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Context-Based Bayesian Intent Recognition
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Abstract—One of the foundations of social interaction among
humans is the ability to correctly identify interactions and infer
the intentions of others. To build robots that reliably function
in the human social world, we must develop models that robots
can use to mimic the intent recognition skills found in humans.
We propose a framework that uses contextual information in
the form of object affordances and object state to improve the
performance of an underlying intent recognition system. This
system represents objects and their affordances using a directed
graph that is automatically extracted from a large corpus of
natural language text. We validate our approach on a physical
robot that classifies intentions in a number of scenarios.

I. I NTRODUCTION

A precursor to social interaction is social understanding.
Every day, humans observe each other and on the basis of
their observations “read people’s minds,” correctly inferring
the goals and intentions of others. Moreover, this ability
is regarded not as remarkable, but as entirely ordinary and
effortless. If we hope to build robots that are similarly capable
of successfully interacting with people in a social setting,
we must endow our robots with an ability to understand
humans’ intentions. In this paper, we propose a system aimed
at developing those abilities in a way that exploits both an
understanding of actions and the context within which those
actions occur.

Our approach is ultimately based on psychological and neu-
roscientific evidence for a theory of mind [1], which suggests
that the ease with which humans recognize the intentions of
others is the result of an innate mechanism for representing,
interpreting, and predicting other’s actions. The mechanism
relies on taking the perspective of others [2], which allows
humans to correctly infer intentions.

Although this process is innate to humans, it does not
take place in a vacuum. Intuitively, it would seem that our
understanding of others’ intentions depend heavily on the
contexts in which we find ourselves and those we observe.
This intuition is supported by neuroscientific results [3] which
suggest that the context of an activity plays an important
and sometimes decisive role in correctly inferring underlying
intentions.

Our approach to developing this ability in robots consists of
two stages:activity modelingfollowed by intent recognition.
During activity modeling, our robot performs the activities it
will later be expected to understand, using data it collectsto
train parameters of hidden Markov models (HMMs) represent-
ing the activities. Each HMM represents a single “basic activ-
ity.” The hidden states of those HMMs correspond to small-
scale goals or subparts of the activities. Most importantly, the
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visible states of a model represent the way in which parameters
relevant to the activity change over time. For example, a visible
statedistance-to-goalmay correspond to the way in which
an observed agent’s distance to some goal of the activity is
changing, growing larger, smaller, or staying the same.

During intent recognition, the robot observes other agents
interacting and performing various activities. The robot takes
the perspective of the agents it is tracking and from their
perspective calculates the changes in all parameters of interest.
It uses the results of its calculations as inputs to its previously
trained HMMs, inferring intentions using those models in
conjunction with its prior knowledge of likely intention given
the robot’s (previously determined) spatio-temporal context.

The rest of our paper is structured as follows. Section II
summarizes related work in activity modeling, intent recog-
nition, and word sense disambiguation. Section III introduces
lexical digraphs and their use in intent recognition. Section
IV examines the intent recognition problem in detail, and
demonstrates the necessity of contextual awareness in any
general-purpose intent recognition system. Section V describes
the novel computer vision methods that support our intent
recognition system. Section VI provides the details of our
recognition system, Section VII describes experiments in
which we validated our approach on a physical robot, Section
VIII gives a discussion of our approach and outlines possibil-
ities for future work, and Section IX summarizes our paper.

II. RELATED WORK

Whenever one wants to perform statistical classification in a
system that is evolving over time, hidden Markov models may
be appropriate [4]. Such models have been very successfully
used in problems involving speech recognition [5]. There is
also some evidence that hidden Markov models may be just
as useful in modeling activities and intentions. For example,
HMMs have been used by robots to perform a number of
manipulation tasks [6][7][8]. These approaches all have the
crucial problem that they only allow the robot to detect thata
goal has been achievedafter the activity has been performed;
to the extent that intent recognition is about prediction, these
systems do not use HMMs in a way that facilitates the recog-
nition of intentions. Moreover, there are reasons to believe
(see Sec. IV) that without considering the disambiguation
component of intent recognition, there will be unavoidable
limitations on a system, regardless of whether it uses HMMs
or any other classification approach.

The problem of recognizing intentions is important in
situations where a robot must learn from or collaborate witha
human. Previous work has shown that forms of simulation or
perspective taking can help robots work with people on joint
tasks [10]. More generally, much of the work in learning by
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demonstration has either an implicit or an explicit component
dealing with interpreting ambiguous motions or instructions.
The work we present here differs from that body of research
in that we mostly focus on recognition in which the human
is not actively trying to help the robot learn – ultimately
intent recognition and learning by demonstation differ in this
respect. However, we expect that the conclusions we have
reached about the importance of linguistic information in dis-
ambiguation could be useful for the learning by demonstration
community.

The use of HMMs in intent recognition (emphasizing the
prediction element of the intent recognition problem) was first
suggested in [9]. That paper also elaborates on the connection
between the HMM approach and theory of mind. However,
the system proposed there has shortcomings that the present
work seeks to overcome. Specifically, that paper shows that in
the absence of addition contextual information, a system that
uses HMMs alone will have difficulty predicting intentions
when two or more of the activities the system has been trained
to recognize appear very similar. The model of perspective-
taking that uses HMMs to encode low-level actions alone is
insufficiently powerful to make predictions in a wide range of
everyday situations.

The problem of intent recognition is also of great interest
to researchers in neuroscience. Recent research in that field
informs us that the mirror neuron system may play a role in
intent recognition, and that contextual information is employed
by the brain when ascribing intentions to others [3].

III. L EXICAL DIGRAPHS

As mentioned above, our system relies on contextual in-
formation to perform intent recognition. Given that context is
sometimes the decisive factor enabling human intent recog-
nition [3], it makes sense to create robot architectures that
use contextual information to improve performance. While
there are many sources of contextual information that may be
useful to infer intentions, we chose to focus primarily on the
information provided by object affordances, which indicate the
actions that one can perform with an object. The problem, once
this choice is made, is one of training and representation: given
that we wish the system to infer intentions from contextual
information provided by knowledge of object affordances,
how do we learn and represent those affordances? We would
like, for each object our system may encounter, to build a
representation that contains the likelihood of all actionsthat
can be performed on that object.

Although there are many possible approaches to construct-
ing such a representation, we chose to use a representation
that is based heavily on a graph-theoretic approach to natural
language – in particular, English. Specifically, we construct a
graph in which the vertices are words and a labeled, weighted
edge exists between two vertices if and only if the words cor-
responding to the vertices exist in some kind of grammatical
relationship. The label indicates the nature of the relationship,
and the edge weight is proportional to the frequency with
which the pair of words exists in that particular relationship.
For example, we may have verticesdrink and water, along

with the edge((drink,water), direct object, 4), indicating
that the word “water” appears as a direct object of the verb
“drink” four times in the experience of the system. From this
graph, we compute probabilities that provide the necessary
context to interpret an activity. It seems likely that spoken and
written natural language is not enough (on its own) to create
reasonable priors for activity and intent recognition. However,
we suggest that for a wide range of problems, natural language
can provide information that improves prediction over systems
that don’t use contextual information at all.

A. Using Language for Context

The use of a linguistic approach is well-motivated by human
experience. Natural language is a highly effective vehiclefor
expressing facts about the world, including object affordances.
Moreover, it is often the case that such affordances can be
easily inferred directly from grammatical relationships,as in
the example above.

From a computational perspective, we would prefer models
that are time and space efficient, both to build and to use. If the
graph we construct to represent our affordances is sufficiently
sparse, then it should be space efficient. As we discuss below,
the graph we use has a number of edges that is linear in the
number of vertices, which is in turn linear in the number
of sentences that the system “reads.” We thus attain space
efficiency. Moreover, we can efficiently access the neighbors
of any vertex using standard graph algorithms.

In practical terms, the wide availability of texts that discuss
or describe human activities and object affordances means
that an approach to modeling affordances based on language
can scale well beyond a system that uses another means for
acquiring affordance models. The act of “reading” about the
world can, with the right model, replace direct experience for
the robot in many situations.

Note that the above discussion makes an important assump-
tion that, although convenient, may not be accurate in all
situations. Namely, we assume that for any given action-object
pair, the likelihood of the edge representing that pair in the
graph is at least approximately equal to the likelihood thatthe
action takes place in the world. Or in other words, we assume
that linguistic frequency well approximates action frequency.
Such an assumption is intuitively reasonable. We are more
likely to read a book than we are to throw a book; as it
happens, this fact is represented in our graph. We are currently
exploring the extent to which this assumption is valid and may
be safely relied upon; at this point, though, it appears thatthe
assumption is valid for a wide enough range of situations to
allow for practical use in the field.

B. Dependency Parsing and Graph Representation

To obtain our pairwise relations between words, we use the
Stanford labeled dependency parser. The parser takes as input
a sentence and produces the set of all pairs of words that are
grammatically related in the sentence, along with a label for
each pair, as in the “water” example above.

Using the parser, we construct a graphG = (V,E), where
E is the set of all labeled pairs of words returned by the
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parser for all sentences, and each edge is given an integer
weight equal to the number of times the edge appears in the
text parsed by the system.V then consists of the words that
appear in the corpus processed by the system.

C. Graph Construction and Complexity

1) Graph Construction:Given a labeled dependency parser
and a set of documents, graph construction is straightforward.
Briefly, the steps are

1) Tokenize each document into sentences.
2) For each sentence, build the dependency parse of the

sentence.
3) Add each edge of the resulting parse to the graph.

Each of these steps may be performed automatically with rea-
sonably good results, using well-known language processing
algorithms. The end result is a graph as described above, which
the system stores for later use.

One of the greatest strengths of the dependency-grammar
approach is its space efficiency: the output of the parser is
either atree on the words of the input sentence, or a graph
made of a tree plus a (small) constant number of additional
edges. This means that the number of edges in our graph
is a linear function of the number of nodes in the graph,
which (assuming a bounded number of words per sentence
in our corpus) is linear in the number of sentences the system
processes. In our experience, the digraphs our system has
produced have had statistics confirming this analysis, as can
be seen by considering the graph used in our recognition
experiments. For our corpus, we used two sources: first, the
simplified-English Wikipedia, which contains many of the
same articles as the standard Wikipedia, except with a smaller
vocabulary and simpler grammatical structure, and second,a
collection of childrens’ stories about the objects in whichwe
were interested. In Figure 1, we show the number of edges in
the Wikipedia graph as a function of the number of vertices at
various points during the growth of the graph. The scales on
both axes are identical, and the graph shows that the number
of edges for this graph does depend linearly on the number of
vertices.

The final Wikipedia graph we used in our experiments
consists of 244,267 vertices and 2,074,578 edges. The chil-
drens’ story graph is much smaller, being built from just a
few hundred sentences: it consists of 1754 vertices and 3873
edges. This graph was built to fill in gaps in the information
contained in the Wikipedia graph. The stories were selected
from what could be called “childrens’ nonfiction:” the books
all contained descriptions and pictures of the world, and were
chosen to cover the kinds of situations we trained our system
to work in. The graphs were merged to create the final graph
we used by taking the union of the vertex and edge sets of the
graphs, adding the edge weights of any edges that appeared
in both graphs.

2) Induced Subgraphs and Lexical “Noise”:In some in-
stances, our corpus may contain strings of characters that
do not correspond to words in English. This is especially a
problem if the system automatically crawls a resource such
as the world wide web to find its sentences. We use the

Fig. 1. The number of edges in the Wikipedia graph as a functionof the
number of vertices during the process of graph growth.

term lexical noise to refer to tokens that have vertices in
our graph but are not in fact words in English. The extent
to which such noise is a problem depends in large part on
how carefully the documents are acquired, cleaned up, and
tokenized into sentences before being given to the parser.
Given the highly variable quality of many sources (such as
blogs and other webpages) and the imperfect state of the art in
sentence tokenization, it is necessary that we have a technique
for removing lexical noise. Our current approach to such a
problem is to work with induced subgraphs.

Suppose that we have a lexical digraphG = (V,E), and a
set of wordsS ⊆ V . We assume that we donot care about
the “words” inV −S (in fact, they may not even be words in
our target language). Then instead of working with the graph
G, we use the graphG′ = (S,E′), where

E′ = {(x, y) | (x, y) ∈ E ∧ x, y ∈ S}.

In addition to solving the problem of lexical noise, this
approach has the benefit that it is easy to limit the system’s
knowledge to a particular domain if appropriate. For instance,
we might makeS a set of words about cars if we know we
will be using the system in a context where cars are the only
objects of interest. In this manner, we can carefully control
the linguistic knowledge of our system and remove a source
of error that is hard to avoid in a fully automated knowledge
acquisition process.

IV. RECONSIDERING THEINTENT RECOGNITION

PROBLEM

A. Disambiguation

Although some researchers consider the problems of activity
recognition and intent recognition to be essentially the same,
a much more common claim is that intent recognition differs
from activity recognition in that intent recognition has a
predictive component: by determining an agent’s intentions,
we are in effect making a judgment about what we believe are
the likely actions of the agent in the immediate or near future.
Emphasizing the predictive component of intent recognition is
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important, but may not reveal all of the significant facets of
the problem.

In contrast with the more traditional view of intent recog-
nition, we contend thatdisambiguationis an essential task
that any completely functional intent recognition system must
be capable of performing. In emphasizing the disambiguation
component of an intent recognition system, we recognize that
there are some pairs of actions that may appear identical in
all respects except for their underlying intentions.

For an example of intent recognition as disambiguation,
consider an agent playing chess. When the agent reaches for
a chess piece, we can observe that activity and ascribe to the
agent any number of possible intentions. Before the game, an
agent reaching for a chess piece may putting the piece into its
initial position; during the game, the agent may be making a
move using that piece; and after the game, the agent may be
cleaning up and putting the piece away. In each of these cases,
it is entirely possible (if not likely) that the activity of reaching
for the piece will appear identical to the other cases. It is only
the intentional component of each action that distinguishes
it from the others. Moreover, this component is determined
by the context of agent’s activity: before, during, or afterthe
game. Notice that we need to infer the agent’s intention in
this example even when we are not interested in making any
predictions. Disambiguation in such circumstances is essential
to even a basic understanding of the agent’s actions.

B. Local and Global Intentions

In our work, we distinguish between two kinds of intentions,
which we call local and global intentions. “Local” intentions
exist on smaller time scales and may correspond to the
individual parts of a complex activity. For example, if two
agents are performing a “meeting” activity, they may approach
one another, stop for some length of time, and then part
ways. Each of these three components would correspond to a
different local intention. In our approach, these local intentions
are modeled using the hidden states of our HMMs, although
of course there will be other ways to achieve the same result.
As this modeling choice implies, though, local intentions are
closely tied with particular activities, and it may not evenbe
sensible to discuss these sorts of intentions outside of a given
activity or set of activities.

In contrast, global intentions exist on larger time scales and
correspond to complex activities in a particular context. In
our chess example, “setting up the board,” “making a move,”
and “cleaning up” would all correspond to to possible global
intentions of the system.

This distinction between local and global intentions may be
most useful during the activity modeling stage, if the activities
being considered are sufficiently simple that they lack the
internal structure that would lead to several local intentions, it
may be that HMMs are not necessary for the system, so that
a simpler purely Bayesian approach could be used instead. In
this way, the distinction between local and global intentions
can be used to develop a sense of the complexity of the
activities being modeled in a given application.

V. V ISION-BASED CAPABILITIES

In support of our intent recognition system, we require a
number of visual capabilities for our robot. Among these, our
system must be able to segment and track the motion of both
humans and inanimate objects. Because we are interested in
objects and their affordances, our system must also be able
to visually identify objects and, for objects whose state can
change over time, object states. Moreover, tracking should
be done in three-dimensional space. To support this last
requirement, we use a stereo-vision camera.

To perform segmentation and object recognition, we use a
variant of maximally stable extremal regions for color images
[19]. In our variant, we identify “strong” and “weak” edges
in the image (based on our thresholding), and constrain the
region-merging of color-based MSER so that region growth
is inhibited across weak edges and prevented entirely across
strong edges. This approach allows for increased stability,
for multiple regions of different homogeneity to coexist near
one another, and for more coherent segmentation of textured
regions.

Having segmented a frame into regions, we perform object
recognition using a mixture of Gaussians, computing proba-
bilities at theregion level rather than the pixel level. Because
objects tend to consist of a smaller number of regions than
pixels, this can lead to a substantial speedup.

Once we have segmented a frame and identified the regions
of interest in that frame, we perform tracking via incremental
support vector data descriptions and connected component
analysis. We refer the interested reader to other, vision-specific
work [9].

VI. RECOGNITION SYSTEM

As the visual tracking system performs its analysis of the
scene, it passes along its results to the recognition system.
That system then uses hidden Markov models and contextual
information to calculate the intentions of each agent the robot
observes.

A. Low-Level Recognition via Hidden Markov Models

As mentioned above, our system uses HMMs to model
activities that consist of a number of parts that have intentional
significance. Recall that a hidden Markov model consists of
a set of hidden states, a set of visible states, a probability
distribution that describes the probability of transitioning from
one hidden state to another, and a probability distribution
that describes the probability of observing a particular visible
state given that the model is in a particular hidden state. To
apply HMMs, one must give an interpretation to both the
hidden states and the visible states of the model, as well
as an interpretation for the model as a whole. In our case,
each modelλ represents a single well-defined activity. The
hidden states ofλ represent the intentions underlying the parts
of the activity, and the visible symbols represent changes in
measurable parameters that are relevant to the activity. Notice
in particular that our visible states correspond to dynamic
properties of the activity, so that our system can perform
recognition as the observed agents are interacting.
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As an example, consider the activity of meeting another
person. To a first approximation, the act of meeting someone
consists of approaching the person up to a point, interacting
with the stationary person in some way (talking, exchanging
something, etc.), and then parting. In our framework, we would
model meeting using a single HMM. The hidden states would
correspond to approach, halt, and part, since these correspond
with the short-term intermediate goals of the meeting activity.
When observing two people meeting, the two parameters
of interest that we can use to characterize the activity are
the distance and the angle between the two agents we’re
observing; in a meeting activity, we would expect that both
the distance and the angle between two agents should decrease
as the agents approach and face one another. With this in
mind, we make the visible states represent changes in the
distance and angle between two agents. Since each of these
parameters is a real number, it can either be positive, negative,
or (approximately) zero. There are then nine possibilitiesfor a
pair representing “change in distance” and “change in angle,”
and each of these nine possibilities represents a single visible
state that our system can observe.

a) Training: We train our system in two ways. In situ-
ations where the robot can perform the activity, we have the
robot perform that activity. With a Pioneer robot, this approach
makes sense for activities like “follow an agent,” or “pass by
that person.” As the robot performs the activity, it records
features related to its motion (speed, direct, changes in its
position relative to other agents, etc.). These are then converted
to discrete symbols as described in the previous section.
The symbols are then used to train HMMs representing each
activity.

In situations where the robot cannot perform the activity (in
our case, this included reaching for most objects), the system
observes a human performing the task. The same features of
the motion are recorded as in the previous training method,
and are used to train an HMM.

In both cases, the topologies the HMMs and the interpreta-
tions of the hidden and visible states are determined by hand.
The number of training examples generate with either method
was limited due to the fact that a human had to perform the
actions. In all cases below, we found that with just one or two
dozen performances of the activities the system was able to
train reasonably effective HMMs.

b) Recognition:During recognition, the stationary robot
observes a number of individuals interacting with one another
and with stationary objects. It tracks those individuals using
the visual capabilities described above, and takes the perspec-
tive of the agents it is observing. Based on its perspective-
taking and its prior understanding of the activities it has been
trained to understand, the robot infers the intention of each
agent in the scene. It does this using maximum likelihood
estimation, calculating the most probable intention giventhe
observation sequence that it has recorded up to the current
time for each pair of interacting agents.

For more details on this use of HMMs for perspective taking
and intent recognition, see our previous work [9].

B. Context Modeling

To use contextual information to perform intent recognition,
we must decide how we want to model the relationship
between intentions and contexts. This requires that we describe
what intentions and contextsare, and that we specify how
they are related. There are at least two plausible ways to
deal with the latter consideration: we could choose to make
intentions “aware” of contexts, or we might make contexts
“aware” of intentions. In the first possibility, each intention
knows all of the contexts in which it can occur. This would
imply that we know in advance all contexts that are possible
in our environment. Such an assumption may or may not
be appropriate, given a particular application. On the other
hand, we might make contexts aware of intentions. This
would require that each context know, either deterministically
or probabilistically, what intentions are possible in it. The
corresponding assumption is that we know in advance all of
the possible (or at least likely) intentions of the agents wemay
observe. Either of these approaches is possible, and may be
appropriate for a particular application. In the present work, we
adopt the latter approach by making each context aware of its
possible intentions. This awareness is achieved by specifying
the content ofintention modelsandcontext models.

An intention model consists of two parts: first, an activity
model, which is given by a particular HMM, and secondly a
name. This is the minimal amount of information necessary
to allow a robot to perform disambiguation. If necessary
or desirable, intentions could be augmented with additional
information that a robot could use to support interaction. As
an example we might augment an intention model to specify
an action to take in response to detecting a particular sequence
of hidden states from the activity model.

A context model, at a minimum, must consist of a name or
other identifier to distinguish it from other possible contexts
in the system, as well as some method for discriminating
between intentions. This method might take the form of a
set of deterministic rules, or it might be a discrete probabil-
ity distribution defined over the intentions about which the
context is aware. In general, a context model can contain
as many or as few features as are necessary to distinguish
the intentions of interest. For our work, we focused on two
kinds of information: the location of the event being observed,
and the identities of any objects being interacted with by
an agent. Context of the first kind was useful for basic
experiments testing the performance of our system against a
system that uses no contextual information, but did not use
lexical digraphs at all; contexts and possible intentions we
determined entirely by hand. Our other source of context,
object identities, relied entirely on lexical digraphs as away
to represent object affordances. One of the major sources
of information when inferring intent is contained by object
affordances. Affordances indicate the types of actions that can
be performed with a particular object and through their relative
probabilities constrain the possible intentions a person can
have when interacting with an object. For example, one can
drink from, break, empty, or washa glass, all with different
probabilities. At the same time, the state of the object can
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further constrain the potential intentions: it is more likely that
one would drink from a full glass, while for an empty, diry
glass, the most probable intention would be to wash it. We use
the system described in section III to extract information about
object affordances. The goal was to build a representation that
contains, for each object, the likelihood of all actions that can
be performed on that object. The system produces a weighted
graph linking words that are connected in a dependency parse
of a sentence in the corpus. The weights count the number
of times each relationship appears, and must be converted to
probabilities. To obtain the probability of each action given an
objectO, we look at all verbsV in relation toO and compute
the probability of the verbV given the objectO:

p(V |O) =
w(O, V )∑

V ′∈N(O) w(O, V ′)
,

whereN(O) consists of all verbs in the digraph that receive
an arc from theO node andw(O, V ) is the weight of the
arc from O to V , which we use as an approximation to the
probability p(O, V ).

For objects that have different states (full vs. empty, open
vs. closed, etc.), we infer the biased probabilities as follows:

• Merge the state vertexvs and the object vertexvo to
obtain a new vertexv.

• update each edge weightw(v, vneighbor) as follows:

– 0 if vneighbor was not adjacent to bothvo andvs.
– min w(vo, vneighbor), w(vs, vneighbor) otherwise.

• Normalize probabilities as in the stateless case.
• Return the probability distribution.

In this way, we can extract probabilities of actions for
objects that are stateless as well as objects containing state.

c) Inference Algorithm:Suppose that we have an activity
model (i.e. an HMM) denoted byw. Let s denote an intention,
let c denote a context, and letv denote a sequence of visible
states from the activity modelw. If we are given a context and
a sequence of observation, we would like to find the intention
that is maximally likely. Mathematically, we would like to find

arg max
s

p(s | v, c),

where the probability structure is determined by the activity
modelw.

To find the corrects, we start by observing that by Bayes’
rule we have

max
s

p(s | v, c) = max
s

p(v | s, c)p(s | c)

p(v | c)
. (1)

We can further simplify matters by noting that the denominator
is independent of our choice ofs. Moreover, we assume
without loss of generality that the possible observable sym-
bols are independent of the current context. Based on these
observations, we can write

max
s

p(s | v, c) ≈ max
s

p(v | s)p(s | c). (2)

This approximation suggests an algorithm for determining the
most likely intention given a series of observations and a
context: for each possible intentions for which p(s | c) > 0,
we compute the probabilityp(v | s)p(s | c) and choose

as our intention thats whose probability is greatest. The
probability p(s | c) is available, either by assumption or
from our linguistic model, and if the HMMw represents the
activity model associated with intentions, then we assume
thatp(v | s) = p(v | w). This assumption may be made in the
case of location-based context for simplicity, or in the case of
object affordances because we focus on simple activities such
as reaching, where the same HMMw is used for multiple
intentionss. Of course a perfectly general system would have
to choose an appropriate HMM dynamically given the context;
we leave the task of designing such a system as future work
for now, and focus on dynamically deciding on the context to
use, based on the digraph information.

C. Intention-Based Control

In robotics applications, simply determining an observed
agent’s intentions may not be enough. Once a robot knows
what another’s intentions are, the robot should be able to
act on its knowledge to achieve a goal. With this in mind,
we developed a simple method to allow a robot to dispatch
a behavior based on its intent recognition capabilities. The
robot first infers the global intentions of all the agents it is
tracking, and for the activity corresponding to the inferred
global intention determines the most likely local intention. If
the robot determines over multiple time steps that a certain
local intention has the largest probability, it can dispatch a
behavior in response to the situation it believes is taking place.

For example, consider the activity of stealing an object. The
local intentions for this activity might include “approaching
the object,” “picking up the object,” and “walking off with the
object.” If the robot knows that in its current context the local
intention “picking up the object” is not acceptable and it infers
that an agent is in fact picking up the object, it can execute
a behavior, for example stopping the thief or warning another
person or robot of the theft.

VII. E XPERIMENTAL VALIDATION

A. Setup

To validate our approach, we performed experiments in
two different settings: asurveillance settingand ahousehold
setting. In the surveillance setting, we performed experiments
using a Pioneer 2DX mobile robot, with an on-board computer,
a laser rangefinder, and a Sony PTZ camera. In the household
setting we performed experiments using both a pioneer robot
and a humanoid Nao robot.

Fig. 2. HMM structure for thefollow activity
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Surveillance Setting:We trained our pioneer to under-
stand three basic activitires:following, in which one agent
trails behind another;meeting, in which two agents approach
one another directly; andpassing, in which two agents move
past each other without otherwise directly interacting.

We placed our trained robot in an indoor environment
and had it observe the interactions of multiple human agents
with each other, and with multiple static objects. In our
experiments, we considered both the case where the robot acts
as a passive observer and the case where the robot executes
an action on the basis of the intentions it infers in the agents
under its watch.

We were particularly interested in the performance of the
system in two cases. In the first case, we wanted to determine
the performance of the system when a single activity could
have different underlying intentions based on the current
context (so that, returning to our example in Sec. IV, the
activity of “moving one’s hand toward a chess piece” could
be interpreted as “making a move” during a game buy as
“cleaning up” after the game is over). This case deals directly
with the problem that in some situations, two apparently
identical activities may in fact be very different, although
the difference may lie entirely in the contextually determined
intentional component of the activity.

In our second case of interest, we sought to determine the
performance of the system in disambiguating two activities
that were in fact different, but due to environmental conditions
appeared superficially very similar. This situation represents
one of the larger stumbling blocks of systems that do not
incorporate contextual awareness.

In the first set of experiments, the same footage was given
to the system several times, each with a different context,
to determine whether the system could use context alone to
disambiguate agents’ intentions. We considered three pairs of
scenarios: leaving the building on a normal day/evacuatingthe
building, getting a drink from a vending machine/repairinga
vending machine, and going to a movie during the day/going
to clean the theater at night. We would expect our intent
recognition system to correctly disambiguate between eachof
these pairs using its knowledge of its current context.

The second set of experiments was performed in a lobby,
and had agents meeting each other and passing each other both
with and without contextual information about which of these
two activities is more likely in the context of the lobby. To the
extent that meeting and passing appear to be similar, we would
expect that the use of context would help to disambiguate the
activities.

Lastly, to test our intention-based control, we set up two
scenarios. In the first scenario (the “theft” scenario), a human
enters his office carrying a bag. As he enters, he sets his bag
down by the entrance. Another human enters the room, takes
the bag and leaves. Our robot was set up to observe these
actions and send a signal to a “patrol robot” in the hall that a
theft had occurred. The patrol robot is then supposed to follow
the thief for as long as possible.

In the second scenario, our robot is waiting in the hall, and
observes a human leaving the bag in the hallway. The robot is
supposed to recognize this as a suspicious activity and follow

TABLE I
QUANTITATIVE EVALUATION

Scenario (with Context) Correct Duration [%]

Leave building (Normal) 96.2
Leave building (Evacuation) 96.4
Theater (Cleanup) 87.9
Theater (Movie) 90.9
Vending (Getting Drink) 91.1
Vending (Repair) 91.4
Meet (No context) - Agent 1 65.8
Meet (No context) - Agent 2 72.4
Meet (Context) - Agent 1 97.8
Meet (Context) - Agent 2 100.0

the human who dropped the bag for as long as possible.
Household Setting:In the household setting, we per-

formed experiments that further tested the system’s ability
to predict intentions and perform actions based on those
predictions. We performed two sets of experiments. In the
first set of experiments, we trained the pioneer to recog-
nize a number of household objects and activities and to
disambiguate between similar activities based on contextual
information. Specifically, we had the system observe three
different scenarios: a homework scenario, in which a human
was observed reading books and typing on a laptop; a meal
scenario, in which a human was observed eating and drinking;
and an emergency scenario, in which a human was observed
using a fire extinguisher to put out a fire in a trash can.

In the second set of experiments, we trained a humanoid
robot to observe a human eating or doing homework. The robot
was programmed to predict the observed human’s intentions
and offer assistance at socially appropriate moments. We used
these scenarios to evaluate the performance of the lexical
digraph approach.

B. Results

In both settings, our robots were able to effectively observe
the agents within their fields of view and correctly infer the
intentions of the agents that they observed. Videos of system
performance for both the pioneer and the humanoid robot
can be found at http://www.cse.unr.edu/∼rkelley/robot-videos.
html.

To provide a quantitative evaluation of intent recognition
performance, we use two measures:

• Accuracy rate= the ratio of the number of observation
sequences, of which the winning intentional state matches
the ground truth, to the total number of test sequences.

• Correct Duration= C/T , whereC is the total time during
which the intentional state with the highest probability
matches the ground truth andT is the number of obser-
vations.

The accuracy rate of our system is 100%: the system
ultimately chose the correct intention in all of the scenarios
in which it was tested. In practice this means very little.
Much more interesting is the correct duration. We consider
the correct duration measure in more detail for each of the
cases in which we were interested.
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1) One Activity, Many Intentions:The first six rows of
Table I indicate the system’s disambiguation performance.
For example, we see that in the case of the scenarioLeave
Building, the intentionsnormal and evacuationare correctly
inferred 96.2 and 96.4 percent of the time, respectively. We
obtain similar results in two other scenarios where the only
difference between the two activities in question is the inten-
tional information represented by the robot’s current context.
We thus see that the system is able to use this contextual
information to correctly disambiguate intentions.

Fig. 3. Using context to infer that an agent is leaving a building, under
normal circumstances. The human (with identifier 0 in the image) is moving
toward the door (identifier 4), and the system is 99% confidentthat agent 0’s
intent is to exit the building. Agent 0 is not currently interacting with objects
2 or 3, so the system does not attempt to classify agent 0’s intentions with
respect to those objects.

2) Similar-Looking Activities: As we can see from the
last four rows of Table I, the system performs substantially
better when using context than it does without contextual
information. Becausemeeting and passing can, depending
on the position of the observer, appear very similar, without
context it may be hard to decide what two agents are trying to
do. With the proper contextual information, though, it becomes
much easier to determine the intentions of the agents in the
scene.

3) Intention-Based Control:In both the scenarios we de-
veloped to test our intention-based control, our robot correctly
inferred the ground-truth intention, and correctly responded
the inferred intention. In the theft scenario, the robot correctly
recognized the theft and reported it to the patrol robot in the
hallway, which was able to track the thief. In the bag drop
scenario, the robot correctly recognized that dropping a bag off
in a hallway is a suspicious activity, and was able to follow the
suspicious agent through the hall. Both examples indicate that
dispatching actions based on inferred intentions using context
and hidden Markov models is a feasible approach.

4) Lexical-Digraph-Based System:
a) Pioneer Robot Experiments:To test the lexically-

informed system in the household setting, we considered three
different scenarios. In the first, the robot observed a human
during a meal, eating and drinking. In the second, the human
was doing homework, reading a book and taking notes on a
computer. In the last scenario, the robot observed a person
sitting on a couch, eating candy. A trashcan in the scene then

Fig. 4. An observer robot catches an agent stealing a bag. Thetop left video
is the observer’s viewpoint, the top left bars represent possible intentions,
the bottom right bars are the robot’s inferred intentions for each agent (with
corresponding probabilities), and the bottom right video is the patrol robot’s
viewpoint.

Fig. 5. A patrol robot, notified that a theft has occurred, sees the thief
in the hallway and follows him. The video is the patrol robot’sviewpoint
superimposed on a map of the building.

catches on fire, and the robot observes the human using a fire
extinguisher to put the fire out.

In the first set of experiments (the homework scenario), the
objects their states, and the available activities were:

• Book (open): read, keep, copy, have, put, use, give, write,
own, hold, study.

• Book (closed): have, put, use, give, own, open, take.
• Mouse: click, move, use.
• Bottle (full): find, drink, squeeze, shake, have, put, take.
• Laptop (open): boot, configure, break, take, leave.
• Laptop (closed): boot, configure, break, take, leave.
For the eating scenario, the objects, states, and activities

were:
• Pitcher: find, drink, shake, have, throw, put, take, pour.
• Glass (full): hold, break, drink.
• Glass (empty): hold, break.
• Plate (full): eat, think-of, sell, give.
• Plate (empty): throw.
And for the fire scenario, the objects and activities were:
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• Snack: eat, think-of, sell, give.
• Extinguisher: keep, extinguish, use.
In each scenario, the robot observed a human interacting

with these objects by performing some of the above activities.
Defining a ground truth for these scenarios is slightly

more difficult than in the previous scenarios, since in these
scenarios the observed agent performs multiple activitiesand
the boundaries between activities in sequence are not clearly
defined. However, we can report that, except on the boundary
between two activities, the correct duration of the system is
100%. Performance on the boundary is more variable, but
it isn’t clear that this is an avoidable phenomenon. We are
currently working on carefully ground-truthed videos to allow
us to better compute the accuracy rate and the correct duration
for these sorts of scenarios.

b) Humanoid Robot Experiments:To test the system
performance on another robot platform, we had our humanoid
Nao observe a human doing homework and eating. The
objects, states, and activities for these scenarios were the same
as in the pioneer experiments listed above, with one additional
object in the homework scenario: we trained the system to
recognize a blank piece of paper, along with the intention of
writing. We did this so that the robot could offer a pen to the
human upon recognizing the human’s intention to write.

To demonstrate that the robot detects human intentions,
the robot takes certain actions or speaks to the human as
soon as the intentions is recognized. This is based on a basic
dialog system in which, for each intention, the robot has
a certain repertoire of actions or utterances it can perform.
Our experiments indicate that the robot correctly detects user
intentions, before the human’s actions are finalized. Moreover,
no delays or misidentified intentions occurred, ensuring that
the robot’s responses to the human were not inappropriate for
the human’s activities. Tables II and III detail the interactions
between the human and the robot in these scenarios.

VIII. D ISCUSSION ANDFUTURE WORK

There are a number of strengths and weaknesses of the
proposed system that are worth pointing out. Both the strengths
and weaknesses point to future work that can be done to
improve the system.

A. Strengths

In addition to the improved performance of a context-
aware system over a context-agnostic one that we see in
the experimental results above, the proposed approach has a
few other advantages worth mentioning. First, our approach
recognizes the importance of context in recognizing intentions
and activities, and can successfully operate in situationsthat
previous intent recognition systems have had trouble with.

In real-world applications, the number of possible intentions
that a robot has to be prepared to deal with may be very large.
Without effective heuristics, efficiently performing maximum
likelihood estimation in such large spaces is likely to be
difficult if not impossible. In each of the above scenarios, the
number of possible intentions the system had to consider was
reduced through the use of contextual information. In general,

such information may be used as an effective heuristic for
reducing the size of the space the robot has to search to classify
agents’ intentions. As systems are deployed in increasingly
complex situations, it is likely that heuristics of this sort will
become important for the proper functioning of social robots.

Most importantly, though, from a design perspective it
makes sense to separately perform inference for activities
and for contexts. By “factoring” our solution in this way, we
increase modularity and create the potential for improvingthe
system by improving its individual parts. For example, it may
turn out that another classifier works better than HMMs to
model activities. We could then use that superior classifierin
place of HMMs, along with an unmodified context module, to
obtain a better-performing system.

B. Shortcomings

Our particular implementation has some shortcomings that
are worth noting. First, the use of static context is inflexible.
In some applications, such as surveillance using a set of
stationary cameras, the use of static context may make sense.
However, in the case of robots, the use of static context means
that it is unlikely that the system will be able to take much
advantage of one of the chief benefits of robots, namely their
mobility.

Along similar lines, the current design of the intention-
based control mechanism is probably not flexible enough to
work “in the field.” Inherent stochasticity, sensor limitations,
and approximation error make it likely that a system that
dispatches behaviors based only on a running count of certain
HMM states is likely to run into problems with false positives
and false negatives. In many situations (such as the theft
sccenario describe above), even a relatively small number of
such errors may not be acceptable.

In short, then, the system we propose faces a few substantial
challenges, all centering on a lack of flexibility or robustness
in the face of highly uncertain or unpredictable environments.

C. Future Research

The work presented raises a number of questions and
suggests a number of avenues for future research. We are
currently exploring extensions to our system that would allow
for dynamic context, giving the robot the ability to change
the context that it uses to infer intentions, based on either
an instruction from a human operator or as a result of its
own decision-making process. Along similar lines, we are
currently working to give our robots the ability to infer the
current context from features of the environment, which would
substantially increase the flexibility of the system an allow for
greater mobility in the intent-inferring robot.

On a much simpler note, we are exploring the use of
multiple contexts during recognition. For example, we may
want to be able to separately consider the robot’s location and
the time of day in determining what an agent’s likely intentions
are. Or we may want to use a particular context based on
the presence or absence of certain objects in the environment
(an agent cannot have the goal of throwing a ball if there
are no balls in the room). In any case, similar reasoning to
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TABLE II
HOMEWORK SCENARIO - THIS TABLE DESCRIBES THE INTERACTIONS THAT TAKE PLACE BETWEEN THE HUMAN AND OUR HUMANOID ROBOT. AT THE

END OF THE SCENARIO, THE ROBOT GRABS A PEN AND HANDS IT TO THE HUMAN.

human action object/context detected intention robot action/utterance human utterance

reach for book book : closed take “Hey, I know that book. It is about robots” “That is right”
open book and read book : open read “Are you going to read for a long time?” “A little while”
reach for laptop laptop : closed take laptop “I see you need tostart your computer” “That’s right”
open laptop and type laptop : open type “I will get some rest while you type” “Thank you”
close laptop laptop : closed take laptop “Oh you are done!”
reach for paper paper write “Do you need a pen for your writing?” “Sure”

TABLE III
EATING SCENARIO - WHEN THE HUMAN ACCEPTS THE ROBOT’ S OFFER OF A FORK, THE ROBOT HANDS THE FORK TO THE HUMAN. AT THE END OF THE

SCENARIO, THE ROBOT WALKS TO THE HUMAN, TAKES THE PLATE FROM HIS HAND, AND THROWS IT AWAY.

human action object/context detected intention robot action/utterance human utterance

reach for food paper plate : full eat “I see it is time for lunch.Would you like a fork?” “Sure”
reach for bottle bottle pour “Do you have a glass for your drink?” “Yes, I have a glass.”
reach for class glass : full drink “Be careful - you do not wantto spill” “Yes, thank you.”
reach for food on plate paper plate : full eat
reach for empty plate paper plate : empty throw away “Do you wantme to throw that away?” “Sure”

that used in Sec. VI suggests that we can model the situation
mathematically using the equation:

p(s | v, c1, . . . , cn) ≈ p(v | s)

n∏

i=1

p(s | ci), (3)

a straightforward (but potentially useful) extension to the
present approach.

One of the interesting natural language problems that arose
in the course of our work was synonymy. For instance, it’s
reasonable to think that the neighborhood of the word “laptop”
in our lexical graph could be combined with the neighborhood
of the word “computer” to produce more robust predictions.
We are currently working on methods that exploit the structure
of the lexical graph to identify subgraphs containing synonyms
or strongly similar words.

Lastly, we recognize that our current approach to intention-
based control will probably not remain as successful as the
number of activities, intentions, or contexts increases. We are
therefore looking into increasing the robustness of control
based on inferred intentions. Additionally, we are lookingto
extend our system to forms of control that range beyond simple
action dispatch. Among other possibilities, we are considering
how intentional information could be used to bias the outputs
of controllers for underactuated systems.

IX. CONCLUSION

In this paper, we proposed an approach to intent recognition
that combines theory of mind with contextual awareness in
a mobile robot. Understanding intentions in context is an
essential human activity, and with high likelihood will be
just as essential in any robot that must function in social
domains. The approach we propose is based on perspective-
taking and experience gained by the robot using its own
sensory-motor capabilities. The robot carries out inference

using its previous experience and its awareness of its own
spatio-temporal context. We described the visual capabilities
that support our robot’s intent recognition, and validatedour
approach on a physical robot that was able to correctly
determine the intentions of a number of people performing
multiple activities in a variety of contexts.
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