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In this chapter we present a multi-camera platform to monitor the environ-
ment which is integrated to a multi-robot platform to enhance situation aware-
ness. The multi-camera platform consist of two distinct stereo camera systems
as use different vision approaches which will be described in detail. One of the
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stereo vision systems is applied to reason on object manipulation events, while
the other system is used to detect an event such as a person leaving a bag
in a corridor. The results from either of these two systems are encapsulated
in a string message and sent via wireless network to the multi-robot system
which, on alarm, will dispatch a robot to monitor the region of interest. Our
ultimate goal is that of maximizing the quality of information gathered from
a given area thus implementing a Heterogeneous mobile and reconfigurable
multi-camera video-surveillance system.

10.1 Introduction

The problem of detecting and responding to threats through surveillance tech-
niques is particularly well suited to a robotic solution comprising of a team of
multiple robots. For large environments, the distributed nature of the multi-
robot team provides robustness and increased performance of the surveillance
system. Here we develop and test an integrated multi-robot system as a mo-
bile, reconfigurable, multi-camera video-surveillance system.

The main stages of the pipeline in a video-surveillance system are the
moving object detection and recognition, tracking and activity recognition.
One of the most critical and challenging components of a semi-automated
video surveillance is the low-level detection and tracking phase. Data is fre-
quently corrupted by the camera’s sensor (e.g. CCD noise, poor resolution,
motion blur, etc.), the environment (e.g. illumination irregularities, camera
movement, shadows, reflections, etc.), and the objects of interest (e.g. trans-
formation, deformation, occlusion, etc.). Even small detection errors can sig-
nificantly alter the performance of routines further down the pipeline, and
subsequent routines are usually unable to correct errors without using cum-
bersome, ad-hoc techniques. Compounding this challenge, low-level functions
must process huge amounts of data, in real-time, over extended periods. To
adapt to the challenges of building accurate detection and tracking systems,
researchers are usually forced to simplify the problem. It is common to in-
troduce certain assumptions or constraints that may include: fixing the cam-
era [31], constraining the background [30], constraining object movement, ap-
plying prior knowledge regarding object-appearance or location [29], assuming
smooth object-motion, etc. Relaxing any of these constraints often requires
the system to be highly specified for the given task. Active contours may be
used to track non-rigid objects against homogeneous backgrounds [3], prim-
itive geometric shapes for certain simple rigid objects [10], and articulated
shapes for humans in high-resolution images [25]. There has been a push to-
ward identifying a set of general features that can be used in a larger variety of
conditions. Successful algorithms include the Maximally Stable Extremal Re-
gion (MSER) , Harris-Affine, Hessian-Affine and Salient Regions [22]. Despite
their recent successes, each algorithm has its own weaknesses, and achieving
flexibility still requires the combination of multiple techniques [27]. Since most
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of these approaches are either not real-time, or are barely real-time; running
several in unison is usually not feasible on a standard processor.

Recently, to adapt to the challenges of building accurate detection and
tracking systems, work has also been carried out using per-pixel depth in-
formation provided by stereo imagery devices to detect and track multiple
objects [4, 9, 11, 16, 24, 33]. What is mainly thanks to ‘improved perfor-
mance’ on software computing for depth imagery [26, 1, 2] and also more af-
fordable stereo imagery hardware [1, 2]. In [4, 9, 11] the detected and tracked
features are directly applied on the depth information itself, while in [16, 24]
the detection and tracking is done after the analysis of depth information is
integrated with the colour information.

In this Chapter we will mainly focus on two approaches to develop two
different video surveillance systems. The first approach consists of applying
a real-time, colour-based, MSER detection and tracking algorithm. In the
second method, a multi-object tracking system is presented based on a ground
plane projection of real-time 3D data coming from a stereo imagery, giving
distinct separation of occluded and closely-interacting objects. The rest of the
chapter is structured as follows: Section 10.2 presents the architecture of the
whole integrated system. In Section 10.3 the pipeline of processes of the first
camera system is described and in Section 10.4 the second camera system is
presented. In Section 10.5 the high level process of the outputs from previous
pipeline processes is provided. In Section 10.6, the results from the prototype
system are provided to finish in Section 10.7 with the conclusions of this work.

10.2 System Architecture

We considered a highly heterogeneous system, where robots and cameras inter-
operate. These requirements make the problem significantly different from
previous work. Figure 10.1 illustrates the architecture of the system. We also
considered different events and different sensors and we will therefore consider
different sensor models for each kind of event. We focused on the dynamic
evolution of the monitoring problem, where at each time a subset of the agents
will be in response mode, while the rest of them will be in patrolling mode.
Therefore, the main objectives of the developed system are:

1. Develop environment monitoring techniques through behaviour analysis
based on stereo cameras,

2. Develop distributed multi-robot coverage techniques for security and
surveillance,

3. Validate our solution by constructing a technological demonstrator showing
the capabilities of a multi-robot system to effectively self-deploy itself in the
environment and monitor it.
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FIGURE 10.1 Block diagram of the proposed architecture.

10.2.1 Multi-Robot Monitoring Platform

As already mentioned, the problem of detecting and responding to threats
through surveillance techniques is particularly well suited to a multi-robot
platform solution comprising of a team of robots. Although this chapter does
not focus on the description of these type of platforms, our approach has been
concentrating on extending the work done in multi-robot patrolling, adding
the capability for the robots to respond to events detected by visual and other
sensors in a coordinate way.

Two issues are considered and solved through the project: Developing a
general algorithm for event-driven distributed monitoring based on our pre-
vious work has solved these problems. We already developed and successfully
implemented new dynamic distributed task assignment algorithms for teams
of mobile robots: applied to robotic soccer [18] and for foraging-like tasks [12].
More specifically, in [18] we proposed a greedy algorithm to effectively solve
the multi-agent dynamic and distributed task assignment problem, which is
very effective in situations where the different tasks to be achieved have dif-
ferent priorities. In [12] we also proposed a distributed algorithm for dynamic
task assignment based on token passing that is applicable when tasks are
not known a priori, but are discovered during the mission. The problem con-
sidered here requires both finding an optimal allocation of tasks among the
robots and taking into account tasks that are discovered at run-time. There-
fore it is necessary to integrate the two approaches. As a result, we do not
only specialise these solutions to the multi-robot surveillance and monitoring
task, but also study and develop extensions to these techniques in order to
improve the optimality of the solutions and the adaptively to an open team
of agents, taking into account the physical constraints of the environment and
of the task.
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10.2.2 Multi-Camera Platform

The multi-camera platform consists of two stereo cameras. In one of the cam-
eras a novel, real-time, colour-based, MSER detection and tracking algorithm
is implemented. The algorithm synergistically Combines MSER-evolution
with image-segmentation to produce maximally stable segmentation. Our
MSER algorithm clusters pixels into a hierarchy of detected regions using
an efficient line-constrained evolution process. Resulting regions are used to
seed a second clustering process to achieve image-segmentation.

The resulting region-set maintains desirable properties from each process
and offers several unique advantages including fast operation, dense coverage,
descriptive features, temporal stability, and low-level tracking. Regions that
are not automatically tracked during segmentation can be tracked at a higher-
level using MSER and line-features. We supplement low-level tracking with an
algorithm that matches features using a multi-phased, kd-search algorithm.
Regions are modelled using transformation-invariant features that allow iden-
tification to be achieved using a constant-time hash-table. In the other stereo
camera a multi-object tracking system is implemented, based on a ground
plane projection of real-time 3D data coming from a stereo imagery, giving
distinct separation of occluded and closely-interacting objects. This approach
consists in tracking, using Kalman Filters [5], fixed templates that are cre-
ated combining the height and the statistical pixel occupancy of the objects
in the scene. These objects are extracted from the background using a Gaus-
sian Mixture Model combining luminance and chroma signals (YUV-colour
space [28]) and depth information obtained from the stereo devices used in
this work. The mixture model is adapted over time and is used to create a
background model that is also upgraded using an adaptive learning rate pa-
rameter according to the scene activity level on a per-pixel basis. The results
presented in Figures 10.9 and 10.10 illustrate the validity of both approaches.

10.3 Maximally Stable Segmentation and Tracking

for Real-Time Automated Surveillance

The feature detection and tracking algorithm proposed in this section was
specifically designed to satisfy the existing need for a system that can robustly
track multiple deformable objects, in a variety of settings, in real time (15 fps),
on a modest processor (4 GHz). The algorithm can be used on both station-
ary and moving cameras, and provides seamless transitions between each. For
increased flexibility, the algorithm tracks regions using complimentary fea-
tures. These include: colour-blob features, which are typically more reliable
for tracking unstructured or deformable objects through significant transfor-
mation. It also includes line-corner features, which offer better localisation
and are less affected by partial object-occlusion. Features are detected in a
way that optimizes performance and feature-stability (Section 10.3.1). Fea-
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tures are tracked using an optimized, multi-phased, kd-tree-based approach
(Section 10.3.2). Discriminating between foreground and background regions
is achieved using a unique background model consisting of high-level features
(Section 10.3.3). Modelling and identification of object-regions is achieved us-
ing a fast transformation-invariant modelling algorithm, and a constant-time
hash-table-based search (Section 10.3.4).

10.3.1 Region Detection

The primary function of the region-detection phase is to massively reduce the
amount of input data, while simultaneously preserving useful features. This
is usually the most critical and error-prone step of processing. Even a modest
320 × 240 image contains 76,800 pixels, each of which can present 16,777,216
different values. To reduce unimportant data, detection algorithms typically
search an input-image for a set of patterns that are both stable and unique.
Stability ensures that the same feature will be detected in future frames,
while uniqueness ensures that a tracker can distinguish between the features.
Mikolajczyk provides a comparison of the most promising feature-detection
techniques [22]. Among those tested, the MSER detector was found to be su-
perior in all scene types and for every type of transformation. Additionally, the
MSER detector operated appreciably faster than the competing algorithms,
processing 800x640 pixel images at sub-second frame rates using a 4.2 GHz
processor.

The MSER algorithm was originally developed by Matas et al. [21] to
identify stable areas of light-on-dark, or dark-on-light, in grayscale images.
The algorithm is implemented by applying a series of binary thresholds to
an image. As the threshold value iterates, areas of connected pixels grow and
merge, until every pixel in the image has become a single region. During this
process, the regions are monitored, and those that display a relatively stable
size through a wide range of thresholds are recorded. This process produces
a hierarchical tree of nested MSERs. Unlike other detection algorithms, the
MSER identifies comparatively few regions of interest. This is beneficial in
reducing computational costs of subsequent phases, but can be problematic
when used for general object tracking because there is no guarantee that an
object of interest will be represented by a MSER.

To increase the number of detections and improve coverage, Forssen [13]
redesigned the algorithm to incorporate colour information. Instead of group-
ing pixels based on a global threshold, Forssen incrementally clustered pixels
using the local colour gradient. Forssen’s method is based on the extension to
colour bt looking at successive time-steps of an agglomerative clustering of im-
age pixels. Therefore, this process identifies regions of similar-coloured pixels
that are surrounded by dissimilar pixels. The seleciton of time steps is sta-
bilsed against intensity scalings and image blur by modelling the distribution
of edge magnitude. Although Forssen observed an increase in detections and
an improvement in results, his algorithms had some limitations. First, the al-
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gorithm deteriorates quickly when confronted with noise or non-edge gradients
(occurring on curved surfaces or lightly-textured objects). This deterioration
occurs because, at the pixel level, these gradients are nearly indistinguishable
from object boundaries. To limit this effect, Forssen applied multiple types
of smoothing to his data. This improved stability of some regions, but at the
expense of others. The second limitation resulted from Forssen’s comparison
of adjacent pixels to determine merge criteria. In most video feeds, the spatial
correlation of colour information is too high to offer reliable contrast, and
MSER stability is greatly compromised. Forssen’s response was to normal-
ize edge weights in a way that ensured region growth occurred evenly across
the maximum threshold-iteration interval. Although this reduced missed de-
tections, it greatly increased the extent that regions were detected multiple
times at slightly different scales. Multiple detections require additional post-
processing culling operations, and when combined with the natural incon-
sistencies of MSER detection, make reliable tracking between frames almost
impossible.

Our approach takes advantage of the increased detection offered by
Forssen’s colour-based approach, while greatly reducing the extent of com-
promise. Our algorithm offers the following improvements over Forssen’s ap-
proach:

1. Region-growth is constrained using detected lines. This improves segmen-
tation results on objects with high-curvature gradients.

2. Our MSER evolution process merges three-pixel units, instead of two-pixel
units. This reduces computation costs, and allows the gradient to be mea-
sured with greater precision.

3. Our algorithm returns either a nested set of regions (traditional MSER-
hierarchy formation), or a non-nested, non-overlapping set of regions (typi-
cal to image segmentation). Using non-nested regions significantly improves
tracking speed and accuracy.

4. Regions in the flat MSER representation are completely filled in with pixels
(every pixel in the image is assigned to exactly one region). This produces
attractive segmentation and more accurate tracking.

5. Regions are constructed using both spatial and temporal information. This
increases stability and speed of operation.

6. Region-tracking is partially achieved at the lowest level of MSER formation.
This reduces the number of regions that must be tracked in subsequent
phases of the algorithm.

7. The Canny-lines used in segmentation are available for other functions such
a tracking or structure analysis.
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8. The MSER segmentation portion of our algorithm uses only one threshold
“MIN-SIZE”, which constrains minimum region-size and MSER-stability.
This is an improvement over traditional colour-based MSER algorithm,
which requires users to set separate thresholds for minimum size, MSER-
stability, nested-region overlap, and others.

Our MSER algorithm is a multi-phase process involving Line Detection,
MSER-Tree Construction, Region Expansion and Region Feed-Forward.

Line Detection

The traditional colour-based MSER algorithm is largely limited by its strict
dependence on the colour-gradient. Theoretically, even if two regions have high
gradient measurements spanning all but one pixel of their shared border, that
one-pixel break will cause the regions to be detected as one. This characteristic
is particularly limiting when the algorithm is applied to real-world videos since
noise, movement-blur, shadows, reflections, etc. can all degrade the gradient.
The Canny is much more effective at identifying a continuous border between
objects since it considers a larger section of the gradient. If a low-gradient gap
interrupts a high-gradient border, the gap is labeled as part of the border.

The Canny is also superior to the MSER in its ability to ignore gradi-
ents caused by curvature. For example, consider an image containing a non-
textured background and a similarly-coloured, curved object (e.g. a hand).
The MSER would form a region corresponding to the table, but before the
object could form its own stable cluster, its pixels would be stripped away
by the table region. In contrast, the Canny would likely produce its strongest
response along the table-object border. The resulting outline would isolate
pixels within the object and allow them to cluster independently of the table.

Our system processes each frame with the Canny algorithm. Canny edges
are converted to line-segments and the pixels corresponding to each line-
segment is used to constrain MSER growth. Simply speaking, MSER evo-
lution operates as usual, but is not permitted to cross any Canny lines. An
example of detected lines is shown in Figure 10.3 (Right). Detected lines are
displayed in green.

MSER-Tree Construction

Our MSER evolution algorithm uses the same basic principle as Forssen’s
approach [13]. For every current pixel pc in the image, the colour-gradient is
measured against adjacent pixels where pc−1 refers to the pixel on the left
hand side of the current pixel pc. Simalarly pc+1 is the adjacent pixel on the
right. The outcome is then stored as horizontal (th) or vertical (tv) texture
elements using the following formula.

th =

√

√

√

√512 ×
∑

c={r,g,b}

(pc − pc−1)2

(pc + pc−1)
+

(pc − pc+1)2

(pc + pc+1)
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Texture elements (ranging from 0 to 255) are sorted using a constant-time
counting-sort algorithm. They are then processed in order, starting with 0-
valued texture elements. For every processed element, the corresponding pixel
is merged with its vertical or horizontal neighbours (depending on the direc-
tion of the element). If any of the three pixels belong to an existing region,
the regions are merged. After all texture elements of a particular value (e.g.
0, 1, 2...255) are processed, rate-of-growth for all existing regions is measured
for that iteration. As long as a region’s growth consistently accelerates, or de-
clines, it is left to evolve. If the rate of growth changes from decline (or stable)
to acceleration (beyond a MIN-SIZE change), the state of the region before
accelerated growth is stored as a MSER. The algorithm continues until all
texture elements have been processed. At the end of the growth process, the
set of all MSER regions will form a hierarchical tree. The tree-root contains
the MSER node that comprises every pixel in the image, with incrementally
smaller nested sub-regions occurring at every tree-branch. The leaves of the
tree contain the first-formed and smallest groups of pixels. To reduce memory
and processing demand, the MIN-SIZE threshold is applied to these regions.
Our implementation uses a MIN-SIZE of 24 pixels. Figure 10.2 shows three
stages of the clustering process.

FIGURE 10.2 Pixel clustering during MSER formation. Clustered pixels are coloured

using the region’s average colour. Non-assigned pixels are shown in blue. Results represent

clusters after iterations 2, 5, and 35 (left to right)

Region Expansion

The traditional MSER approach produces, as output, a hierarchical tree
of nested nodes. Although this is desirable for certain applications (where
over-detection is beneficial), we find it doesn’t provide any significant advan-
tages and makes other tasks unnecessarily complicated. Traditional MSER
approaches apply various ad-hock devices to suppress the formation of nested
regions, or to cull the regions once they occur. We choose to extract a seg-
mented image from the MSER hierarchy instead of eliminating the problem
by using a dual-pass MSER evolution process . Our algorithm can enforce
that each pixel is contained in exactly one region instead of each image-pixel
belonging to zero or more different regions. Both MSER and segmentation
representations provide certain unique advantages and our algorithm allows a
user to pick the representation that best suits their needs.
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The first pass of our dual-pass algorithm was described in the previous sec-
tion. This produces the traditional hierarchy of nested MSER regions, with
tree-leaves representing initial pixel clustering. These leaves are sparsely dis-
tributed within the image and are both non-overlapping and non-nested. Us-
ing a merging process similar to the one used in the first pass, we iteratively
add pixels to the leaves until every pixel in the image is contained in exactly
one leaf. During this process, we do not allow leaves to merge with one an-
other. Once all pixels have been added, the hierarchy structure derived from
the first pass is used to propagate pixel information up the tree, from the
leaves to the root. At this point, every horizontal cross-section of the tree can
produce a complete segmented image comprising all pixels. Although regions
corresponding to non-leaf nodes may be useful, we choose to ignore them.
Our image segmentation results are derived only from regions corresponding
to the leaf nodes. Figure 10.2 shows segmentation from a table-top scene. The
center image displays the hierarchy of MSER regions, displayed as ellipses.
The right image shows segmentation produced using the leaves of the MSER
tree.

Region Feed-Forward

Most stable-feature detection algorithms generate an entirely new set of fea-
tures from every frame of the video sequence. Tracking algorithms are then
required to match features between successive frames. Although this is a use-
ful strategy for tracking small or fast-moving objects, it may be unnecessary
when tracking large, textureless, objects that are slow-moving or stationary.
Without surface texture, pixels within the region’s interior don’t provide any
useful information and re-computing their position every frame wastes re-
sources. Resources would better be applied to pixels near the perimeter of
a region, or to pixels that changed between frames. Since large textureless
objects can make up significant portions of an image, we observe considerable
performance increases using this approach.

In addition to speed advantages, our feed-forward algorithm improves spa-
tial stability by integrating temporal information. Consider a slowly-moving
(or stationary) homogeneously coloured object (like a person’s wrinkled shirt)
that contains enough surface texture to cause spurious MSER regions to form.
The inherent instability of these regions makes them unsuitable for tracking or
modeling, yet their removal is difficult without using ad-hock strategies. Us-
ing our feed-forward approach, any region that can’t continually maintain its
boundaries, will be assimilated into similarly-coloured adjacent regions. After
several iterations of region-competition, many unstable regions are eliminated
automatically without any additional processing.

Our feed-forward algorithm is a relatively simple addition to our MSER
algorithm. After every iteration of MSER generation, we identify pixels in the
current frame that are nearly identical (RGB values within 1) to the pixel in
the same location of the following frame. If the majority of pixels in any given
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MSER remain unchanged for the following video image, the matching pixels
are pre-grouped into a region for the next iteration. This pixel-cluster is then
used to seed growth for the next iteration of MSER evolution.

It should be mentioned that an additional constraint must be added for this
feed-forward strategy to work properly. To illustrate the problem, consider a
stationary scene with an unchanging image. In this example, every pixel will
be propagated, and there will be no pixels left for MSER evolution. Every
region in the image will remain unchanged and any errors in detection would
be preserved indefinitely. A preferable strategy is to propagate pixels that
contribute least to MSER evolution (low-gradient pixels), while allowing the
MSER to evolve using more descriptive (high-gradient) pixels. To achieve this
effect, we compute the average gradient value of pixels in each region, and
propagate pixels with gradient values below that average (as an optimization,
we also propagate pixels with gradients below a predefined threshold). This
technique approximately allows at-least half the pixels in any non-moving
region to be propagated forward, while leaving the other half to reconstruct
an updated stable region. Figure 10.3 (Left) shows pixels designated for feed-
forward. Dark-gray pixels are propagated to the next frame. Light-gray pixels
are withheld.

FIGURE 10.3 Left: An example of the feed-forward process. Dark-gray pixels are pre-

served, Light-gray pixels are re-clustered. Center: MSERs are modeled and displayed using

ellipses and average colour-values. Right: An example of MSER image segmentation. Re-

gions are filled with their average colour, detected lines are shown in green, the path of the

tracked hand is represented as a red line.

10.3.2 Region Tracking

Region tracking can be defined simply as determining the optimal way de-
tected regions in one frame match regions in subsequent frames. Despite the
simple definition, tracking is a challenging problem due to:

1. Object-appearance changes: illumination, transformation, deformation, oc-
clusion

2. Detection errors: false detections, multiple detections, missed detections

3. Detection inconsistencies: inaccurate estimation of position, size, or appear-
ance
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Yilmaz et al. [32] reviewed several algorithm, and listed the strengths
and weaknesses of each. Yilmaz emphasised that each tracking algorithm in-
evitably fails under a certain set of conditions and that greater robustness
can be obtained by combining strategies. Although this concept works well in
theory, implementation can be difficult in real time. Many of the available real-
time region detection and tracking algorithms require a significant amount of
computer resources to operate, often making the simultaneous operation of
non-related algorithms impractical. Additionally, fusing information obtained
from several algorithms may create additional problems.

Our tracking algorithm was designed to specifically operate on the compli-
mentary set of features provided by our detection algorithm. As mentioned,
our algorithm models regions using MSER features and line-corner features.
Each of feature-type provides certain advantages and disadvantages, and our
algorithm has been designed with the intent of exploiting the advantages of
each. Our tracking algorithm applies four different phases. Each phase is best
suited to handle a specific type of tracking problem, and if an object can be
tracked in an early phase, later tracking-phases are not applied to the ob-
ject. By executing the fastest trackers first, we can further reduce resource
requirements.

The four phases of our tracking algorithm include: Feed-Forward Tracking,
MSER-Tracking, Line-Tracking and Secondary MSER-Tracking.

Feed-Forward Tracking

Traditional tracking algorithms match features between successive frames
using descriptor similarity measures. This assumes that descriptors do not
change significantly between frames. MSER regions can pose significant prob-
lems in this regard, since small changes in the image can cause large changes
in the descriptors. For example, consider a video sequence taken of a person
reaching completely across a table. Immediately before the person’s arm bi-
sects the table, a traditional MSER algorithm will detect the tabletop as a
single region. Immediately afterward, the tabletop will appear as two smaller
regions. Since a MSER tracker only receives information regarding the size
and positions of the centroids, resolving the actual path of the region as it
splits into two, would likely be a cumbersome process.

Using our pixel feed-forward algorithm, resolving the table-bisection sce-
nario becomes a trivial matter. Since the majority of the table’s pixels remain
unchanged during the bisection, these pixels will maintain their exiting clus-
tering. Even if the cluster of pixels is non-contiguous, MSER evolution will
produce a single region. Tracking becomes a trivial matter of matching the
pixel’s donor region with the recipient region.

MSER-Tracking

Tracking MSERs has traditionally been an ill-posed problem. It is difficult to
control the degree that similarly-shaped regions are nested within one another
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and fluctuations make one-to-one region correspondences nearly impossible.
As described in the Section 10.3.1, we eliminated the problem of nesting by
reducing the hierarchy of MSERs to non-hierarchical image segmentation.
This representation theoretically makes one-to-one correspondences possible,
and matches are identified using a greedy approach. The purpose of this phase
of tracking is to match only those regions that have maintained consistent size
and colour between successive frames.

Each image region is represented by the following features:

1. Centroid (x,y) image coordinates

2. Height and Width (second-order moment of pixel-positions)

3. RGB mean colour values

Matching is only attempted on regions that remained unmatched after
the Feed-Forward Tracking phase (Section 10.3.2). Matches are only assigned
when regions have similarity measures beyond a predefined similarity thresh-
old. Matching is conducted as follows; for every unmatched region in frame t,
a set of potential matches in frame t + 1 is identified using a kd-search tree.
Regions-matches that are not sufficiently similar in size, position, and colour,
are removed from consideration. All other region-matches are sorted accord-
ing to the feature-similarity measures of size, position, and colour. Potential
matches are processed in order of their similarity measure (from most-similar
to least). If both regions are available to be matched, then a tracking-link is
provided to the pair. The algorithm proceeds until all potential matches have
been considered.

Line-Tracking

Since a primary component of the MSER descriptor is its vertical and hor-
izontal size, tracking can be highly sensitive to occlusion and bifurcation.
This makes MSER descriptors unsuitable for use as the sole feature used in
tracking. Ideally a second feature should be used, which doesn’t require signif-
icant additional resources to detect. Since our algorithm already incorporates
lines into region-detection, the line features become an ideal candidate for
complimenting the MSER. Specifically, we use line-segment end-points, which
typically occur on corners of image regions. Line-corners are desirable because
they are stable, they are unaffected if a different part of the region is occluded,
and they provide good region localization.

In this tracking phase, line-corners are matched based on their positions,
the angles of the associated lines, and the colours of the associated regions. It
should be mentioned that, even if a line separates (and is therefore associated
with) two regions, that line will have different properties for each region.
Specifically, the line angle will be 180 degrees rotated from one region to the
other, and the left and right endpoints will be reversed.

Each line-end is represented by the following features:
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1. Position (x,y) image coordinates

2. Angle of the corresponding line

3. RGB mean colour values of the corresponding region

4. Left / Right handedness of endpoint (Perspective of looking out from the
center of the region)

Line-corner matching is only attempted on regions that remained un-
matched after the MSER-Tracking phase. Also, matches are only assigned for
objects that have similarity measures beyond a predefined similarity thresh-
old. Matching lines is conducted using the same strategy that was described
in Section 10.3.2.

Secondary MSER-Tracking

Tracking phases described in Sections 10.3.2 to 10.3.2 assume that features
do not change significantly between frames. Although this may generally be
the case; for example noise, illumination changes and occlusion may cause
information to be degraded or lost in certain frames. To reduce the number
of regions lost under these conditions, we conclude our tracking sequence by
re-applying our MSER and line-tracking algorithms using looser similarity
constraints. This phase uses a greedy-approach to match established regions
(regions that were being tracked but were lost) to unassigned regions in more
recent frames. Unlike the first three phases, which only consider matches be-
tween successive frames, the fourth phase matches regions within an n-frame
window (‘n’ is usually fewer than 8). In this case, the established region’s
motion model is used to predict its expected location for comparison.

10.3.3 Foreground Detection

The sequence of steps of our approach to process a video feed is as follows:

1. Initially, construct a region-based background model

2. Cluster pixels in subsequent frames into regions

3. Track all regions

4. Identify regions in subsequent frames that differ from the background model

5. Update the background model using background regions

Since the background model in our approach comprises higher-level fea-
tures, we can apply the algorithm in a greater variety of settings. For example,
a motion model can be trained, allowing foreground detection to be performed
on both stationary and panning surveillance systems. Additionally, since back-
ground features are continually tracked, the system is equipped to identify
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unexpected changes to the background. For example, if a background region
moves in an unexpected way, our system can identify the change, compute
the new trajectory, and update the background model accordingly.

Although there may be several ways to achieve foreground detection using
our tracking algorithms, we feel it would be appropriate in these early stages
of development, to simply reproduce the traditional pipeline. To this affect,
the first several frames in a video sequence are committed to building a region-
based model of the background. Here, MSERs are identified and tracked until
a reasonable estimation of robustness and motion can be obtained. Stable
regions are stored to the background model using the same set of features
listed in the tracking section. The remainder of the video is considered the
operation phase. Here, similarity measurements are made between regions in
the background model, and regions found in the current video frame. Regions
considered sufficient dissimilar to the background are tracked as foreground
regions. Matching regions are tracked as background regions. Since we employ
both tracking information and background-model comparison, our system can
identify when background regions behave unexpectedly. We then have a choice
to either update the background model, or to track the region as foreground.

10.3.4 Object Modelling

Once the foreground is segmented from the background, a colour and shape-
based model is generated from the set of foreground MSER features. This
model is used to resolve collisions and occlusions, and to identify if a familiar
object has re-entered the scene. A common modelling approach is to identify
a set of locally invariant features. Lowe [19] proposed a technique where an
image patch is sampled within a pre-specified distance around a detected
region. The texture within the patch is binned into a 4×4 grid to form a Scale
Invariant Feature Transform (SIFT). The resulting descriptor contains a 128
dimensional vector (4×4×8-bins). Despite its popularity, this technique is not
effective when the object of interest undergoes significant transformation, or
contains significant depth disparities. The 128 dimensional SIFT also requires
significant computational resources for recording and matching.

Chum and Matas [8] describe a more efficient approach to modelling that
reduces descriptor dimensionality to six features. The small dimensionality al-
lows a constant-time hash table to be used for feature comparison. Chum’s de-
scriptors are based on MSER region pairs. Each MSER region is transformed
into a locally invariant affine frame (LAF). The centroids are identified, as are
two extremal points around the region’s perimeter. The six-feature descriptor
is formed using angles and distances between three point-pairs. Since there
may be multiple transformations to the affine frame, each region may have
multiple possible descriptors. A voting technique is implemented using the
hash table to identify likely candidates. This is a constant time operation,
making the technique orders of magnitude faster than patch-style algorithms.
It is also less affected by depth discontinuities for foreground objects.
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Our technique uses many of the principles presented by Chum, but our
feature vectors were selected to provide improved robustness in scenes where
deformable or unreliable contours are an issue. Chun was able to use descrip-
tors with relatively low dimensionality because they provided a high degree
of precision in estimating the transformation parameters of flat objects. We
took the opposite approach by selecting a relatively large number of invariant
features with low individual descriptive value. Even though individual fea-
tures are likely to provide an inaccurate representation of our objects, the
combined vote of many unrelated features should provide reasonably discrim-
inatory abilities.

We propose an algorithm that represents objects using an array of features
that can be classified into three-types: 1) MSER-pairs, 2) MSER-individuals,
and 3) Size-position measure

• Our MSER-pair features are described using a 4-dimensional feature-vector.
The first two dimensions (v1, v2) are computed by taking the ratio of colour

values (in RGB colour space) between the two MSERs: (red1/grn1)
(red2/grn2)

, and
(blu1/grn1)
(blu2/grn2)

. The third dimension (v3) is the ratio between the area-square-

roots:
√

area1√
area2

. The fourth dimension (v4) is the distance between ellipse-

centroids, divided by the sum of the ellipse-diameters (cut along the axis
formed by the line connecting the centroids). Descriptor values v for the
MSER pair a and b are computed such that the ratio is between -1 and 1
for each vector dimension f :

vf =

{

(1 − af/bf ) if af < bf

−(1 − bf/af ) otherwise

• Our MSER-individual features are described using a 3-dimensional feature-
vector. The first two dimensions (v1, v2) are a measure of the region’s colour:
red/grn, and blu/grn. The third dimension is a measure of curvature for the
object’s perimeter. Values range from one (parallelograms) to zero (regions
not bound by lines).

• The final feature-set is only used for computing vote-tally. When models
are generated, the relative size and position of the contained features are
recorded. When features are tested against models in subsequent iterations,
this information is used to approximate size and position for every object
that receives a vote. To win the vote-tally, an object must receive a sufficient
number of votes, which agree on these approximations. The first feature-
dimension (v1) is the ratio between the square-root of the MSER’s area,
and the square-root of the area containing all object-MSERs. The second
dimension (v2) represents the position of the MSER, in relation to the other
MSERs in the object. This feature is only used when a consistent object
orientation is expected. Since people in surveillance videos are not likely
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to display vertical-symmetry, the value for the features is a function of its
vertical position in the object (negative-one at the bottom, positive-one at
the top).

10.4 Real-Time Multi-Object Tracking System Us-

ing Stereo Depth

In this section, a multi-object tracking system is presented based on a ground
plane projection of real-time 3D data coming from a stereo imagery, giving
distinct separation of occluded and closely-interacting objects. Our approach
consists in tracking, using Kalman Filters [5], fixed templates that are created
combining the height and the statistical pixel occupancy of the objects in the
scene. These objects are extracted from the background using a Gaussian
Mixture Model combining luminance and chroma signals (YUV-colour space)
and depth information obtained from the stereo devices used in this work.
The mixture model is adapted over time and it is used to create a background
model that is also upgraded using an adaptive learning rate parameter ac-
cording to the scene activity level on a per-pixel basis. The results presented
illustrate the validity of the approach.

The next section illustrates the segmentation algorithm used to achieve
the foreground detection. Section 10.4.2 explains the idea behind the creation
of plan-views used to track objects. Section 10.4.3 presents the tracking pro-
cedure and data association.

10.4.1 Foreground Detection

The background subtraction model presented follows the excellent work by M.
Harveille et al. [15, 14, 28]. It applies the well-known statistical method for
clustering called Gaussian Mixture Model, per-pixel, dynamically adapting the
expected background using four channels: three colour channels (YUV colour
space) and a depth channel. The input to the algorithm is a synchronised
pair of colour and depth images extracted from a single fixed stereo rig∗ The
depth is calculated by triangulation knowing the intrinsic parameters and the
disparity of the stereo rig, as shown in the first left part of the Equation 10.5.
A 3D world point is projected at the same scan line to the left and right image
of the stereo rig once it is calibrated. The displacement between each camera
of theis projection point is called disparity. The data set observation for a
pixel i at time t is composed as follows: Xi,t = [Yi,t Ui,t Vi,t Di,t] and the
observation history data set for pixel i at the current observation is as follows:

∗www.videre.com
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[Xi,1...Xi,t−1]. Therefore, the likelihood of Xi,t taking into account the prior
observations is defined as:

P (Xi,t|Xi,1...Xi,t−1) =
K

∑

j=1

δi,t−1,jϕ(Xi,t; θj(µi,t−1,Σi,t−1)) (10.1)

where δ is the mixing weight of past observations:

∑K
j=1 δi,t−1,j = 1 and δj > 0;

θj(µi,t−1, Σi,t−1) is the gaussian density function component.

The number of gaussians used (i.e.K) initially was 5, although results ob-
tained from posterior experiments showed that using 4 gaussians were equally
as good. Assuming the independence between measurements, the covariance
matrix is constructed as a diagonal matrix whose diagonal components are the
variance of each component in the data set illustrated above. In order to reduce
the computation time, the matching process between the current observation
(per pixel) and the appropriate gaussian is completed following an on-line
K-means approximation, as it is done in [15]. The first step in the matching
process is to sort all the gaussians in a decreasing weight/variance order which
implies to give preference to the gaussians that have been largely supported
by previous consistency observations. Only the variance corresponding to lu-
minance is used in the sorting as depth and chroma data may be unreliable
sometimes. The second step in the matching process is to select the first gaus-
sian that is close enough to the new observation by comparing the square
difference between the gaussian’s mean and the current observation with a
fixed threshold value. If this difference is below the threshold the gaussian is
selected. The value of the threshold, after several experiments, was set to 4.
Then, if a match is found, the parameters of the selected gaussian (i.e. the
mean and its variance) are updated taking into account the new observation.
As stated before, the depth measurements are sometimes unreliable due to
lighting variability or lack of texture in the scenes which implies that the
gaussians used to represent the background can contain observations whose
depth measurements can be valid or invalid. If many of these observations of a
particular gaussian are depth error measurements, the depth mean and vari-
ance of the gaussian is considered unreliable and therefore its statistics cannot
be used for the comparision with current observations. For that reason, only
depth statistics of a gaussian are taken into account if a fraction of its valid
depth observations are above the fixed threshold (i.e. 0.2). The square dif-
ference regarding depth is calculated once the current depth observation and
the depth statistics of the gaussian are validated. If the difference is below
the threshold, this indicates high probability that the pixel belongs to the
background, so the fixed threshold is augmented by a factor 4, increasing the
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colour matching tolerance. This addition allows dealing with cases for example
where shadows appear, which match the background depth but not so well the
background colour. On the contrary, if the difference is above the threshold,
this indicates high probability that the pixel belongs to the foreground, and a
foreground flag is set. Before proceeding to calculate the luminance difference,
the luminance component of the current observation and the gaussian’s mean
are checked to be above minimum luminance value, which would imply that
the chroma data is reliable and therefore it can be used for the comparison.
If a match it is not found and the foreground flag has not been set, the last
gaussian in the sorting process is replaced by a new gaussian with a mean
equal to the new observation and low initial weight. The update equations for
the selected gaussian and for the weights for all the gaussians are described
as follows:

µY,i,t,k = (1 − α)µY,i,t−1,k + αYi,t,k (10.2)

µU,i,t,k = (1 − α)µU,i,t−1,k + αUi,t,k

µV,i,t,k = (1 − α)µV,i,t−1,k + αVi,t,k

µD,i,t,k = (1 − α)µD,i,t−1,k + αDi,t,k

σ2
Y,i,t,k = (1 − α)σ2

Y,i,t−1,k + α(Yi,t − µY,i,t−1,k)2

σ2
C,i,t,k = (1 − α)σ2

C,i,t−1,k + α((Ui,t − µU,i,t−1,k)2 + (Vi,t − µV,i,t−1,k)2)

σ2
D,i,t,k = (1 − α)σ2

D,i,t−1,k + α(Di,t − µD,i,t−1,k)2

The weight update equation for all gaussians is as follows:

δi,t,k = (1 − ActivityRecognition)δi,t−1,k + αMi,t,k (10.3)

where Mi,t,k = 1 for the matched gaussian and zero for the rest of gaus-
sians.

Finally, once the gaussians are updated, every pixel in each processed frame
is labelled as foreground if it was not matched to any gaussian belonging to the
background model. Morphological operations are applied to remove isolated
regions to fill small foreground holes.

Adaptive Learning Rate Parameter

In the equations illustrated above, α can be seen as a learning rate parameter
as its value indicates how quickly the gaussians will adapt to the current
observation; if α has a big value, it implies that the gaussians will get close
to the new observations in faster incremental steps. In other words, static
changes in the background are incorporated to the background model quickly.
However, it also implies that foreground objects which have remained static
for a certain time are quickly added to the background. A good compromise
with α factor is found in [15] where its dynamic value is directly linked with
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the amount of activity level of the scene (as the authors called it). The activity
level indicates the luminance changes between frames:

Aci,t,k = (1 − ρ)Aci,t−1,k + ρ|Yi,t − Yi,t−1| (10.4)

Initially as follows in [16] the activity level (Ac) defined by Equation 10.4
is set to zero, and after it is computed as the difference in luminance between
current frame and previous frame. Therefore, if the activity threshold is above
the fixed threshold, which in this study was experimentally fixed to 5 , the
α factor used to update the gaussians’ statistics is reduce by a experimental
factor of 5.

10.4.2 Plan-View Creation

In this section the algorithm that renders 3D foreground cloud data as if the
data was viewed from an overhead, orthographic camera is presented. The
main reason to apply this transformation is for the computational perfor-
mance increase, by reducing the amount of information when the tracking is
done onto plan-view projection data rather than onto 3D data directly. The
projection of the 3D data to a ground plane is chosen due to the assump-
tion that people usually do not overlap in the direction normal to the ground
plane. Therefore, this 3D projection allows to separate and to track easily than
in the original camera-view. Any reliable depth value can be back projected
to its corresponding 3D point knowing the camera calibration data and the
perspective projection. Therefore, the first step on the creation of the plan
views is to only back project the foreground pixels detected in the previous
algorithm, creating a 3D foreground cloud of visible points to the stereo cam-
era. Then, the space of the 3D cloud points is quantised into a regular grid of
vertically orientated bins. Looking these vertical bins as the direction normal
to the ground plane, some statistics regarding the 3D cloud points can be
calculated within each bin. Therefore, a plan view image is constructed as a
binary image where each pixel represents one vertical bin and the value of
the pixel is some statistics of the 3D cloud point stored in the vertical bin.
Two types of plan view images are creating regarding to the two interesting
statistics of the 3D could points stored in the vertical bins: the occupancy,
i.e. the number of points accumulated in each vertical bin, and the height, i.e.
the highest height of the 3D point cloud within each vertical bin. The first
statistics indicates the amount of foreground projected on the ground plane
and the second statistics indicates the shape of the 3D foreground could. In
order to compensate for the smaller camera-view effect appearance of distant
object, the first statistic (i.e. the occupancy) is constructed as a weighted
number of points accumulated in each bin. The factor used to calculate the
occupancy map as suggested in [16, 23] is Z2/f , where Z is the depth value
and f is the focal length. The following equations describe the steps used to
create the maps. Figure 10.4 and Figure 10.5 graphically describe the process



Multi-Robot and Multi-Camera Patrolling 10-21

of the projection onto ground plane of the 3D foreground cloud points and
the creation of the binary plan view image. Once the plan view binary images
are created, a posterior refinement is applied to the images in order to remove
much of the noise that appear in the occupancy and height maps (see the plan
view occupancy on the right side of Figure 10.5).

FIGURE 10.4 Illustrates the process of the creation of a plan view.

FIGURE 10.5 Illustrate the projection to the ground plane of the valid depth image

points of the back projected 3D foreground cloud of points.

Using the internal calibration parameters, any foreground pixel can be back-
projected to a 3D cloud point:

Zcam =
bfu

disparity
,Xcam =

Zcam(u − uo)

fu
, Ycam =

Zcam(v − vo)

fv
(10.5)

where,(u, v) is a pixel in the image plane, (uo, vo) is the image centre
of the projection, fu and fv are the horizontal and vertical focal lengths, b
(baseline) is the distance between left and right stereo camera and disparity
is the difference between the pixel value seen from the left camera and the
corresponding pixel value seen from the right camera.

We render the 3D cloud point obtained to an overhead camera view
(Xw, Yw, Zw):
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[

XW YW ZW

]T
= −Rcam

[

Xcam Ycam Zcam

]T
− Tcam (10.6)

where,
ZW is aligned with the direction normal to the ground plane, XW and YW

are the ground plane axis, Rcam and Tcam are the rotation and translation
matrices

We discretise the vertical bins:

xplan = b(XW − Xmin)/λ + 0.5c (10.7)

yplan = b(YW − Ymin)/λ + 0.5c

where λ is the resolution factor. In this case the value was set to 2cm/pixel.

10.4.3 Tracking Plan-View Templates

This section describes the tracking algorithm applied which is also based on
the work presented in [16, 23]. The Gaussian and linear dynamic prediction
filters used to track the occupancy and height statistics plan view maps are the
well-known Kalman Filters; more precisely, the OpenCV implementation of
Kalman Filters [17]. The state vector is conformed to the 2D position (center
of mass) of the tracked object in the plan view, to the 2D velocity component
of the object and to the shape configuration of the object, which can be defined
with the occupancy and height statistics, as it is described in previous section.
In this application, an object could be a robot, a person or a bag. The input
data to the filter is simple fixed templates of occupancy and height plan view
maps. These templates (τH , τO) are small areas of the plan view binary images
extracted at the estimated location of the object. To create these templates, it
is assumed that the statistics of an object are quite invariant to ground plan
location relative to the camera. Therefore, the size of the template (40 pixels)
remains constant all the time for all the objects. Moreover, to avoid sliding
the templates through time, after the tracking process has been applied, the
template is centered back to the 2D position of the object i, rather than to
the estimated position of object i.

Correspondence

The area to search is centered to the estimated 2D position of the object. The
correspondence is resolved via match score, which is computed at all locations
within the search zone. A lower match score value implies a better match. The
following equation illustrates the computation of the match score:

ϕ(i,X) = ρSAD(τH ,Hmasked(X)) + ωSAD(τo, θsm(X))

+β
√

(x − xpred)2 + (y − y2
pred) + α

∑

j<i

θj(X, 40) (10.8)
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SAD refers to the sum of absolute differences between the height and
occupancy templates and the occupancy and height plan view maps created
from the current frame. The (ρ, ω, β, α) weights are deduced in [16] based on
physical principals. The first two weights are formulated in a way that the
height and occupancy SADs have similar contribution. The third and fourth
weights are formulated reflecting the area contribution of the foreground pixels
to each vertical bin. It is deduced, from Eq. 10.7, that the match score of
person i at 2D position X is the sum of several contributions. The contribution
of the weighted sum of the difference between the shape and visible region of
tracked object i at location X from the shape and visible region of the object
in the current frame. It is also the contribution of the distance between the
current object’s position and the estimated location of the object. The last
contribution to the match score corresponds to the convergence distance of
X to the rest of predicted locations of the rest of objects in the current
frame. Once the best match score is chosen (i.e. the smallest value), it is
compared to a threshold track, where it is related to the minimum amount
of foreground pixel area needed to consider the tracked region a valid object.
Only if the match score is below the threshold track will the object’s Kalman
state be updated with the new measurements. In Figure 10.6 some results are
presented. A few key frames from a sequence (2300 frames) are presented in
this figure, where three different types of objects interact and an occlusion
between two of the objects (a person and a robot) appears and the tracker
is able to solve the occlusion. The images are captured using a videre stereo
camera with VGA resolution.

10.5 Activity Recognition

One objective of a visual surveillance system is to identify when people leave,
take, or exchange objects. To test the capabilities of our detection and track-
ing system, we are implementing a simple scenario involving the exchange of
baggage. Specifically, the system will be designed to send a report if a person
is observed leaving an object, taking another person’s object, or removing
something from the environment. Recognizing these types of actions can be
done without sophisticated algorithms, so for this demonstration, we use a
simple rule-sets based only on proximity and trajectories:

1. If an unknown object appears in the environment, models will be generated
for that object and for the nearest person. If the associated person is ob-
served moving away from the object, it will be considered “abandonment”,
and a report of the incident will be generated. If the same person is observed
reacquiring the object, the report will be canceled.

2. If an object is associated with one person, and a second person is observed
moving away with the object, it will be considered an “exchange” and a
report will be generated containing models of the object and both involved



10-24 Handbook on Soft Computing for Video Surveillance

FIGURE 10.6 Seven frames of a sequence that shows tracking different type of objects

(robot, person and bag), including an occlusion. Each plan view map has been synchronized

with its raw frame pair and back projected to the real plan of the scene (right side of each

image).

people.

3. If a person is observed moving away with an object that was either present
at the beginning of the sequence, or left by another, the incident will be
considered a “theft” and a report will be generated containing the person
and the object.

Figure 10.7 shows images taken during table-top (Left), and trash-fire
(Right) scenarios. In both demonstrations, the system used colour-based mod-
els to represent the object and a Hidden Markov Model was used to generalize
object interactions. The system was able to accurately identify interactions
over extended periods, in real-time.

10.6 System Integration

In this chapter we present the integrated system on monitoring a large area
with the following characteristics:

1. The system is composed of a number of agents, some of them having mobile
capabilities (mobile robots) whilst others are fixed (video cameras).
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FIGURE 10.7 An example of activity recognition using our system. Each object is asso-

ciated by a colour bar at the right of the image. The apparent height of the bar corresponds

to the computed probability that the person’s hand is interacting with that object. In the

scenario shown on the left, a person engaged in typical homework-type behaviors including:

typing on a laptop; turning pages in a book; moving a mouse; and drinking from a bot-

tle. In the scenario on the right, a person reached into a bag of chips multiple times, and

extinguished a trash-fire with a fire extinguisher.

2. The system is required to monitor and detect different kinds of predefined
events at the same time.

3. Each agent has a set of sensors that are useful to detect some event. Sensors
are of a different type within the entire system.

4. The system is required to operate in two modes:

(a) patrolling mode

(b) response mode

These requirements make the problem significantly different from previous
work. First of all, we consider a highly heterogeneous system, where robots
and cameras inter-operate. Second, we consider different events and different
sensors and we will therefore consider different sensor models for each kind of
event. Third, we will study the dynamic evolution of the monitoring problem,
where at each time a subset of the agents will be in response mode, while the
rest of them will be in patrolling mode.

10.6.1 Experimental Scenario

The scenarios used for the experimental validation were tested in the campus
of the Department of Computer and System Science (DIS) of Sapienza Uni-
versity in Rome, Italy∗ . Two scenarios were used to test the capabilities of the

∗www.dis.uniroma1.it
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multi-camera and robot platform. In the first scenario (i.e. unattended bag-
gage event), the system was designed to send a report if a person was observed
leaving a bag. In the second scenario (i.e. object manipulation), the system
should send a report if a person manipulated an unauthorised object from
the environment. The selected scenario shown in Figure 10.8 was an indoor
corridor(left) to simulate the unattended baggage event and a lab room(right)
to simulate the object manipulation.

FIGURE 10.8 Experimental scenario at DIS

Once a report is sent, a guard robot would be commissioned to go and take
a high-resolution picture of the scenario. Recognising these types of actions
may be done without sophisticated algorithms, so for this demonstration, we
use simple rule-sets based only on proximity and trajectories:

Scenario 1:

• If a person is observed manipulating an object that was either present at
the beginning of the sequence, or left by another person (i.e. unauthorised
object), the incident will be considered an “allert” and a report will be
generated and sent to the multi-robot system.

Scenario 2:

• If a bag appears in the environment, models will be generated for that bag
and for the nearest person. If the associated person is observed moving away
from the bag, it will be considered a “left bag”, and a report of the incident
will be generated.

• If a bag is associated with one person, and a second person is observed
moving away with the bag, it will be considered a “bag taken” and a report
will be generated and sent to the multi-robot system.

10.6.2 Multi-robot Environmental Monitoring

The implementation of the Multi-Robot Environmental Monitoring used in
this project has been implemented on a robotic framework and tested both
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on 2 Erratic robots∗ and on many simulated robots in the Player/stage envi-
ronment∗. Figure 10.1 shows the block diagram of the overall system and the
interactions among the developed modules. In particular, the team of robots
monitors the environment while waiting for receiving event messages from
the vision sub-system. In our system, we use a Bayesian Filtering method to
achieve the Sensor Data Fusion. In particular, we use a Particle Filter for
the sensor filters and event detection layer. In this way, the probability den-
sity functions (PDFs) describing the belief of the system about the events to
be detected are described as sets of samples, providing a good compromise
between flexibility in the representation and computational effort. The imple-
mentation of the basic robotic functionalities and of the services needed for
multi-robot coordination are realized using the OpenRDK toolkit∗ [6]. The
mobile robots used in the demonstrator have the following features:

• Navigation and Motion Control based on a two-level approach: a motion us-
ing a fine representation of the environment and a topological path-planner
that operates on a less detailed map and reduces the search space; proba-
bilistic roadmaps and rapid-exploring random trees are used to implement
these two levels [7]:

• Localization and Mapping based on a standard particle filter localization
method and a well-known implementation GMapping∗ that has been suc-
cessfully experimented on our robots also in other applications [20].

• Task Assignment based on a distributed coordination paradigm using utility
functions [18] already developed and successfully used in other projects.

Moreover, to test the validity of the approach, we replicate the scenarios in
the Player/Stage simulator, defining a map of the real environment used for
the experiments, and several software agents, with the same characteristics of
the real robots. The combination of OpenRDK and Player/Stage is very suit-
able for development and experimentation in multi-robot applications, since
they provide a powerful but yet flexible and easy-to-use robot programming
environment.

10.6.3 Results

In this section we present the outputs of the recognised scenarios by both
camera systems mentioned above. As stated, both systems are integrated to
a multi-robot system to increase the situation awareness. The integration of

∗www.videre.com
∗playerstage.sourceforge.net
∗openrdk.sf.net
∗openslam.org/gmapping.html
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both platforms is done through a TCP client-server communication interface.
Each static stereo camera is attached to a PC computer and they communi-
cate between them and the robots via a private wireless network. Each static
camera and its PC act as a client and one of the PCs also acts as a server. The
PC video-server is the only PC that communicates directly with the robots;
the PC video-server becomes a client however, when it communicates with
the multi-robot system, and then, the robots act as servers. Once the video
surveillance has recognised an event; the PC client camera sends to the PC
video-server the event name and the 3D coordinates. The video-server then
constructs a string with this information (first transforming the 3D coordi-
nates to a common platform coordinate system) and sends the message via
the wireless network to the robots. Then, one of the robots is assigned to go
and guard the area and take a high-resolution picture if the event detected
is “bag taken”. Figure 10.9 and Figure 10.10 show the results in Scenarios 1
and 2 respectively. Figure 10.9 illustrates a sequence of what may happen in

FIGURE 10.9 This figure illustrates a sequence of what may happen in Scenario 1.

Person A walks through the corridor with the bag and leaves it in the middle of the corridor.

Person B approaches the bag and takes it, raising an alarm in the system causing the

patrolling robot to go and inspect the area.

Scenario 1. On the top-left image of the figure a person with an object (bag) is
walking through the corridor. On the top-right image of the figure, the video
system detects that the person left the bag. Therefore a message is sent as
“left bag”. On the bottom-left image another person walks very closed to the
bag. On the bottom-right image the visual surveillance system detects that a
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person is taking a bag and a message “bag taken” is sent to the robots, and as
it can be seen one of the robots is sent to inspect the risen event. Figure 10.10

FIGURE 10.10 This figure illustrates a sequence of what may happen in Scenario 2.

Person B places a book(black) and a bottle(green) on the table and manipulates them

under the surveillance of the system; until Person B decides to touch an unauthorised

object (ie.laptop)(grey) raising an alarm in the system causing the patrolling robot to go

and inspect the area.

illustrates a sequence of what may happen in Scenario 2. On the top-left, a
laptop is placed on the table and one of the robots can be seen patrolling.
In the top-right and bottom left images of the figure there is a person who
is allowed to manipulate different objects. On the bottom-right the person is
touching the only object, which is not allowed, therefore an alarm “allert” is
raised.

10.7 Conclusion

The extent that traditional surveillance system can cover large areas, is pri-
marily limited by the number of video feeds a human operator can monitor.
This limitation has generated demand for an automated surveillance system.
This work is part of a funded project which aims to overcome the current
limitations in static visual surveillance by incrementing the situation aware-
ness monitoring, making it flexible and dynamic. These enhanced, integrated
multi-robot coordination and vision-based activity monitoring techniques, ad-
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vance the state-of-the-art in surveillance applications. Using a group of mobile
robots combined with fixed surveillance camera systems has several signifi-
cant advantages over solutions that only use fixed surveillance camera sys-
tem. For example, the robots in the team have the power to collaborate on
the monitoring task and are able to pre-empt a potential threat. Moreover,
the multi-robot platform can communicate with a human operator and receive
commands about the goals and potential changes in the mission, allowing for a
dynamic, adaptive solution. In this chapter, we introduced a maximally stable
segmentation algorithm that efficiently divides image-sequences into spatially
and temporally stable regions. By tracking these regions, our system can more
quickly discriminate between local and global changes in the image, and can
use that information to intelligently update environment and object-models.
We have successfully tested our system in a number of real-world activity-
recognition scenarios, and are currently working to apply it to a multi-camera
surveillance system. Also, a real-time multi-object tracking system for a stereo
camera has been presented. Furthermore, these computer vision algorithms
presented in Sections 10.3 and 10.4 can eventually be portable to a mobile
robot platform. Therefore our solution could be used in environments that
previously have not been equipped with a camera-based monitoring system:
the robot team could be deployed quickly to obtain information about an
unknown environment, allowing the robots to position themselves within the
environment in order to best acquire the necessary information.
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