiator and the
responder in Fig. 7.

6 CONCLUSION

The ever increasing use of OSNs has introduced a new para-
digm in interacting with existing friends and making new
friends in the online world as well as in real life. Current pri-
vate profile matching schemes lead to privacy breaches. How
to enable people to explore new friends in OSNs while pre-
serving their privacy is an important and challenging prob-
lem. In this work, we have exploited the community structure
of an OSN to define a realistic asymmetric social proximity
measure, and presented three efficient protocols for privately
computing the social proximity between two users in OSN.
We have validated the proposed measure using real social

Fig. 6. Performance comparison with varying size of the percentage of the shared communities between the Initiator and the Responder jCI \ CRj
(jCI j ¼ jCRj ¼ 200Þ.

Fig. 5. Computation, communication, and energy cost for the Initiator
and for the responder (jCI j ¼ jCRj ¼ d = No. of friends, jCI \ CRj ¼
10% � jCI jðjCRjÞ and g ¼ m ¼ 10). The X-axis represents the size of
overall community set ðjCI j ¼ jCRjÞ, the size of public profile attribute
set (d), and the number of friends in our proposed protocols, [5], and [4]
respectively.

Fig. 7. Computation, communication, and energy cost for the initiator
and for the responder with varying size of the percentage of the shared
communities between the initiator and the responder jCI \ CRj (jCI j ¼
jCRj ¼ 200Þ.
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network data and the simulation study shows the efficacy and
the efficiency of the schemes compared to the state-of-the-art
schemes.
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