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Abstract—One of the foundations of social interaction among Visible states of a model represent the way in which paraimete
humans is the ability to correctly identify interactions and infer  relevant to the activity change over time. For example, éokds
the intentions of others. To build robots that reliably function state distance-to-goalmay correspond to the way in which

in the human social world, we must develop models that robots - L
can use to mimic the intent recognition skills found in humans. an observed agent's distance to some goal of the activity is

We propose a framework that uses contextual information in changing, growing larger, smaller, or staying the same.
the form of object affordances and object state to improve the  During intent recognition, the robot observes other agents

performance of an underlying intent recognition system. This jnteracting and performing various activities. The rotakes
system represents objects and their affordances using a diresd the perspective of the agents it is tracking and from their

graph that is automatically extracted from a large corpus of . . .
natural language text. We validate our approach on a physical perspective calculates the changes in all parameterserestt

robot that classifies intentions in a number of scenarios. It uses the results of its calculations as inputs to its jresly
trained HMMs, inferring intentions using those models in

conjunction with its prior knowledge of likely intention\gin
the robot’s (previously determined) spatio-temporal eght

A precursor to social interaction is social understanding. The rest of our paper is structured as follows. Section I
Every day, humans observe each other and on the basiss@hnmarizes related work in activity modeling, intent recog
their observations “read people’s minds,” correctly infeg nition, and word sense disambiguation. Section Il intrceki
the goals and intentions of others. Moreover, this abilitexical digraphs and their use in intent recognition. Secti
is regarded not as remarkable, but as entirely ordinary and examines the intent recognition problem in detail, and
effortless. If we hope to build robots that are similarly @alg  demonstrates the necessity of contextual awareness in any
of successfully interacting with people in a social settingieneral-purpose intent recognition system. Section Vritese
we must endow our robots with an ability to understanghe novel computer vision methods that support our intent
humans’ intentions. In this paper, we propose a system aime@ognition system. Section VI provides the details of our
at developing those abilities in a way that exploits both acognition system, Section VII describes experiments in
understanding of actions and the context within which thosghich we validated our approach on a physical robot, Section
actions occur. VIII gives a discussion of our approach and outlines poksibi

Our approach is ultimately based on psychological and neties for future work, and Section IX summarizes our paper.
roscientific evidence for a theory of mind [1], which suggest
that the ease with which humans recognize the intentions of
others is the result of an innate mechanism for representing
interpreting, and predicting other’s actions. The mecsirani  Whenever one wants to perform statistical classification in a
relies on taking the perspective of others [2], which allowsystem that is evolving over time, hidden Markov models may
humans to correctly infer intentions. be appropriate [4]. Such models have been very successfully

Although this process is innate to humans, it does nased in problems involving speech recognition [5]. There is
take place in a vacuum. Intuitively, it would seem that ouilso some evidence that hidden Markov models may be just
understanding of others’ intentions depend heavily on tl& useful in modeling activities and intentions. For examnpl
contexts in which we find ourselves and those we obsent#MMs have been used by robots to perform a number of
This intuition is supported by neuroscientific results [3jigh manipulation tasks [6][7][8]. These approaches all hawe th
suggest that the context of an activity plays an importaotucial problem that they only allow the robot to detect that
and sometimes decisive role in correctly inferring undegdy goal has been achievedter the activity has been performed;
intentions. to the extent that intent recognition is about predictidrese

Our approach to developing this ability in robots consi$ts gystems do not use HMMs in a way that facilitates the recog-
two stagesactivity modelingfollowed by intent recognition nition of intentions. Moreover, there are reasons to believ
During activity modeling, our robot performs the activiti¢ (see Sec. IV) that without considering the disambiguation
will later be expected to understand, using data it colléats component of intent recognition, there will be unavoidable
train parameters of hidden Markov models (HMMs) represeriimitations on a system, regardless of whether it uses HMMs
ing the activities. Each HMM represents a single “basicvactior any other classification approach.
ity.” The hidden states of those HMMs correspond to small- The problem of recognizing intentions is important in
scale goals or subparts of the activities. Most importarntlg situations where a robot must learn from or collaborate aith

i o o human. Previous work has shown that forms of simulation or
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I. INTRODUCTION

Il. RELATED WORK



demonstration has either an implicit or an explicit comptanewith the edge((drink, water), direct_object,4), indicating
dealing with interpreting ambiguous motions or instructio that the word “water” appears as a direct object of the verb
The work we present here differs from that body of resear¢trink” four times in the experience of the system. From this
in that we mostly focus on recognition in which the humagraph, we compute probabilities that provide the necessary
is not actively trying to help the robot learn — ultimatelycontext to interpret an activity. It seems likely that spolead
intent recognition and learning by demonstation differhist written natural language is not enough (on its own) to create
respect. However, we expect that the conclusions we haeasonable priors for activity and intent recognition. doer,
reached about the importance of linguistic information it d we suggest that for a wide range of problems, natural larguag
ambiguation could be useful for the learning by demonstrati can provide information that improves prediction over eyst
community. that don't use contextual information at all.

The use of HMMs in intent recognition (emphasizing the
prediction element of the intent recognition problem) wastfi A, Using Language for Context
suggested in [9]. That paper also elaborates on the coonecti h f a linquistic approach is well-motivated by human
between the HMM approach and theory of mind. However T € use o 9 pproz : . y

eXRterlence. Natural language is a highly effective vehiate

the system proposed there has shortcomings that the pre%?(pressing facts about the world, including object afformss.

work seeks to overcome. Specificall_y, that paper shows tha Nloreover, it is often the case that such affordances can be
the absence of add|t|(_)n contex’Fu_aI |nformat!or_1, a systean theasily inferred directly from grammatical relationships, in
uses HMMs alone will have difficulty predicting |ntent|onsth examole above

when two or more of the activities the system has been traine rom apcomputat.ional perspective, we would prefer models
:gk:ﬁcotghr:tz isaezpzi/rll\}/:r{o Sérgggeﬂga_ﬁgsgf Lgtfioegsgiﬁgvﬁ’fat are time and space efficient, both to build and to usaelf t
: 91 - . ; graph we construct to represent our affordances is suffigien
|nsuff|C|entI_y po_werful to make predictions in a wide range 0sparse then it should be space efficient. As we discuss pelow
everyday situations. . the graph we use has a humber of edges that is linear in the
. . . Tiymber of vertices, which is in turn linear in the number
to researchers in neuroscience. Recent research in thét f sentences that the system “reads” We thus attain space

!nIorrtns us th.?t the n;;:]ort neu:ont syls_tefm ma;y pl_ay a r(()jle Itg‘ficiency. Moreover, we can efficiently access the neigbbor
intent recognition, and that contextual information is émyp of any vertex using standard graph algorithms.

by the brain when ascribing intentions to others [3]. In practical terms, the wide availability of texts that dise
or describe human activities and object affordances means
I1l. LEXICAL DIGRAPHS that an approach to modeling affordances based on language
ican scale well beyond a system that uses another means for

As mentioned above, our system relies on contextual acquiring affordance models. The act of “reading” about the
formation to perform intent recognition. Given that contisx d g all . ' . g a
world can, with the right model, replace direct experienme f

sometimes the decisive factor enabling human intent recqﬂ- ' N
" ) : e robot in many situations.
nition [3], it makes sense to create robot architecture$ tha . : .

: . . . Note that the above discussion makes an important assump-
use contextual information to improve performance. Whll(? n that. althouah convenient mav not be accurate in all
there are many sources of contextual information that may o uationé Name? we assume,that ?Z)r anv aiven actiogabi
useful to infer intentions, we chose to focus primarily oe th air. the I.ikelihoo)(/JI, of the edae re resenzng that pair ie tjh
information provided by object affordances, which indéctte pai, 9 P 9 P

. . . raph is at least approximately equal to the likelihood that
actions that one can perform with an object. The problemeont . . .
. S . - , action takes place in the world. Or in other words, we assume
this choice is made, is one of training and representatioeng

that we wish the system to infer intentions from contextu jpat linguistic frequency well approximates action freggye

information provided by knowledge of object affordanceﬁi, uﬁh S)n rizzugpgggk'ih:;ua\éelgrere{??ﬂ?ow'aV\r/,%oa!-eargoi{e
how do we learn and represent those affordances? We wo lfg y ’

like, for each object our system may encounter, to build appens, this fact is represented in our graph. We are dlyrren

representation that contains the likelihood of all actidimet exploring thg extent to Whlc.h th'? assumptlor_l is valid any ma

. be safely relied upon; at this point, though, it appears tinat
can be performed on that object. L . . o

. assumption is valid for a wide enough range of situations to
Although there are many possible approaches to constru ﬁ . . .

. . ow for practical use in the field.
ing such a representation, we chose to use a representaﬁon
that is based heavily on a graph-theoretic approach to alatur ) )
language — in particular, English. Specifically, we corsts B- Dependency Parsing and Graph Representation
graph in which the vertices are words and a labeled, weightedlo obtain our pairwise relations between words, we use the
edge exists between two vertices if and only if the words cabtanford labeled dependency parser. The parser takesuws inp
responding to the vertices exist in some kind of grammaticalsentence and produces the set of all pairs of words that are
relationship. The label indicates the nature of the refetiip, grammatically related in the sentence, along with a label fo
and the edge weight is proportional to the frequency wittach pair, as in the “water” example above.
which the pair of words exists in that particular relatiopsh  Using the parser, we construct a gragh= (V, E'), where

For example, we may have verticdsink and water, along FE is the set of all labeled pairs of words returned by the



parser for all sentences, and each edge is given an inte
weight equal to the number of times the edge appears in 1 Edge Set Size v, Vrtex Set Size
text parsed by the systeriy. then consists of the words that e I
appear in the corpus processed by the system.

1.6e+06
1.4e+06

1.2e+06

C. Graph Construction and Complexity

1) Graph Construction:Given a labeled dependency parse
and a set of documents, graph construction is straightfotwa
Briefly, the steps are

1) Tokenize each document into sentences.

1e+06

Edge Count

800000

600000

400000

2) For each sentence, build the dependency parse of 200000
Sentence OO 20(‘)00 40;)00 60:)00 80(‘300 10(;000 12(;000 14(;000 16{;000 180‘000 200000
3) Add each edge of the resulting parse to the graph. vertexGount

Each of these steps may be performed automatically with re __
Sonaply gOOd results, “s"'?g well-known Ianguage prOCgSSIHg. 1. The number of edges in the Wikipedia graph as a funatiothe
algorithms. The end result is a graph as described abovehWhi mper of vertices during the process of graph growth.
the system stores for later use.

One of the greatest strengths of the dependency-grammar
approach is its space efficiency: the output of the parsertégm lexical noiseto refer to tokens that have vertices in
either atree on the words of the input sentence, or a grapbur graph but are not in fact words in English. The extent
made of a tree plus a (small) constant number of additioral which such noise is a problem depends in large part on
edges. This means that the number of edges in our grapw carefully the documents are acquired, cleaned up, and
is a linear function of the number of nodes in the grapliokenized into sentences before being given to the parser.
which (assuming a bounded number of words per senterGgen the highly variable quality of many sources (such as
in our corpus) is linear in the number of sentences the syst@gs and other webpages) and the imperfect state of tha art i
processes. In our experience, the digraphs our system bestence tokenization, it is necessary that we have a tpofini
produced have had statistics confirming this analysis, as dar removing lexical noise. Our current approach to such a
be seen by considering the graph used in our recognitiproblem is to work with induced subgraphs.
experiments. For our corpus, we used two sources: first, theSuppose that we have a lexical digragh= (V, F), and a
simplified-English Wikipedia, which contains many of theset of wordsS C V. We assume that we daot care about
same articles as the standard Wikipedia, except with a emakhe “words” inV — S (in fact, they may not even be words in
vocabulary and simpler grammatical structure, and secandour target language). Then instead of working with the graph
collection of childrens’ stories about the objects in whigd G, we use the grapl’ = (S, E'), where
were interested. In Figure 1, we show the number of edges in ,
the Wikipedia graph as a function of the number of vertices at E={y) | (z.y) e EAz,ycS}

various points during the growth of the graph. The scales @i aqdition to solving the problem of lexical noise, this
both axes are identical, and the graph shows that the numBgproach has the benefit that it is easy to limit the system’s
of edges for this graph does depend linearly on the numbengfowiedge to a particular domain if appropriate. For ins&an
vertices. o _ . we might makeS a set of words about cars if we know we
The final Wikipedia graph we used in our experimentg;j pe using the system in a context where cars are the only
consists of 244,267 vertices and 2,074,578 edges. The cihjects of interest. In this manner, we can carefully cdntro
drens’ story graph is much smaller, being built from just e jinguistic knowledge of our system and remove a source

few hundred sentences: it consists of 1754 vertices and 3&£3ror that is hard to avoid in a fully automated knowledge
edges. This graph was built to fill in gaps in the informatiogcqyisition process.

contained in the Wikipedia graph. The stories were selected
from what could be called “childrens’ nonfiction:” the books
all contained descriptions and pictures of the world, andewe
chosen to cover the kinds of situations we trained our system ) )
to work in. The graphs were merged to create the final grafn Disambiguation
we used by taking the union of the vertex and edge sets of theAlthough some researchers consider the problems of activit
graphs, adding the edge weights of any edges that appeasgbgnition and intent recognition to be essentially theea
in both graphs. a much more common claim is that intent recognition differs
2) Induced Subgraphs and Lexical “Noise’ln some in- from activity recognition in that intent recognition has a
stances, our corpus may contain strings of characters thatdictive component: by determining an agent's intergtion
do not correspond to words in English. This is especially we are in effect making a judgment about what we believe are
problem if the system automatically crawls a resource suthe likely actions of the agent in the immediate or near feitur
as the world wide web to find its sentences. We use tl@nphasizing the predictive component of intent recognitfo

IV. RECONSIDERING THEINTENT RECOGNITION
PROBLEM



important, but may not reveal all of the significant facets of V. VISION-BASED CAPABILITIES

the problem. In support of our intent recognition system, we require a
In contrast with the more traditional view of intent recognumber of visual capabilities for our robot. Among these, ou
nition, we contend thatlisambiguationis an essential task system must be able to segment and track the motion of both
that any completely functional intent recognition systemsin humans and inanimate objects. Because we are interested in
be capable of performing. In emphasizing the disambignatigbjects and their affordances, our system must also be able

component of an intent recognition system, we recognize thg visually identify objects and, for objects whose stata ca
there are some pairs of actions that may appear identicalcifange over time, object states. Moreover, tracking should
all respects except for their underlying intentions. be done in three-dimensional space. To support this last
For an example of intent recognition as disambiguatiorequirement, we use a stereo-vision camera.
consider an agent playing chess. When the agent reaches fdfo perform segmentation and object recognition, we use a
a chess piece, we can observe that activity and ascribe to ¥a&iant of maximally stable extremal regions for color iraag
agent any number of possible intentions. Before the game, [@9]. In our variant, we identify “strong” and “weak” edges
agent reaching for a chess piece may putting the piece ®itoift the image (based on our thresholding), and constrain the
initial position; during the game, the agent may be makingragion-merging of color-based MSER so that region growth
move using that piece; and after the game, the agent mayidénhibited across weak edges and prevented entirely sicros
cleaning up and putting the piece away. In each of these casgfong edges. This approach allows for increased stability
it is entirely possible (if not likely) that the activity oéaching for multiple regions of different homogeneity to coexistane
for the piece will appear identical to the other cases. Inly o one another, and for more coherent segmentation of textured
the intentional component of each action that distingusheegions.
it from the others. Moreover, this component is determined Having segmented a frame into regions, we perform object
by the context of agent’s activity: before, during, or afee recognition using a mixture of Gaussians, computing proba-
game. Notice that we need to infer the agent's intention hilities at theregion level rather than the pixel level. Because
this example even when we are not interested in making ashjects tend to consist of a smaller number of regions than
predictions. Disambiguation in such circumstances isrgde pixels, this can lead to a substantial speedup.
to even a basic understanding of the agent’s actions. Once we have segmented a frame and identified the regions
of interest in that frame, we perform tracking via increnaént
support vector data descriptions and connected component
B. Local and Global Intentions analysis. We refer the interested reader to other, visp@tific

T . . . work [9].
In our work, we distinguish between two kinds of intentions, (9]

which we call local and global intentions. “Local” intenti®

exist on smaller time scales and may correspond to the ) ) ) ]
individual parts of a complex activity. For example, if two AS the visual tracking system performs its analysis of the
agents are performing a “meeting” activity, they may apphoa SC€ne, it passes along its results to the recognition system
one another, stop for some length of time, and then pdrf@t System then uses hidden Markov models and contextual

ways. Each of these three components would correspond t#fermation to calculate the intentions of each agent thmto

different local intention. In our approach, these locagitons OPServes.
are modeled using the hidden states of our HMMs, although
of course there will be other ways to achieve the same resé#t. Low-Level Recognition via Hidden Markov Models

As this modeling choice implies, thOUgh, local intentiome a As mentioned above, our system uses HMMs to model
closely tied with particular activities, and it may not eve® activities that consist of a number of parts that have ifeat
sensible to discuss these sorts of intentions outside ofengi significance. Recall that a hidden Markov model consists of
activity or set of activities. a set of hidden states, a set of visible states, a probability
In contrast, global intentions exist on larger time scales adistribution that describes the probability of transitiggnfrom
correspond to complex activities in a particular context. lone hidden state to another, and a probability distribution
our chess example, “setting up the board,” “making a moveafiat describes the probability of observing a particulaible
and “cleaning up” would all correspond to to possible globatate given that the model is in a particular hidden state. To
intentions of the system. apply HMMs, one must give an interpretation to both the
This distinction between local and global intentions may be&dden states and the visible states of the model, as well
most useful during the activity modeling stage, if the dtit¢ as an interpretation for the model as a whole. In our case,
being considered are sufficiently simple that they lack theach model\ represents a single well-defined activity. The
internal structure that would lead to several local intamgi it hidden states of represent the intentions underlying the parts
may be that HMMs are not necessary for the system, so tlwditthe activity, and the visible symbols represent changes i
a simpler purely Bayesian approach could be used insteadneasurable parameters that are relevant to the activitycé&lo
this way, the distinction between local and global intemdio in particular that our visible states correspond to dynamic
can be used to develop a sense of the complexity of theoperties of the activity, so that our system can perform
activities being modeled in a given application. recognition as the observed agents are interacting.

VI. RECOGNITION SYSTEM



As an example, consider the activity of meeting anoth®. Context Modeling
person. To a first approximation, the act of meeting someone ] ] . N
consists of approaching the person up to a point, intergctin 10 USe contgxtual information to perform intent recogmifio
with the stationary person in some way (talking, exchangirfye must deqde how we want to model the relat!onsh|p
something, etc.), and then parting. In our framework, WeMoubetwe_en |nt_ent|ons and contexts. This requires that v_verldimc
model meeting using a single HMM. The hidden states woutat intentions and contexiare, and that we specify how
correspond to approach, halt, and part, since these condspthey arerelated There are at least two plausible ways to
with the short-term intermediate goals of the meeting éytiv Qeal Wlth the latter consideration: we coyld choose to make
When observing two people meeting, the two parametdf§entions “aware” of contexts, or we _mllght make.cqntexts
of interest that we can use to characterize the activity af@vare” of intentions. In the first possibility, each intemt
the distance and the angle between the two agents Wé_(ﬂpws all of the contexts in which it can occur. This Wou_ld
observing; in a meeting activity, we would expect that bot}ﬁnp'y that we know in advance all contexts that are possible
the distance and the angle between two agents should decrd&sOur environment. Such an assumption may or may not
as the agents approach and face one another. With thisPf appropriate, given a particular application. On the rothe
mind, we make the visible states represent changes in fi@nd, we might make contexts aware of intentions. This
distance and angle between two agents. Since each of th¥8yld require that each context know, either determirastyic
parameters is a real number, it can either be positive, ivegat©" probabll!stlcally, Wha_t intentions  are pOS_S|bIe in ither
or (approximately) zero. There are then nine possibilfiiesa correspo_ndmg assumptlpn is Fhat we know in advance all of
pair representing “change in distance” and “change in ghgléh€ possible (or at least likely) intentions of the agentswesy
and each of these nine possibilities represents a singlalevis °Pserve. Either of these approaches is possible, and may be
state that our system can observe. appropriate for a particular application. In the presentiwee
adopt the latter approach by making each context aware of its
a) Training: We train our system in two ways. In situ-possible intentions. This awareness is achieved by spegify
ations where the rob(_)t_ can perform the activity, we have thige content ofintention modelsand context models
robot perform that activity. With a Pioneer robot, this apgeh An intention model consists of two parts: first, an activity

makes sense for activities like “follow an age|_1t.," or “pass bmodel, which is given by a particular HMM, and secondly a
that person.” As the robot performs the activity, it recordsyme “This is the minimal amount of information necessary
feat.u.res relgted to its motion (speed, direct, changessin " Jlow a robot to perform disambiguation. If necessary
position relative to other agents, etc.). These are thevett®t - qegjraple, intentions could be augmented with additiona
to discrete symbols as described in the previous Sectifk,mation that a robot could use to support interactios. A

The symbols are then used to train HMMs representing eagh example we might augment an intention model to specify

activity. an action to take in response to detecting a particular segue
In situations where the robot cannot perform the activity (iof hidden states from the activity model.

our case, this included reaching for most objects), theesyst A context model, at a minimum, must consist of a name or

observes a human performing the task. The same features®fer identifier to distinguish it from other possible cotse

the motion are recorded as in the previous training methqg, the system, as well as some method for discriminating

and are used to train an HMM. between intentions. This method might take the form of a

In both cases, the topologies the HMMs and the interpretg€t of deterministic rules, or it might be a discrete probabi
tions of the hidden and visible states are determined by.haffdf distribution defined over the intentions about which the
The number of training examples generate with either methe@ntext is aware. In general, a context model can contain
was limited due to the fact that a human had to perform i@ many or as few features as are necessary to distinguish
actions. In all cases below, we found that with just one or twibe intentions of interest. For our work, we focused on two
dozen performances of the activities the system was ablekigds of information: the location of the event being obsekv
train reasonably effective HMMs. and the identities of any objects being interacted with by

i ) - ) an agent. Context of the first kind was useful for basic

b) Recognition:During recogpnition, the stationary roboteyneriments testing the performance of our system against a
observes a number of individuals interacting with one a@0othgy stem that uses no contextual information, but did not use
and with stationary objects. It tracks those individual®gs |oyical digraphs at all; contexts and possible intentiores w
the visual capabilities described above, and takes th@@erS jetermined entirely by hand. Our other source of context,
tive of the agents it is observing. Based on its perspectivgiect identities, relied entirely on lexical digraphs away
taking and its prior understanding of the activities it h@em , " represent object affordances. One of the major sources
trained to understand, the robot infers the intention ofeags jntormation when inferring intent is contained by object
agent in the scene. It does this using maximum likelinoQgtorqances. Affordances indicate the types of actionsdha
estimation, calculating the most probable intention gi#e® e performed with a particular object and through theirteda
observation sequence that it has recorded up to the currgpipapiiities constrain the possible intentions a persan ¢
time for each pair of interacting agents. have when interacting with an object. For example, one can

For more details on this use of HMMs for perspective takindrink from, break empty or washa glass, all with different
and intent recognition, see our previous work [9]. probabilities. At the same time, the state of the object can



further constrain the potential intentions: it is more lkéhat as our intention thats whose probability is greatest. The
one would drink from a full glass, while for an empty, diryprobability p(s | ¢) is available, either by assumption or
glass, the most probable intention would be to wash it. We ugem our linguistic model, and if the HMMv represents the
the system described in section Ill to extract informatibowt activity model associated with intentios) then we assume
object affordances. The goal was to build a representalian tthatp(v | s) = p(v | w). This assumption may be made in the
contains, for each object, the likelihood of all actionsttt@n case of location-based context for simplicity, or in theecaé

be performed on that object. The system produces a weightdgject affordances because we focus on simple activitiels su
graph linking words that are connected in a dependency paasereaching, where the same HMM is used for multiple

of a sentence in the corpus. The weights count the numbetentionss. Of course a perfectly general system would have
of times each relationship appears, and must be convertedd@hoose an appropriate HMM dynamically given the context;
probabilities. To obtain the probability of each actionegivan we leave the task of designing such a system as future work
objectO, we look at all verbgd/ in relation toO and compute for now, and focus on dynamically deciding on the context to

the probability of the verld” given the objec: use, based on the digraph information.
w(0,V)
p(V]0) = > vrenio) WO, V')’ C. Intention-Based Control

In robotics applications, simply determining an observed

where N (O) consists of all verbs in the digraph that receivxagem,S intentions may not be enough. Once a robot knows

an arc from theO node andw(O,V) is the weight of the

probability p(O, V). we developed a simple method to allow a robot to dispatch

Folr ob{ject? that ha_lvfe d'tf;er%nt stgtes guglvts emp?&topea{w behavior based on its intent recognition capabilitiese Th
vs. closed, etc.), we infer the biased probabilities ao robot first infers the global intentions of all the agentssit i

« Merge the state vertex, and the object vertex, 10 racking, and for the activity corresponding to the inferre

obtain a new vertex. global intention determines the most likely local intentidf
« update each edge weight(v, vncignbor) as follows: the robot determines over multiple time steps that a certain
— 0 if vpeignoor Was not adjacent to both, andvs.  local intention has the largest probability, it can dispatc
— min w(Vo, Vneighbor ), W(Vs, Uneighvor) Otherwise. behavior in response to the situation it believes is takiage
« Normalize probabilities as in the stateless case. For example, consider the activity of stealing an objece Th
« Return the probability distribution. local intentions for this activity might include “approasch

In this way, we can extract probabilities of actions fofe object,” “picking up the object,” and “walking off witfhe

objects that are stateless as well as objects containite, staobject.” If the robot knows that in its current context thedb
c) Inference Algorithm:Suppose that we have an activityintention “picking up the object” is not acceptable and feirs

model {.e.an HMM) denoted byw. Let s denote an intention, that an agent is in fact picking up the object, it can execute
let ¢ denote a context, and letdenote a sequence of visible2 behavior, for example stopping the thief or warning anothe
states from the activity mode. If we are given a context and Person or robot of the theft.
a sequence of observation, we would like to find the intention
that is maximally likely. Mathematically, we would like tonfi VIl. EXPERIMENTAL VALIDATION
A. Setup

To validate our approach, we performed experiments in
where the probability structure is determined by the astivitwo different settings: aurveillance settingand ahousehold

argmaxp(s | v, c),
S

model w. setting In the surveillance setting, we performed experiments
To find the corrects, we start by observing that by Bayes'using a Pioneer 2DX mobile robot, with an on-board computer,
rule we have a laser rangefinder, and a Sony PTZ camera. In the household
p(v | s,¢)p(s|c) setting we performed experiments using both a pioneer robot
mSaXp(S |v,¢) = mj‘xw- (1) and a humanoid Nao robot.

We can further simplify matters by noting that the denonunat
is independent of our choice of. Moreover, we assume
without loss of generality that the possible observable -syr
bols are independent of the current context. Based on tht

F‘
v ‘
observations, we can write d
,C) ~ . 2
maxp(s | v, ¢) ~ maxp(v | $)p(s | ¢) %) ‘
This approximation suggests an algorithm for determinhrey t e e

most likely intention given a series of observations and a
context: for each possible intentionfor which p(s | ¢) > 0, Fig. 2. HMM structure for theollow activity
we compute the probability(v | s)p(s | ¢) and choose




TABLE |

Surveillance Setting:We trained our pioneer to under- QUANTITATIVE EVALUATION

stand three basic activitiregollowing, in which one agent
trails behind anothemneeting in which two agents approach scenario (with Context) Correct Duration [%]
one another d|rectlly; andassmg_ in whlch tvyo ageqts move — - building (Normal) %62
past each other without otherwise directly interacting. Leave building (Evacuation)  96.4

We placed our trained robot in an indoor environmentTheater (Cleanup) 87.9
and had it observe the interactions of multiple human agen Qﬁgit:"g (('\é‘;‘t’t'i‘;)g Brink o3
with each other, and with multiple static objects. In ourvending (Repair) 914

experiments, we considered both the case where the rolsot adfeet (No context) - Agent 1 65.8
i t (No context) - Agent2 72.4
as a passive observer and the case where the robot execu 2t (Context) - Agent 1 978
an action on the basis of the intentions it infers in the a@entyeet (Context) - Agent 2 100.0
under its watch.

We were particularly interested in the performance of the

system in two cases. In the first case, we wanted to determﬁﬂg human who dropped the bag for as long as possible
the performance of the system when a single activity cou Household Setting:In the household setting, we pér-

have different underlying intentions based on the Currepotrmed experiments that further tested the system’s wbilit

context (so that, returning to our example in Sec. IV, the R . .

- o . , T to predict intentions and perform actions based on those
activity of “moving one’s hand toward a chess piece” coul . .

. ) . " . redictions. We performed two sets of experiments. In the
be interpreted as “making a move” during a game buy as

“cleaning up” after the game is over). This case deals di ect|rst set of experiments, we trained the pioneer to recog-
9 up 9 2 v pize a number of household objects and activities and to

identical activities may in fact be very different, althdug eﬁsamblguate between similar activities based on coraéxtu

the difference may lie entirely in the contextually deteved information. Specifically, we had the system observe three

. . . different scenarios: a homework scenario, in which a human
intentional component of the activity. as observed reading books and typing on a laptop; a meal
In our second case of interest, we sought to determine e 9 yping btop;

T ) . .. scenario, in which a human was observed eating and drinking;
performance of the system in disambiguating two activiti€s

. . - .~ .. and an emergency scenario, in which a human was observed
that were in fact different, but due to environmental condi : : L -

o - o using a fire extinguisher to put out a fire in a trash can.
appeared superficially very similar. This situation repres In the second set of experiments, we trained a humanoid
one of the larger stumbling blocks of systems that do n%bot to observe a human eating or dc’>in homework. The robot
incorporate contextual awareness. d di tthg b gd h tenti

In the first set of experiments, the same footage was giv\évnﬁj gfrfggir;r;zn;g ;{rgoga" eao rst,)er:gte n?g:r?gnstsm\gg |uosns
to the system several times, each with a different conteat, ; y approp ' ;

; 2t11ese scenarios to evaluate the performance of the lexical
to determine whether the system could use context alonedtlora h approach
disambiguate agents’ intentions. We considered three odir graph app '
scenarios: leaving the building on a normal day/evacudtiag
building, getting a drink from a vending machine/repairteag B. Results
vending machine, and going to a movie during the day/gomgm both settings, our robots were able to effectively observ
to clean the theater at night. We would expect our mtem ’

. . . e agents within their fields of view and correctly infer the
recognition system to correctly disambiguate between e#ch. : .
; S . intentions of the agents that they observed. Videos of syste
these pairs using its knowledge of its current context.

The second set of experi . l;))erformance for both the pioneer and the humanoid robot
periments was performed in a lob ) .
. : be found at http://www.cse.unr.edikelley/robot-videos.

and had agents meeting each other and passing each other Pﬂ?
with and without contextual information about which of thes
two activities is more likely in the context of the lobby. Toet
extent that meeting and passing appear to be similar, wedwofl
expect that the use of context would help to disambiguate thee Accuracy rate= the ratio of the number of observation
activities. sequences, of which the winning intentional state matches

Lastly, to test our intention-based control, we set up two the ground truth, to the total number of test sequences.
scenarios. In the first scenario (the “theft” scenario), man ~  Correct Duration= C/T', whereC'is the total time during
enters his office carrying a bag. As he enters, he sets his bag which the intentional state with the highest probability
down by the entrance. Another human enters the room, takes Matches the ground truth afidis the number of obser-
the bag and leaves. Our robot was set up to observe these Vations.
actions and send a signal to a “patrol robot” in the hall that aThe accuracy rate of our system is 100%: the system
theft had occurred. The patrol robot is then supposed tovfoll ultimately chose the correct intention in all of the sceogri
the thief for as long as possible. in which it was tested. In practice this means very little.

In the second scenario, our robot is waiting in the hall, alduch more interesting is the correct duration. We consider
observes a human leaving the bag in the hallway. The robotli® correct duration measure in more detail for each of the
supposed to recognize this as a suspicious activity anovfoll cases in which we were interested.

To provide a quantitative evaluation of intent recognition
Frformance, we use two measures:



1) One Activity, Many IntentionsThe first six rows of
Table | indicate the system’s disambiguation performang
For example, we see that in the case of the scerlazave
Building, the intentionsnormal and evacuationare correctly
inferred 96.2 and 96.4 percent of the time, respectively.
obtain similar results in two other scenarios where the o
difference between the two activities in question is therint
tional information represented by the robot’s current egtit
We thus see that the system is able to use this context
information to correctly disambiguate intentions.

Fig. 4. An observer robot catches an agent stealing a bagtophleft video
is the observer’s viewpoint, the top left bars representsiptes intentions,
the bottom right bars are the robot’s inferred intentionseach agent (with
corresponding probabilities), and the bottom right videdhe patrol robot's
viewpoint.

Fig. 3. Using context to infer that an agent is leaving a bondd under
normal circumstances. The human (with identifier O in the imagehaoving
toward the door (identifier 4), and the system is 99% confittesit agent 0's
intent is to exit the building. Agent O is not currently irdeting with objects |2 el SSSraS 2 S5r 2 0 py

2 or 3, so the system does not attempt to classify agent O'atiates with 1 T-""" ‘
respect to those objects. 5. iﬁ i |

| R T T ) W O e Y TJWW-

L, EE |

) !wfﬂ-m;ai—rwﬁ

2) Similar-Looking Activities: As we can see from the |

last four rows of Table I, the system performs substantial
better when using context than it does without contexty
information. Becausameeting and passing can, depending
on the position of the observer, appear very similar, withogig 5. A patrol robot, notified that a theft has occurred,sstiee thief
context it may be hard to decide what two agents are tryingitothe hallway and follows him. The video is the patrol robotiewpoint
do. With the proper contextual information, though, it bmes Superimposed on a map of the building.

much easier to determine the intentions of the agents in the

scene.

3) Intention-Based Controlin both the scenarios we de-
veloped to test our intention-based control, our robotetity
inferred the ground-truth intention, and correctly respesh
the inferred intention. In the theft scenario, the robotrecitly
recognized the theft and reported it to the patrol robot @ th °
hallway, which was able to track the thief. In the bag drop
scenario, the robot correctly recognized that droppinggedify
in a hallway is a suspicious activity, and was able to follbw t
suspicious agent through the hall. Both examples indidste t

dispatching actions based on inferred intentions usingeson * -@Ptop (open): F’OOt’ configure, break, take, leave.
and hidden Markov models is a feasible approach. « Laptop (closed): boot, configure, break, take, leave.

4) Lexical-Digraph-Based System: For the eating scenario, the objects, states, and acsivitie

a) Pioneer Robot ExperimentsTo test the lexically- Were:
informed system in the household setting, we considerasbthr « Pitcher: find, drink, shake, have, throw, put, take, pour.
different scenarios. In the first, the robot observed a humane Glass (full): hold, break, drink.
during a meal, eating and drinking. In the second, the humane Glass (empty): hold, break.
was doing homework, reading a book and taking notes on as Plate (full): eat, think-of, sell, give.
computer. In the last scenario, the robot observed a person Plate (empty): throw.
sitting on a couch, eating candy. A trashcan in the scene therAnd for the fire scenario, the objects and activities were:

catches on fire, and the robot observes the human using a fire
extinguisher to put the fire out.

In the first set of experiments (the homework scenario), the
objects their states, and the available activities were:
Book (open): read, keep, copy, have, put, use, give, write,
own, hold, study.
« Book (closed): have, put, use, give, own, open, take.
« Mouse: click, move, use.
« Bottle (full): find, drink, squeeze, shake, have, put, take.



« Snack: eat, think-of, sell, give. such information may be used as an effective heuristic for
« Extinguisher: keep, extinguish, use. reducing the size of the space the robot has to search tafglass

In each scenario, the robot observed a human interactidgents’ intentions. As systems are deployed in increasingl
with these objects by performing some of the above actiiticcomplex situations, it is likely that heuristics of this suwiill

Defining a ground truth for these scenarios is slightlhecome important for the proper functioning of social rebot
more difficult than in the previous scenarios, since in theseMost importantly, though, from a design perspective it
scenarios the observed agent performs multiple activities Makes sense to separately perform inference for activities
the boundaries between activities in sequence are notlycle@nd for contexts. By “factoring” our solution in this way, we
defined. However, we can report that, except on the boundédfgrease modularity and create the potential for improvhrey
between two activities, the correct duration of the system $ystem by improving its individual parts. For example, ityma
100%. Performance on the boundary is more variable, Byfn out that another classifier works better than HMMs to
it isn't clear that this is an avoidable phenomenon. We afeodel activities. We could then use that superior classifier
currently working on carefully ground-truthed videos toal  place of HMMs, along with an unmodified context module, to
us to better compute the accuracy rate and the correct dnra@btain a better-performing system.
for these sorts of scenarios.

b) Humanoid Robot Experimentslo test the system B. Shortcomings

performance on another robot platform, we had our humanoidg,, particular implementation has some shortcomings that

Nap observe a humaln. .domg homework a}nd eating. Tg?e worth noting. First, the use of static context is infléxib
objects, states, and activities for these scenarios wersdine In some applications, such as surveillance using a set of
as in the pioneer experiments I'S_te_d above, with one aatitio gyationary cameras, the use of static context may make sense
object in the homework scenario: we frained the system {Q,ever in the case of robots, the use of static context mean

writing. We did this so that the robot could offer a pen 0 thgyyantage of one of the chief benefits of robots, namely their
human upon recognizing the human’s intention to write. mobility.

To demonstrate that the robot detects human mtentlons,A'Ong similar lines, the current design of the intention-

the robot takes certain actions or speaks to the human aseq control mechanism is probably not flexible enough to
soon as the mtgnuong is recogmzed_. Th|§ is based on a b"i'ﬁ!frk “in the field” Inherent stochasticity, sensor limitats,
dialog §ystem |n. which, fpr each intention, 'the robot haé‘\‘nd approximation error make it likely that a system that
a certain repertoire _of actions or utterances it can performspatches behaviors based only on a running count of pertai
Our experiments indicate that the robot correctly detes& U 1 states is likely to run into problems with false positive
intentions, before the human'’s actions are finalized. MO 54 faise negatives. In many situations (such as the theft
no delays or misidentified intentions occurred, ensurir@ thyecenarip describe above), even a relatively small number o
the robot's responses to the human were not inappropriate é‘ﬁlch errors may not be acceptable.

the human’s activities. Tables Il and Il detail the intdiacs

s . In short, then, the system we propose faces a few substantial
between the human and the robot in these scenarios.

challenges, all centering on a lack of flexibility or robiesta
in the face of highly uncertain or unpredictable environteen
VIIl. D1ScuUssION ANDFUTURE WORK

There are a number of strengths and weaknesses of gheg,ture Research

proposed system that are worth pointing out. Both the sthang The work presented raises a number of questions and

and weaknesses point to future work that can be done to
) suggests a number of avenues for future research. We are
improve the system.

currently exploring extensions to our system that wouldvall
for dynamic context, giving the robot the ability to change
A. Strengths the context that it uses to infer intentions, based on either
In addition to the improved performance of a contex@an instruction from a human operator or as a result of its
aware system over a context-agnostic one that we seeoimn decision-making process. Along similar lines, we are
the experimental results above, the proposed approach hasuaently working to give our robots the ability to infer the
few other advantages worth mentioning. First, our approachrrent context from features of the environment, which Mou
recognizes the importance of context in recognizing indeist substantially increase the flexibility of the system anwalfor
and activities, and can successfully operate in situattbas greater mobility in the intent-inferring robot.
previous intent recognition systems have had trouble with. On a much simpler note, we are exploring the use of
In real-world applications, the number of possible intensi multiple contexts during recognition. For example, we may
that a robot has to be prepared to deal with may be very largeant to be able to separately consider the robot’s locatizh a
Without effective heuristics, efficiently performing mesim the time of day in determining what an agent’s likely intents
likelihood estimation in such large spaces is likely to bare. Or we may want to use a particular context based on
difficult if not impossible. In each of the above scenarit® t the presence or absence of certain objects in the enviranmen
number of possible intentions the system had to consider was agent cannot have the goal of throwing a ball if there
reduced through the use of contextual information. In ganerare no balls in the room). In any case, similar reasoning to
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TABLE Il
HOMEWORK SCENARIO - THIS TABLE DESCRIBES THE INTERACTIONS THAT TAKE PLACE BETWER THE HUMAN AND OUR HUMANOID ROBOT. AT THE
END OF THE SCENARIQ THE ROBOT GRABS A PEN AND HANDS IT TO THE HUMAN

human action object/context detected intention robot agiiterance human utterance
reach for book book : closed take “Hey, | know that book. It ®at robots” “That is right”
open book and read book : open read “Are you going to read fong time?” “A little while”
reach for laptop laptop : closed take laptop  “l see you neestdad your computer” “That’s right”
open laptop and type laptop : open type “I will get some resteviu type” “Thank you”
close laptop laptop : closed take laptop  “Oh you are done!”
reach for paper paper write “Do you need a pen for your writing “Sure”

TABLE Il

EATING SCENARIO - WHEN THE HUMAN ACCEPTS THE ROBOTS OFFER OF A FORK THE ROBOT HANDS THE FORK TO THE HUMAN AT THE END OF THE
SCENARIO, THE ROBOT WALKS TO THE HUMAN, TAKES THE PLATE FROM HIS HAND, AND THROWS IT AWAY.

human action object/context detected  intention robot agatiterance human utterance
reach for food paper plate : full eat “| see it is time for lundtould you like a fork?”  “Sure”

reach for bottle bottle pour “Do you have a glass for your kitih “Yes, | have a glass.”
reach for class glass : full drink “Be careful - you do not wemtspill” “Yes, thank you.”
reach for food on plate  paper plate : full eat

reach for empty plate paper plate : empty throw away  “Do you wma@tto throw that away?” “Sure”

that used in Sec. VI suggests that we can model the situatigsing its previous experience and its awareness of its own

mathematically using the equation: spatio-temporal context. We described the visual capisili
n that support our robot’s intent recognition, and validaten
pls|v,e1,.. . ) ~pv| S)Hp(s | i), (3) approach on a physical robot that was able to correctly
=1 determine the intentions of a number of people performing

a straightforward (but potentially useful) extension tce thmuIUpIe activities in a variety of contexts.

present approach.

One of the interesting natural language problems that arose ]
in the course of our work was synonymy. For instance, its 1The work has been supported by the Office of Naval
reasonable to think that the neighborhood of the word “lapto Research under award number N00014-09-1-1121.
in our lexical graph could be combined with the neighborhood
of the word “computer” to produce more robust predictions. REFERENCES
We are currently working on methods that exploit the striectu[1] D. Premack and G. Woodruff, “Does the chimpanzee have aryheb

of the lexical graph to identify subgraphs containing syms mind?” Behav. Brain Scil(4) 515-526 (1978)
| .g 'Ip d fy grap 9 [2] A. Gopnick and A. Moore, “Changing your views: How undarsding
or strongly similar V\_’0r S. ) ) visual perception can lead to a new theory of mind'Ghildren’s Early
Lastly, we recognize that our current approach to intention  Understanding of Mindeds. C. Lewis and P. Mitchell, 157-181. Lawrence
based control will probably not remain as successful as tf}‘f Erlbaum (1994)

f Lo . : . lacobini, M., Molnar-Szakacs, I., Gallese, V., Buccjr®., Mazziotta, J.,
number of activities, intentions, or contexts increases.ané Rizzolatti, G. “Grasping the Intentions of Others with Gn&wn Mirror

therefore looking into increasing the robustness of cdntro Neuron System,” PLoS Biol 3(3):79 (2005)

based on inferred intentions. Additionally, we are lookiog [4] R. Duda, P. Hart, and D. StorRattern ClassificationWiley-Interscience
; : : (2000)
extend our system to forms of control that range beyond €M} | R. Rabiner, A tutorial on hidden-Markov models and stée appli-

action dispatch. Among other possibilities, we are congide cations in speech recognition, in Proc. IEEE 77(2) (1989)
; ; i ; i ] P. Pook and D. Ballard, Recognizing teleoperating maatjns, in Int.
how intentional information could be used to bias the 0L£tpu|i6 Conf. Robotics and Automation (1993), pp, 578585,
of controllers for underactuated systems. [7] G. Hovland, P. Sikka and B. McCarragher, Skill acquésitfrom human
demon- stration using a hidden Markov model, Int. Conf. Raiso&ind
Automation (1996), pp. 27062711.
IX. CONCLUSION [8] K. Ogawara, J. Takamatsu, H. Kimura and K. Ikeuchi, Modglma-
. . . nipulation inter- actions by hidden Markov models, Int. Cdntelligent
In this paper, we proposed an approach to intent recognition gopots and Systems (2002), pp. 10961101.
that combines theory of mind with contextual awareness ] A. Tavakkoli, R. Kelley, C. King, M. Nicolescu, M. Nicoteu, and G.
a mobile robot. Understanding intentions in context is an Bebis, A Vision-Based Architecture for Intent RecognitjoProc. of the

. .. . . L . International Symposium on Visual Computimpgp. 173-182 (2007)
essential human activity, and with high likelihood will be[m] J. Gray, C. Breazeal, M. Berlin, A. Brooks, J. LiebermaAction

just as essential in any robot that must function in social Parsing and Goal Inference Using Self as Simulal@EE International

domains. The approach we propose is based on perspectjyeWorkshop on Robot and Human Interactive Communica#@g5.
11] Dalal, N., Triggs, B.: Histogram of Oriented Gradierftsy Human

taking and eXperienC_e. _gained by the I’Obpt usmg_ its ovxgn Detection. International Conference on Pattern Recagnit{2005) pp.
sensory-motor capabilities. The robot carries out infeeen  886-893

ACKNOWLEDGEMENTS



[12] Ramanan, D., Forsyth, D., Zisserman, A.: Tracking Pebpgléearning
Their Appearances. |IEEE PAMI9 (2007) pp. 65-81

[13] Efors, J., Berg, A., Morri, G., Malik, J.: Recognizingt#n at a distance.

In: Intl. Conference on Computer Vision. (2003)

[14] Stauffer, C., Grimson, W.: Learning Patterns of Actmiising Real-Time
Tracking. IEEE Transactions on PAN22 (2000) 747-757

[15] Tavakkoli, A., Nicolescu, M., Bebis, G.: Automatic Stical Object
Detection for Visual Surveillance. In proceedings of IEEBushwest
Symposium on Image Analysis and Interpretation (2006) 148-14

[16] Tax, D., Duin, R.: Support Vector Data Description. Maw Learning
54 (2004) 45-66.

[17] J. Platt: Fast Training of Support Vector Machines gsBequential
Minimal Optimization. Advances in Kernel Methods - Supportcide
Learning.MIT Press (1998) 185-208.

[18] Osuna, E., Freund, R., Girosi, F.: Improved Training &ithm for
Support Vector Machines. In Proc. Neural Networks in SigPralcessing
(1997)

[19] P. Forssen “Maximally Stable Colour Regions for Rectigni and
Matching,” CVPR2007.

[20] Tax, D., Laskov, P.: Online SVM Learning: from Classifion and Data
Description and Back. Neural Networks and Signal Procgsé903)
499-508.

11



