
IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 1, MARCH 2013 341

Multi-Objective Optimal Energy Consumption
Scheduling in Smart Grids

Sergio Salinas, Ming Li, and Pan Li

Abstract—A major source of inefficiency in power grids is the
underutilization of generation capacity. This is mainly because
load demand during peak hours is much larger than that during
off-peak hours. Moreover, extra generation capacity is needed to
maintain a security margin above peak load demand. As load de-
mand keeps increasing and two-way communications are enabled
by smart meters (SMs), demand response (DR) has been proposed
as an alternative to installing new power plants in smart grids. DR
makes use of real-time schemes to allow users to modify their load
demand patterns according to their energy consumption costs. In
particular, when load demand is high, energy consumption cost
will be high and users may decide to postpone certain amount
of their consumption needs. This strategy may effectively reduce
the peak load demand and increases the off-peak demand, and
hence could increase existing generation capacity utilization and
reduce the need to install extra generation plants. In this paper,
we consider a third-party managing the energy consumption of
a group of users, and formulate the load scheduling problem as
a constrained multi-objective optimization problem (CMOP).
The optimization objectives are to minimize energy consumption
cost and to maximize a certain utility, which can be conflicting
and non-commensurable. We then develop two evolutionary algo-
rithms (EAs) to obtain the Pareto-front solutions and the -Pareto
front solutions to the CMOP, respectively, which are validated by
extensive simulation results.

Index Terms—Energy consumption scheduling, evolutionary al-
gorithms, multi-objective optimization.

I. INTRODUCTION

I N POWER GRIDS, generation capacity is required to meet
peak-hour load demand plus a security margin. However,

according to recent studies, the average utilization of the gen-
eration capacity is below 55% [1]. This leads to inefficient op-
eration of power grids because a portion of generation plants
is largely unused or underutilized, but must still be maintained
and supervised to guarantee its reliability. On the other hand,
as energy demand, and peak load demand as well, continue in-
creasing, additional generation capacity will be needed to ac-
commodate future load demand, which requires a large invest-
ment and might lead to even lower utilization.
Recently, the smart grid (SG) has been proposed as a new type

of electrical grid to modernize current power grids to efficiently
deliver reliable, economic, and sustainable electricity services.
One of the key features of the SG is the replacement of conven-
tional mechanical meters with smart meters to enable two-way

Manuscript received April 01, 2012; revised April 10, 2012; accepted July
09, 2012. Date of publication September 28, 2012; date of current version Feb-
ruary 27, 2013. This work was supported in part by the U.S. National Science
Foundation under Grants CNS-1149786, ECCS-1128768, CNS-1147851. Paper
no. TSG-00173-2012.
The authors are with the Department of Electrical and Computer Engi-

neering, Mississippi State University, Mississippi State, MS 39762 USA
(e-mail: sas573@msstate.edu; ml845@msstate.edu; li@ece.msstate.edu).
Digital Object Identifier 10.1109/TSG.2012.2214068

communications between users and grid operators. Using the
communication infrastructure of the SG, it is possible to shape
the users’ load demand curves by means of demand response
(DR) strategies. One promising DR strategy is real-time pricing
(RTP), where utility companies charge users with a price that
varies according to the generation cost, i.e., the higher the gen-
eration cost, the higher the price. The advantage of RTP is three-
fold. First, users may reduce their energy consumption when
the price is high, and hence lower their electric bills. Second,
peak-hour load demand can be reduced, thus reducing the re-
dundant generation capacity needed to meet reliability require-
ments. Third, off-peak load demand can be increased, which can
increase the utilization of the available generation capacity.
Most current research on real-time pricing focuses on how

to optimally schedule all users’ energy consumption given their
predefined energy demand. In particular, Mohsenian-Rad et al.
[2] propose an autonomous load scheduling algorithm based on
cooperative game theory, where each user is a player and their
load schedules are the strategies. Agarwal and Cui [3] propose a
load scheduling noncooperative game among users that can be
reduced to a congestion game. In both studies, the single opti-
mization objective is to minimize the electric bill of the users,
while the reduction of the peak-hour consumption is considered
as a desirable secondary effect. Moreover, Samadi et al. [4] pro-
pose an auction based scheme where users provide their utility
functions and energy constraints to the utility company, who
then replies with a set of prices that maximizes users’ utility
functions. A similar auction scheme is also proposed by Li et
al. [5].
Notice that previous study mostly aims at a single objective,

e.g., to minimize users’ cost. In this paper, we formulate the
load scheduling problem as a constrained multi-objective op-
timization problem (CMOP). Specifically, we consider a third-
party managing the energy consumption of a group of smart grid
users. All users submit their energy requests to the third-party,
which then optimally schedules their energy consumption so
that its two objectives can be satisfied. The first objective is to
minimize the total energy consumption cost, while the second
one is to maximize its utility measured by a certain utility func-
tion. This third party can be a company, who schedules its de-
partments’ energy consumption in order to minimize the cost
and maximize its gross income. Or it can be a community man-
ager, who schedules the residents’ energy consumption so that
the total energy cost is minimized and its utility (e.g., life com-
fortness living in this community) is maximized.
We note that these two objectives considered in this study

are conflicting and non-commensurable. In the literature, evo-
lutionary algorithms (EAs) have been proven to be effective in
finding good approximations of optimal solutions to multi-ob-
jective optimization problems [6]–[11]. In particular, EAs aim
to find a set of solutions that approximate the Pareto-optimal

1949-3053/$31.00 © 2012 IEEE

342 IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 1, MARCH 2013

front in the objective space, which all follow two basic steps it-
eratively: variation and selection. Variation consists of choosing
some solutions from the existing (maybe random) solutions to
be combined and produce new ones. Then, selection is per-
formed to keep the good solutions and discard the bad ones.
Different ways for selecting the best solutions and storing them
have been proposed in the literature. In this study, to solve the
formulated CMOP, we first develop an evolutionary algorithm,
called LSEA, to retrieve a set of Pareto-optimal solutions and
show the trade-offs between energy consumption cost and the
utility. Then, in order to further improve the algorithm effi-
ciency, we present an -approximate evolutionary algorithm,
called -LSEA, to obtain -Pareto fronts of the objective space.
Extensive simulations have also been conducted to evaluate the
performance of the two proposed algorithms.
The rest of this paper is organized as follows. Section II

introduces system models considered in this study. We de-
scribe the constrained multi-objective optimization problem in
Section III. Section IV details the proposed evolutionary algo-
rithms for solving the CMOP. Simulation results are presented
in Section V. Finally, we conclude this paper in Section VI.

II. SYSTEM MODEL

In this section, we briefly describe smart grids, and energy
cost model and utility function model in smart grids.

A. Smart Grids

Smart grids have been promoted by many governments as
a way of addressing energy independence and sustainability,
global warming, and emergency resilience issues [12]. In smart
grids, the energy consumption of each user is monitored by
a smart meter (SM), which is also capable of controlling the
user’s appliances (e.g., turning them on or off, adjusting their
settings). Due to their communication capability, SMs also en-
able two-way communications between users and utility com-
panies, via multihop wireless, wired, or hybrid networks.
In this study, we consider a third-party managing the energy

consumption of a group of smart grid users. Each user submits
its energy request to the third-party, e.g., 2 kilowatt-hour (kWh)
between 10:00 and 18:00, before a day starts (0:00). Then, the
third party optimally schedules all users’ energy consumption
(either locally or via cloud computing) so that its objectives can
be satisfied, which are first, to minimize the total energy con-
sumption cost, and second, to maximize its utility measured by
a certain utility function. For example, this third party can be a
company, who schedules its departments’ energy consumption
in order to minimize the cost and maximize its gross income.
The third party can also be a community manager, who sched-
ules the residents’ energy consumption so that the total energy
cost is minimized and its utility (e.g., life comfortness living in
this community) is maximized.

B. Energy Cost Model

We discretize a day into time slots of equal length, which
are denoted by a set . A complete energy consumption
schedule for user during one day is given by a vector

, where is user ’s energy consump-
tion in the th time slot, and , i.e., user ’s
required energy consumption during one day. Then, the total
energy consumption of all users in time slot ,
denoted by , is

where is the cardinality of the set , i.e., the number
of users in this area.
Besides, we assume that the energy price functions are known

to the third party. One example for such a price function is given
below:

where is the total energy consumption of all users, and
are non-negative coefficients, and is a upper bound on

the energy consumption for this price function to hold.
Furthermore, in practice, the energy price function may be

piecewise. In this paper, we consider a two-piece price function
without loss of generality, which is composed of two functions
denoted by and , respectively. Assume that and

, i.e., the energy price increases even faster once the
energy consumption exceeds a certain threshold. Consequently,
the overall cost function of consuming energy, denoted by

, is shown in the equation at the bottom of the page,
where accounts for a marginal cost. Notice that when
the total energy consumption exceeds a certain threshold, i.e.,

, the cost goes to infinity. It means that
the third party is only allowed to use this much energy (i.e.,

) at most, which could be a constraint to ensure
the stability of the neighboring areas considered from the whole
grid perspective.

C. Utility Function Model

In addition to low cost, the third party also intends to achieve
high utility, which is calculated by a utility function. As men-
tioned before, the utility could be a company’s gross income,
or a community’s living comfort, and so on. Usually, the utility
functions are non-decreasing with respect to the consumed
power, concave, and results in a zero utility value given zero
power consumption [4]. For simplicity, we use the following
utility function, denoted by , in this study:

(1)

SALINAS et al.: MULTI-OBJECTIVE OPTIMAL ENERGY CONSUMPTION SCHEDULING IN SMART GRIDS 343

where is the total energy consumption of all the users. Note
that the utility value may not have the same unit as the energy
cost.

III. CONSTRAINEDMULTI-OBJECTIVE OPTIMIZATION PROBLEM
FORMULATION

In general, a constrained multi-objective optimization
problem (CMOP) is defined as follows [13]:

where is the set of objective functions, is the set of
inequality constraints, is the set of equality constraints,
and and are the minimum and maximum values of each
decision variable , respectively. A CMOP minimizes ob-
jective functions simultaneously, where the objective functions
represent (usually) competing or conflicting objectives.
In this study, we consider two objective functions, and for-

mulate a CMOP as follows:

(2)

(3)

(4)

(5)

In the above CMOP, the first objective function minimizes the
total energy generation cost during one day, and the second
objective function maximizes the utility function. Constraint
(2) guarantees that in each time slot the total energy consump-
tion does not exceed the maximum generation capacity of the
system. Constraint (3) indicates that each user has certain en-
ergy demand which needs to be satisfied between a required
starting time and a required stopping time . Constraint
(4) represents a user’ tolerance of its daily energy consumption,
i.e., the user is fine with consuming to energy
in one day. Constraint (5) simply means that the starting time
is no later than the stopping time for each user, which are both
between time slots 1 and .

IV. SOLVING CMOPS BY EVOLUTIONARY ALGORITHMS

Evolutionary algorithms (EAs) have been proven to be effec-
tive in finding good approximations of CMOPs’ optimal solu-
tions. The basic idea is to use the crossover, mutation and selec-
tion principles of Darwinian evolution to combine, modify and
choose possible solutions iteratively until a good approxima-
tion of the optimal solution to a CMOP is found. Specifically,
crossover and mutation are probabilistic procedures that com-
bine solutions in order to make (possibly better) new solutions.
Selection is a deterministic procedure that discards the bad so-
lutions found so far and keeps the good ones. Besides, selection

procedures are based on the solutions’ fitness, which is usually
assigned by an EA based on Pareto dominance and the distance
to its nearest neighbors in the objective space. Before we dive
into the details, we give some definitions as follows.
Definition 1: In a CMOP, a solution vector is said to Pareto

dominate another solution vector , if for all
and there exists some such that ,

where is the dimension of the solution vectors.
EAs are usually applied to unconstrained optimization prob-

lems. Some different penalty functions and definitions of domi-
nance have been proposed in the literature to handle constraints.
Penalty functions are functions of the infeasibility of a solution,
where larger values are assigned to solutions farther away from
the feasible space of the problem while smaller values are as-
signed to solutions closer to the feasible space. In this paper, we
adopt the dominance definition given by Deb et al. [6], which
takes constraints into consideration and is described below.
Definition 2: A solution vector is said to constraint-domi-

nate another solution vector if any of the following
conditions is true:
1) is feasible but is not.
2) Both and are feasible and Pareto dominates , as
defined in Definition 1.

3) Both and are infeasible, but has lower overall con-
straint violation.

After an EA is executed, several non-dominated solutions, in
the Pareto sense, are obtained. Each of these solutions is a com-
promise between the multiple objective functions. In what fol-
lows, we first propose an evolutionary algorithm to find Pareto
optimal solutions to the load scheduling problem formulated in
Section III, and then develop an -approximate evolutionary al-
gorithm to obtain -Pareto fronts of the solutions.

A. Load Scheduling With an Evolutionary Algorithm (LSEA)

An evolutionary algorithm is usually composed of several im-
portant processes, including initialization, selection, crossover,
and mutation. In the following, we describe such processes, re-
spectively.
In the beginning, random solutions, called individuals, are

created to form the initial population . The initial individ-
uals satisfy constraints (3)–(5) but may not meet constraint (2).
Next, all individuals are compared to each other using the con-
straint-dominance definition (Definition 2) and each individual
is assigned a rank according to the number of individuals by
which it is dominated. For example, non-dominated individuals
receive a rank of 1, individuals dominated by only one indi-
vidual receive a rank of 2, and so on. Individuals with the same
rank form a front. Besides, a crowding distance [6] is assigned
to each individual within the same front. The crowding distance
is a measure of how close an individual is to other individuals in
the objective space, where a larger crowding distance indicates
the individual is farther away from other individuals. Specifi-
cally, crowding distance is computed in steps, where is
the objective space dimensionality. In each dimension , the
individuals are sorted according to their th objective value.
Then, we obtain for each individual the aggregate distance to
its two adjacent neighbors with respect to the th objective. The
first and last individuals in each dimension are assigned a
crowding distance of to preserve diversity. Finally, an in-
dividual’s crowding distance is calculated as its total aggregate

344 IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 1, MARCH 2013

distances in all dimensions. Please refer to Function 1 for more
details.

Function 1 Crowding Distance Assignment

Input: Individuals ’s in front , objective space dimension

1: Calculate for each individual the objective values
in the objective space

2: Set to 0 for each individual

3: for to do

4: Sort individuals ’s in in ascending order according
to

5: The crowding distance of the first and of the last individual
are set to infinity

6: for to the size of minus 1 do

7:

8: end for

9: end for

Output: Crowding distances ’s

Once all individuals are assigned a rank and crowding dis-
tance, the next step is to select some individuals from , to
create a mating pool for crossover and mutation. The selection
is done using binary tournament, i.e., randomly selecting two
individuals from and comparing their ranks. The individual
with the smaller rank will be selected for the mating pool. If
the two individuals have the same rank, then the one with larger
crowding distance is selected. If both individuals have the same
rank and the same crowding distance, then either one is selected
with a probability of 0.5. After the mating pool is filled, the
crossover process starts. Each time two random individuals are
taken from the mating pool, called parents, to create two more
individuals, called offsprings, with probability . Then, the off-
spring are mutated with probability . Usually, is large and

is small. After offspring individuals have been created,
they are grouped in .
The th iteration will start by creating an aggregated

population . Then all individuals in popu-
lation will be assigned a rank and crowding distance. Indi-
viduals with rank 1 are added to . Recall has a fixed size
of . If there are less than individuals with rank 1, all in-
dividuals with rank 1 will be added to the new population .
To fill in the remaining spots in individuals with rank 2 are
considered, and so on. When the last front is considered, and its
size is larger than the remaining spots, individuals with larger
crowding distances will be included in . All other individuals
are discarded. Finally, a new offspring population is created by
selecting individuals from for the mating pool, as described
previously, and performing crossover and mutation. When the
number of iterations reaches a predefined threshold, say , the
algorithm stops and the non-dominated individuals can be ex-
tracted from to form a Pareto-front.
Notice that the above description does not specify how to

conduct crossover and mutation. Next, we introduce these two
processes, respectively. In particular, we adopt the simulated
binary crossover (SBX) [14] scheme for the crossover process.

This procedure creates two offsprings, and , from two parents
and as follows. For any , , we get

where and are the elements of vectors and , respec-
tively, and are the elements of vectors and , respec-
tively, and is a sample generated by a random number gen-
erator shown below:

where is a random variable uniformly distributed in [0,1], and
is a predefined parameter.
Besides, we perform the mutation process shown in the fol-

lowing. For any , , we have

(6)

where is uniformly distributed between 0 and 1.
In the case that the th decision variable of an offspring after

crossover and mutation fall outside the lower and upper bounds
specified in the CMOP constraints, they are reset as follows:

We further detail the evolutionary algorithm for load sched-
uling in Algorithm 1, which is called LSEA.

Algorithm 1 Load Scheduling with an EA (LSEA)

Input:
1: Create an random initial population, of size , satisfying
constraints (3)–(5) in the CMOP
2: Apply non-dominating sorting to
3: Apply binary tournament to to fill mating pool
4: Crossover individuals in mating pool to fill offspring set
5: Apply mutation to
6: Set the maximum number of generations,
7: for to do
8:
9: Apply non-dominating sorting to
10: Apply binary tournament to to fill mating pool
11: Apply crossover to individuals in mating pool to generate

12: Apply mutation to individuals in
13: Create
14: end for
Output: Non-dominated individuals in

B. Load Scheduling With an -Approximate Evolutionary
Algorithm (-LSEA)

The evolutionary algorithm proposed above provides a dense
and diverse set of solutions on the Pareto front (i.e., the Pareto

SALINAS et al.: MULTI-OBJECTIVE OPTIMAL ENERGY CONSUMPTION SCHEDULING IN SMART GRIDS 345

TABLE I
COST FUNCTION PARAMETERS (: THE NUMBER OF USERS,)

optimal solutions). However, a dense set of solutions may not be
necessary because adjacent solutions provide similar trade-offs.
In the following, we develop an -approximate evolutionary al-
gorithm for the load scheduling problem.
We first give some definitions as follows [15].
Definition 3: Let and be two vectors of dimension in

the objective space. Then is said to -dominate for some
, denoted as , if

Definition 4: Let be the objective space and . Then
a set is called an -approximate Pareto front of , if any
vector is -dominated by at least one vector ,
i.e.,

The set of all -approximate Pareto fronts of is denoted as
.

Definition 5: Let be the objective space and . Then
a set is called an -Pareto front of if
1) is an -approximate Pareto front of , i.e.,

, and
2) contains Pareto points of only, i.e., .
The set of all -Pareto fronts of is denoted as .
Themain idea of -LSEA is to choose a parent from a variable

size population , called the archive, and another parent from a
fixed size population . After crossover, the resulting offspring
may be accepted into the archive depending on whether or not
it -dominates any individual in . Similarly, the offspring may
be accepted into the population depending on its dominance re-
lation to individuals in . After a predefined number of off-
springs have been generated, the solutions in the archive form a
diverse -approximate Pareto front. In what follows, we explain
in details the archive acceptance and population acceptance al-
gorithms as well as -LSEA.
Regarding the archive acceptance algorithm, we adopt the

selection strategy proposed by Deb et al. [16] to find -Pareto
fronts with guaranteed convergence and diversity, which is
shown in Procedure 1. This algorithm divides the two-dimen-
sional objective space into boxes of size and stores in
an archive only one non-dominated solution per box on the
-Pareto fronts. Using a generalized dominance relation on
these boxes, the algorithm maintains a set of non-dominated
boxes, and hence guaranteeing the -approximation property.
In particular, Procedure 1 accepts or rejects an offspring as
follows. We first identify the solutions in the archive that are
dominated by the current offspring. Here, dominance relation
is determined using the vector of each solution obtained
with Function 2. If the offspring dominates any solution, the
dominated solution is removed and the offspring is added to
the archive. When there are no box-dominated solutions in the
archive, we further check two cases. First, if the offspring lies
inside a box occupied by an archive solution, then the domi-
nating solution in the Pareto-sense is kept in the archive and the

TABLE II
PARAMETERS IN CONSTRAINTS (2)–(4)

dominated solution is discarded. Second, if the offspring lies
inside a box where there is no archive solution, the offspring is
added to the archive. Moreover, since in each box there is only
one non-dominated solution, the convergence property can be
guaranteed, too.
In addition, we have the following theorem [17].
Theorem 1: Let , , be the

set of all objective vectors created by an multi-objective evolu-
tionary algorithm and given to the selection operator defined in
Algorithm 1. Then is an -Pareto set of with bounded
size, i.e.,
1)
2)

Procedure 1 Selection process for -Pareto Front

Input:
1:
2: if then
3:
4: else if then
5:
6: else if then
7:
8: else
9:
10: end if
Output:

Function 2

Input:

1: for all do
2:
3: end for
4:
Output:

Procedure 2 Population Acceptance Procedure for -LSEA

Input: population , offspring
1: Apply Function 1 to to assign crowding distances
to each population individual
2: if then
3: Replace the individual that is dominated by the offspring
and has the smallest with (or break ties randomly).
4: else if then
5: Discard
6: else

346 IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 1, MARCH 2013

Fig. 1. Pareto front for 5, 15, 25, and 50 users respectively, using LSEA. (a) 5 users; (b) 15 users; (c) 25 users; (d) 50 users.

Fig. 2. -Pareto front for 5, 15, 25, 50 users, respectively, using -LSEA. (a) 5 users; (b) 15 users; (c) 25 users; (d) 50 users.

7: Replace the with the smallest with offspring (or
break ties randomly).
8: end if
Output:

Our population acceptance mechanism, detailed in Procedure
2, uses dominance relations and crowding distances to accept an
offspring into the population or reject it. In particular, the algo-
rithm works as follows. First, a crowding distance is assigned to
each population individual in using Function 1. Next, it
is determined if offspring dominates any . If it does, the al-
gorithm replaces the dominated that has the lowest crowding
distance with . In case is dominated by any , it is re-
jected. On the other hand, if does not dominate any and it
is also non-dominated, the with the lowest among all in-
dividuals in is replaced by . If several individuals have
the same lowest , then a randomly chosen one is replaced
by . Finally, the procedure returns the updated population .
Notice that this procedure only compares the offspring with all
members of the population , rather than compare it with all
members of the whole population as in Algorithm 1. This keeps
the computational cost low, and the use of crowding distances
maintains a well spread population.
Finally, we describe in details the -approximate evolutionary

algorithm (-LSEA) for the load scheduling problem in Algo-
rithm 2. Initially, a random population is created satisfying
constraints (3)–(5) specified in the CMOP. Then, the non-dom-
inated individuals in are copied into archive . In the th
iteration, an individual is randomly selected from the popu-
lation using binary tournament and another solution is
randomly chosen from the archive to form the mating pool.
The parent individuals, and , are used for crossover, and the
resulting offspring is subject to mutation. Unlike that in the
previous algorithm, only one offspring is generated per iter-
ation. Next, offspring is accepted or rejected from the popu-
lation using Procedure 2. Lastly, Algorithm 1 is used to decide
whether or not offspring is added into the archive . The algo-

TABLE III
COMPLETION TIME

rithm stops after a predefined number of offsprings have been
generated. Since fewer solutions are needed to converge to the
Pareto-front, this algorithm has a shorter computation time than
Algorithm 1.

Algorithm 2 Load Scheduling with an -Approximate EA
(-LSEA)

1: Create a random initial population, of size , satisfying
constraints (3)–(5) in the CMOP
2: Copy non-dominated individuals in to
3: for to do
4: Choose a solution from using binary tournament,
and a solution from at random
5: Use and as parents to create one offspring .
6: Apply mutation to resulting in
7: Run Procedure 2 to decide if is included in population

8: Run Procedure 1 to decide if is included in the achieve
9: end for

Output: -Pareto fronts in

V. SIMULATION RESULTS

In this section, we conduct simulations to evaluate the per-
formance of the proposed two algorithms, i.e., Load Sched-
uling with an EA (LSEA, Algorithm 1) and Load Scheduling

SALINAS et al.: MULTI-OBJECTIVE OPTIMAL ENERGY CONSUMPTION SCHEDULING IN SMART GRIDS 347

Fig. 3. Population evolution using LSEA at different generations for 25 users. (a) 15 min ; (b) 90 min (Iterations); (c) 240 min (
Iterations); (d) 600 min (Iterations).

Fig. 4. Population evolution using -LSEA at different generations for 25 users. (a) 1 min (Iterations); (b) 15 min (Iterations); (c) 60 min
(Iterations); (d) 120 min (Iterations).

with an -approximate EA (-LSEA, Algorithm 2), respectively.
The proposed algorithms are implemented in Matalb2011b on a
general purpose computer with a 3.4GHz CPU and 4GB RAM
memory. The parameters for the cost function in (1) are pre-
sented in Table I, and some parameters indicated in constraints
(2), (3) and (4) are given in Table II which are the same for all
users. Besides, when two parents are selected for reproduction,
the crossover process (SBX) will be applied with probability

and , and each offspring will mutate with
probability , where is the number of the current
iteration and is the predefined iteration number.

A. LSEA

We first evaluate the performance of LSEA with 5, 15, 25,
and 50 users, respectively. In particular, each user has a daily
energy requirement , which is uniformly distributed between
0 and 24 kWh, to be scheduled throughout 24 hours. Fig. 1(a)
shows the obtained Pareto-front for 5 users. Each cross in the
graph represents a solution found by LSEA and its position is
determined by the values of the corresponding objective func-
tions. We can observe that the range of the cost objective goes
from $2 to $48 and the utility function spans from 10 to 70.
These solutions in objective space provide us with a wide set
of trade-offs between the total energy consumption cost and
the overall utility. Moreover, we notice that the Pareto-front is
densely populated, i.e., adjacent solutions are very close to each
other. Fig. 1(b)–1(d) show similar results for the cases of 15, 25,
and 50 users, respectively.

B. -LSEA

Next, we show the performance of -LSEA with 5, 15, 25,
and 50 users, respectively. The same as before, we assume that
each user has a daily energy requirement , which is uniformly
distributed between 0 and 24 kWh, to be scheduled throughout
24 hours. As shown in Fig. 2(a), we can easily see there is an
-Pareto front with only a few solutions, which can make the

final decision easier. Fig. 2(b)–2(d) also show an -Pareto front
that can be easily identified. Moreover, in these three cases the
results are obtained using a large number of iterations. However,
as we will show in the next section, in fact a lot fewer genera-
tions are enough to obtain an -Pareto front. Here, we show the
results with a large number of iterations after an -Pareto front
has been identified to be sure that the algorithm has converged.
Moreover, the time and the number of iterations needed for

obtaining the results shown in Fig. 1 and Fig. 2 are presented
in Table III. We can see that the efficiency of -LSEA is higher
than that of LSEA, and the efficiency improvement gets more
significant when the number of users becomes larger.

C. Convergence of LSEA and -LSEA

Finally, we compare the convergence speed of LSEA and
-LSEA by looking into the evolution of the population of
LSEA and of the archive of -LSEA, when the number of users
is 25. Fig. 3(a)–3(d) show the progress of the population of
LSEA when the running time is equal to 15, 90, 240, and 600
min, respectively. We can find that a good Pareto front can
be found only after 600 min. Compared to that, we can see in
Fig. 4(a)–4(d) that a good -Pareto front can be achieved after
120 min, which is much faster. Besides, considering the modest
capability of the computer used to run these simulations, the
third party usually would have more computing resources and
thus even shorter computation time. It can also employ cloud
computing to accomplish the load scheduling tasks, which
would further reduce the computation time.

VI. CONCLUSIONS

In this paper, we consider a third-party managing the energy
consumption of a group of smart grid users, and formulate
the load scheduling problem as a constrained multi-objective
optimization problem. The first objective is to minimize the
total energy consumption cost, while the second is to maximize
its utility measured by a certain utility function. To solve the

348 IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 1, MARCH 2013

problem, we first develop an evolutionary algorithm, called
LSEA, to retrieve a set of Pareto-optimal solutions and show
the trade-offs between energy consumption cost and the utility.
Then, in order to further improve the algorithm efficiency,
we present an -approximate evolutionary algorithm, called
-LSEA, to obtain -Pareto fronts of the objective space. Ex-
tensive simulations have also been conducted to evaluate the
performance of the two proposed algorithms. We can observe
that -LSEA is more efficient compared to LSEA.

REFERENCES
[1] G. Strbac, “Demand side management: Benefits and challenges,” En-

ergy Policy, vol. 36, no. 12, pp. 4419–4426, November 2008.
[2] A. Mohsenian-Rad, V. Wong, J. Jatskevich, R. Schober, and A. Leon-

Garcia, “Autonomous demand-side management based on game-theo-
retic energy consumption scheduling for the future smart grid,” IEEE
Trans. Smart Grid, vol. 1, no. 3, pp. 320–331, Dec. 2010.

[3] T. Agarwal and S. Cui, “Noncooperative games for autonomous con-
sumer load balancing over smart grid,” CoRR, 2011 [Online]. Avail-
able: http://arxiv.org/abs/1104.3802

[4] P. Samadi, R. Schober, and V. Wong, “Optimal energy consumption
scheduling using mechanism design for the future smart grid,” in Proc.
IEEE Int. Conf. Smart Grid Commun. (SmartGridComm), Brussels,
Belgium, Oct. 2011.

[5] D. Li, S. Jayaweera, and A. Naseri, “Auctioning game based demand
response scheduling in smart grid,” in Online Conf. Green Commun.
(GreenCom), Sep. 2011.

[6] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: Nsga-ii,” IEEE Trans. Evol.
Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002.

[7] J. Knowles and D. Corne, “The Pareto archived evolution strategy:
A new baseline algorithm for Pareto multiobjective optimisation,” in
Proc. Congr. Evol. Comput. (CEC), Washington, DC, Jul. 1999.

[8] E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Improving the strength
Pareto evolutionary algorithm,” TIK-Rep. No. 103, 2001.

[9] J. Horn, N. Nafpliotis, and D. Goldberg, “A niched Pareto genetic algo-
rithm for multiobjective optimization,” in Proc. 1st IEEE Conf. Evol.
Comput., Orlando, FL, Jun. 1994, pp. 82–87.

[10] D. W. Corne, J. D. Knowles, and M. J. Oates, “The Pareto envelope-
based selection algorithm for multiobjective optimization,” in Proc.
Parallel Problem Solving From Nat. Conf., Paris, France, Sep. 2000,
pp. 839–848.

[11] D. A. V. Veldhuizen and G. B. Lamont, “Multiobjective optimization
with messy genetic algorithms,” in Proc. Symp. Appl. Comput., Villa
Olmo, Italy, Mar. 2000.

[12] U.S. Dept. of Energy, “Communications requirements of smart grid
technologies,” Oct. 5, 2010.

[13] C. A. C. Coello, G. B. Lamont, and D. A. V. Veldhuizen, Evolutionary
Algorithms for Solving Multi-Objective Problems. New York:
Springer, 2007.

[14] R. B. Agrawal and K. Deb, “Simulated binary crossover for continuous
search space,” Indian Institute of Technology, Convenor Tech. Rep.,
1994, .

[15] E. Zitzler, M. Laumanns, and S. Bleuler, “A tutorial on evolutionary
multiobjective optimization,” inMetaheuristics for Multiobjective Op-
timisation, ser. Lecture Notes in Economics and Mathematical Sys-
tems. New York: Springer, 2003, vol. 535, pp. 3–38.

[16] K. Deb, M. Mohan, and S. Mishra, “Evaluating the Domination based
multi-objective evolutionary algorithm for a quick computation of
Pareto-optimal solutions,” Evol. Comput., vol. 13, no. 4, pp. 501–525,
Winter, 2005.

[17] M. Laumanns, L. Thiele, E. Zitzler, and K. Deb, “Archiving with guar-
anteed convergence and diversity in multi-objective optimization,” in
Proc. Genet. Evol. Comput. Conf., New York, Jul. 2002.

Sergio Salinas (S’06) received the B.S. degree in
telecommunications engineering from Jackson State
University, Jackson, MS, in 2010. He is currently
working towards the Ph.D. degree at the Department
of Electrical and Computer Engineering, Mississippi
State University, Starkville.
His research interests include cyber-physical sys-

tems, cloud computing, and online social networks.

Ming Li (S’09) received the B.E. degree in electrical
engineering from Sun Yat-sen University, China, in
2007 and the M.E. degree in electrical engineering
from Beijing University of Posts and Communica-
tions, China, in 2010, respectively. She is currently
working towards the Ph.D. degree in the Department
of Electrical and Computer Engineering, Mississippi
State University, Starkville.
Her research interests include cross-layer opti-

mization, and security and privacy in cognitive radio
networks, smart grids, and cloud computing.

PanLi (S’06–M’09) received the B.E. degree in elec-
trical engineering from Huazhong University of Sci-
ence and Technology,Wuhan, China, in 2005, and the
Ph.D. degree in electrical and computer engineering
from University of Florida, Gainesville, in 2009, re-
spectively.
He is currently an Assistant Professor in the De-

partment of Electrical and Computer Engineering,
Mississippi State University, Starkville. His research
interests include capacity and connectivity inves-
tigation, cross-layer optimization and design, and

security and privacy in wireless networks, complex networks, cyber-physical
systems, mobile computing, and cloud computing.
Dr. Li has been serving as an Editor for IEEE JOURNAL ON SELECTED AREAS

IN COMMUNICATIONS—Cognitive Radio Series and IEEECommunications Sur-
veys and Tutorials, a Feature Editor for IEEE Wireless Communications, and a
Guest Editor for IEEE Wireless Communications SI on User Cooperation in
Wireless Networks. He received the NSF CAREER Award in 2012.

