
 

 

 

 

Abstract— We investigate the evolution and co-evolution of 

tactics in real-time strategy games. In addition, we investigate 

the representation of tactics as combinations of potential fields 

thus pointing the way towards more compact representations 

for tactics that are also amenable to evolutionary search. 

Preliminary results from generating tactics against a specific 

opponent indicate that an evolutionary algorithm can evolve 

good tactics. The generated tactics defeat a known opponent 

after a relatively short training cycle. However, these tactics are 

specific to the opponents that were trained against - they do not 

perform as well against other opponents. Co-evolution leads to 

more adaptive tactics. Results from employing a co-

evolutionary approach indicate that co-evolution can generate 

tactics that perform better over a set of opponents not 

previously encountered. 

I. INTRODUCTION 
GENERATING tactics to implement strategies in RTS 

games is important for generating artificially intelligent 

opponents. Although there are many approaches to 

generating tactics in computer games, we use evolutionary 

computing approaches because we believe that evolutionary 

computing will yield flexible, adaptive tactics. Typically, 

researchers have built knowledge based systems leading to   

intelligent but predictable opponents. It would be interesting 

to provide new tactics that were less predictable, yet still 

effective. 

We focus on using evolutionary algorithms to generate 

new tactics that are not based on any pre-conceived notions 

about how to play a game. We show that it is possible to 

evolve tactics that start with no tactical knowledge of the 

game, yet are still able to defeat opponents with regularity.  

We focus on tactics in a game with one goal - eliminate 

the opponent. That is, it is not the goal to merely survive in 

the game – you must eliminate the other player to win and 

our evolutionary computing algorithm evolves tactics to 
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accomplish this. 

The game that we chose for use in our research involves a 

number of vehicles split between two teams. The goal of the 

game is for one team to eliminate the other team. The 

playing field contains no obstacles- this removed most of the 

complexity of path planning. It also allowed us to treat each 

vehicle in a game as if it were the generator of a potential 

field. It is by tuning the strengths of these potential fields 

that we derive our tactics. Other research in using potential 

fields has proven that they can be very effective in 

implementing tactics in RTS games [10] 

Although our approach successfully evolves tactics that 

beat a particular opponent, we run up against the well-

known problem in machine learning: over-specialization. 

We find that our evolved tactics over-specialize against the 

opponents used during evolution. In the second part of our 

work, we address this challenge by implementing a co-

evolutionary algorithm that tends to generate more robust 

tactics. We show that these co-evolved tactics are better 

suited to defeat opponents that were never encountered 

during evolution compared to those tactics generated by 

evolution alone against specific opponents.  

II. BACKGROUND 
There are many known methodologies for defining a 

tactic for AI agents in Real-Time Strategy (RTS) games 

[10][3][13]. Many of these tactics rely on some scripted, or 

hard-coded, behavior. This behavior is typically dependent 

on the ability to control and coordinate all of the actions of 

all movable objects, or vehicles, in the game. The AI is 

assumed to have knowledge and a certain level of control 

over the state of each vehicle. 

Finite State Machines 
FSMs have been used frequently to determine how an 

agent will behave within a game [21]. An FSM is an 

efficient mechanism to give the appearance of intelligence in 

an agent. However, it does not have the ability to adapt itself 

beyond the logic that was used to design the FSM itself. An 

FSM controlled agent must have some concrete knowledge 

about what state it is in, what possible actions or 

observations it can take or make, and knowledge about what 

to do in response. Should a situation arise that the FSM was 

not designed to handle, that FSM controlled agent must 
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revert to some default behavior. In order to account for a 

wide variety of situations, especially when the situations 

involve continuous-valued variables, the number of possible 

states grows rapidly, thus increasing the complexity of the 

FSM. Examples of FSM logic are: 

• If the vehicle is close to another vehicle, then move 

away from that vehicle. 

• Find the vehicle with the most strategic value and target 

it 

• Group all vehicles such that they create a predefined 

formation 

• If a vehicle has taken damage, do not engage the enemy 

Expert Systems 
In other approaches, the game environment uses expert 

logic to implement tactics. While in some way similar to an 

FSM, Expert Systems typically are able to chain series of 

logical rules together to derive a most advantageous action.  

By setting up a knowledge base about a particular game, 

an expert system could use the game’s full current state to 

search the knowledge base for subsets of the state space that 

have been identified before. Using as much of the 

knowledge that is applicable (including the notion of 

probability in determining what is applicable) the expert 

system can deduce the most appropriate next action [22]. 

Evolutionary Systems 
The topic of evolutionary algorithms has been studied 

since the 1960s [7]. They have been particularly successful 

at searching high-dimensional spaces for solutions to a 

variety of problems. We show that using evolutionary 

algorithms to tune the parameters used in determining the 

strengths of potential fields is successful at producing tactics 

that are effective against a range of opponent tactics.  

Other research in this area has used evolutionary 

algorithms to determine the strengths of simple potential 

fields, which were then used to derive influence maps [3]. 

The influence maps were then used to direct the movement 

of game entities. 

 Our research shows that effective tactics can be evolved 

using only potential fields. These fields act to either attract 

or repulse one vehicle from another. By tuning the strength 

of these fields in the correct manner, we show that these 

tactics can be effective in neutralizing an opponent player. 

III. METHOD 

The Game 
The first step in this research was providing an 

infrastructure in which to play an RTS game. The game was 

designed such that it balanced realism with simplicity. The 

basic game design envisioned a 2-player game where each 

player controls N vehicles of identical types. Each unit has 

basic movement constraints, similar to those found in 

popular RTS games such as Starcraft and Warcraft. Each 

vehicle can fire upon opponent vehicles, provided the 

opponent is within range. The game is over only when all of 

one player's vehicles are destroyed, presumably by the other 

player. For this work, an open playing field was used. No 

obstacles were introduced. 

A few assumptions were made about the way the game is 

played.  

 

• Because the goal of the game is to destroy the opponent, 

a vehicle will always fire upon an opponent vehicle if it is 

able to. The game enforces this. 

• Control of movement of vehicles is a core component of 

the tactics that were being learned. Therefore, the game 

imposes no restrictions on the collision of vehicles. In a 

typical RTS game, the game engine itself will minimize the 

effect of collisions. It will generally either allow the vehicles 

to overlap each other, or it will allow the vehicles to touch, 

but not move into each other’s space. Generally, an RTS 

game will not damage vehicles which collide, while in my 

game collisions are something that can severely penalize a 

player.  

 

Each vehicle is controlled by two parameters. These are 

desired speed, a scalar value in terms of units per second; 

and desired heading, another scalar value in terms of radians. 

The game uses the characteristics of the vehicle, namely 

Seconds to Max Speed and Seconds to Full Circle, combined 

with the current state of the vehicle (current velocity, which 

is used to derive current speed and current heading), to alter 

the speed and heading of each vehicle. 

A player loses the game once all of its vehicles are 

destroyed. The score of the game is used to determine the 

Fitness Landscape for the evolutionary algorithms. The 

score for a player is calculated using the following formula: 

 

             
                   

                 

 

                        

 

Where (R)HP are (Remaining/Starting) Hitpoints and 

(R)VC is (Remaining/Starting) Vehicle Count at the end of a 

game. 

Based on the parameters to this function, it should be 

obvious that remaining hitpoints and the percentage of 

vehicles remaining play an important part in generating a 

good score. By introducing collision damage the way that 

we did, we provide a fitness landscape that is sharply 

affected by any collisions. This can provide a severe penalty 

when vehicles collide, especially if the two colliding 

vehicles are on the same team.  

It should be obvious that there are numerous methods 

available for programming an AI to play this game. The 

most basic AI will set the desired speed and the desired 

heading to some constant value. Since the game will fire 

weapons automatically, this simple agent will be able to 



 

 

 

inflict some damage on any opponent that engages it. 

For this research, an AI lovingly named Herkermer was 

designed. Herkermer uses the potential fields generated by 

all vehicles in the game to provide the controls for the 

movement of its vehicles (desired speed and heading). Using 

the positions of every remaining vehicle in the game, 

Herkermer can obviously calculate the distances between the 

vehicles. These distances, combined with the data found in 

the chromosome that configures Herkermer, are used for the 

potential field calculations. The results of the potential field 

calculations are then used as feedback into the controls for 

the vehicle. 

Potential Fields 
Potential fields between vehicles are what drive the 

movement controls for each vehicle under the control of 

Herkermer. Herkermer calculates the desired speed and 

heading by first summing the potential field vectors, then by 

breaking down the sum into its component parts (magnitude 

and orientation). 

Our potential field is comprised of three virtual forces. 

Each of these virtual forces is described by the simple 

equation: 

      

Where d is the distance between vehicles and c and e are 

parameters determined by the evolutionary algorithm. The 

three virtual forces which form our potential field can be 

loosely described as an Attractor, pulling close vehicles 

towards each other; a Repulsor, pushing close vehicles away 

from each other; and a Spring, which pulls vehicles that are 

far away closer together. For our experiments, the values for 

c and e are typified by the following table: 

 

 Typical “c” Typical “e” 

Attractor 2,000 -2 

Repulsor 500,000 -3 

Spring 1.0 0.9 

 

Each vehicle in the game (that has not been destroyed) 

produces a potential field comprised of these three virtual 

forces. Each potential field is described by 6 parameters, 

which are the coefficient and exponent for each of the three 

forces: 

 

                                           
 

Herkermer uses a set of two potential fields (PFS) to 

determine the effect of another vehicle on any vehicle it 

controls: 

 

              
 

The potential field PF
0
 contains the field parameters used 

when the vehicle under control has no hitpoints (explained 

shortly). The potential field PF
1
 denotes the parameters used 

when the vehicle is at full hitpoints. A linear interpolation 

between corresponding parameters in the two fields defines 

the effective parameters used based on the current health of 

the vehicle. This is the effective potential field (EPF), and it 

is calculated based on PFS and the remaining hitpoint 

percentage: 

 

                      
 

where hp% is the percentage of remaining hitpoints for 

the vehicle under control and lerp is a linear interpolation 

function. 

For instance, if the vehicle under control is at 50% health, 

EPF will be calculated as: 

 

     
  
    

 

 
 
  
    

 

 
   

  
    

 

 
  

 

where the x values are those from the equation for PF for 

each of  PF
0
 and PF

1
, respectively. 

The encoding of the chromosome used for the 

evolutionary algorithm is a concatenation of two PFS 

vectors. The first PFS vector represents the potential field 

for friendly vehicles while the second PFS vector is the 

potential field of the enemy vehicles. 

 

                            

 

For our experiments, we only used one type of vehicle in 

the game. This PFGrid would need to be expanded if there 

were other vehicle types in the game. 

The PFGrid contains a total of 24 scalar floating point 

values. These values form the chromosome for the 

evolutionary algorithm. The chromosome represents a vector 

in 24-dimensional space. Each dimension contains the set of 

values represented by an 80-bit floating point number. 

Since the elements of the PFGrid represent strengths of 

potential fields, the difference in these components can 

represent significantly different tactics once decoded. For 

instance, if the strength of the Repulsor is changed by a 

significant amount, two vehicles that would otherwise not 

collide may now collide. This made us interested in defining 

a distance metric between two PFGrids. 

To quote Aggarwal, “… research results show that in high 

dimensional space, the concept of proximity, distance, or 

nearest neighbor, may not even be qualitatively meaningful” 

[1]. In our experiments, we found that using the Euclidean 

Distance yielded similar numbers regardless of how different 

the tactics represented by the PFGrids were. Eschelman uses 

the Hamming distance to determine whether or not two 

chromosomes are close in the search space [6]. 

Knowing something about the search space, namely that 

two tactics can behave differently if any one of their PFGrid 

components are significantly different, we chose to use what 

we called a Floating Point Hamming Distance when 

calculating whether or not two PFGrids were close in the 

search space. After some of our initial work was completed, 



 

 

 

but before we had any meaningful results, we had a sample 

database of roughly 40,000 PFGrids. We took a “snapshot” 

of these grids and created a vector of values based on the 

standard deviation for each value xi in the PF vector. We 

called this vector the Standard Deviation Vector (SDV). We 

use it in calculating the Floating Point Hamming Distance. 

The calculation is straightforward: 

 

                     
   

    
  

          

 

  

   

 

 

where G
0
 and G

1
 were two PFGrids, SDV was the 6-

dimensional Standard Deviation Vector, Int is a function that 

returns the integer value of a real number, and mod is the 

modulo operator. In this paper, distance or spatial diversity 

refers to this equation. 

Evolution 
We designed an algorithm called Diversity Preserving 

Evolutionary Algorithm (DPEA) [23]. We wanted an 

algorithm that would both advance the fitness of a 

population of chromosomes as well as maintain a spatially 

diverse population of chromosomes simultaneously. Deb and 

Goldberg provided mechanisms for accomplishing this in 

their work, but this work concentrated on binary alphabets, 

not real-valued alphabets [4]. By maintaining a higher 

diversity in the chromosomes, we were trying to avoid 

getting “stuck” on local maxima in the solution space. 

DPEA was shown to be effective in accomplishing this goal. 

As with most every evolutionary algorithm, we start with 

a population of randomly generated chromosomes. For most 

of the trials, this population was 100 chromosomes. This 

initial set of chromosomes comprises epoch 0. The size of 

the initial population is called the initial epoch size (IES) for 

the population. 

An epoch is something that we defined to provide a reset 

point for the population during evolution. As the 

population's overall fitness increases, a new epoch is 

reached. A new epoch is designed to trim down the 

population, leaving a more concise set of valuable 

chromosomes. This process is explained below. 

Similar to the way Whitley defines the Genitor algorithm 

[19], we select one or two chromosomes from the current 

epoch of the population and perform some operation on 

these chromosomes. The operations available are versions of 

crossover and mutation, commonly found in most 

evolutionary algorithms. Using one of these operations, we 

create a new chromosome from one or two parents. This new 

chromosome is then evaluated and a new fitness is assigned. 

The new chromosome is added to the epoch unless any of 

the following conditions is true: 

• While evaluating the chromosome, one of the games 

played didn't complete in the allocated amount of time. In 

this case, the chromosome, when decoded, results in an 

invalid tactic. 

• The chromosome is deemed spatially identical to another 

chromosome in the population, but its fitness is worse than 

the existing chromosome. In this case, the population 

already contains a better version of the essentially the same 

chromosome. 

• The chromosome's fitness is worse than the average 

fitness in the population. In this case, we didn't produce a 

very good chromosome. 

This set of operations is repeated until the current epoch is 

ready to become the next epoch. Generation of more epochs 

continues until we decided to stop it. Normally, we stopped 

evolution when we saw that there was no progress being 

made in the overall fitness of the current epoch after 

thousands of evaluations of new chromosomes. 

Epochs 
An epoch is designed to maintain spatial diversity among 

the best chromosomes in the population. The goal is to 

maintain a diverse set of chromosomes all of which have 

good fitness. This work was inspired by the notion of 

niching [4][9], and is a key component of DPEA. 

Every epoch begins with exactly IES chromosomes. In the 

case of epoch 0, these are randomly generated. In the case of 

all other epochs, these initial IES chromosomes come from 

the previous epoch. When the average of the best IES 

chromosomes in the current epoch exceed the average of the 

best 
   

 
 chromosomes that initialized the epoch, a new epoch 

is generated.  

Chromosomes will be continuously added to the epoch 

until the transition condition is met. As such, it is possible to 

have epochs with 200 chromosomes in them. It is also 

possible to have epochs with 5,000 chromosomes in them. 

The number of chromosomes in an epoch does not define an 

epoch. We hypothesize about the implication of a large 

chromosome count for an epoch in [23]. 

We developed an algorithm for deciding which 

chromosomes from the current epoch will make it into the 

next epoch. The goal of this algorithm was to move a set of 

chromosomes forward that had good fitness and good spatial 

diversity. In researching statistical clustering techniques in 

high dimensions [5][15], we found that this problem is quite 

a complex field of study unto its own. What we found was 

that all of the techniques available were computationally 

expensive. We wanted an algorithm that balanced good 

clustering with fast execution speeds.  

We borrowed from the techniques that are well known, 

while reducing the iterative nature of the existing algorithms 

[23]. Essentially, we consider all of the chromosomes in the 

epoch with above average fitness. Starting at the best 

chromosome, we look for the set of all of the chromosomes 

that are far away spatially from this chromosome. As we add 

each chromosome to this set, the condition for the next 

chromosome is that it is far away from every chromosome 

that is currently in this set. This makes it more and more 

difficult to get added to this set. When there are no more 



 

 

 

chromosomes in the above average chromosomes that are far 

away from this set, we add the set to the next epoch and 

repeat, using the next-highest fitness chromosome that still 

remains. We continue to do this until we have IES 

chromosomes forwarded to the new epoch. 

The new epoch has a starting set of chromosomes that are 

all above average in fitness and are also spatially diverse. 

Since this algorithm is our own method for niching [4], 

we were interested in how it would perform against some 

well known multi-modal solution spaces. We designed a test 

for this algorithm [23]. Empirically, our test runs show that 

our algorithm for epoch generation does indeed maintain 

multiple spatially diverse chromosomes that also have high 

fitness within the population. 

Chromosome Selection 
In order to generate a new chromosome, one or two parent 

chromosomes must be selected from the chromosomes in the 

population. The number of parents is determined by the 

actual chromosome generator that is used. All generators use 

either one or two parents.  

Every chromosome generator requires at least one parent. 

This parent is selected from a set of IES chromosomes in the 

current epoch of the population with the best fitness values. 

We use simple roulette wheel selection based on fitness. 

Some chromosome generators require two parents. The 

second parent chromosome is selected differently. Because 

we want to explore the solution space as much as possible, 

we want to select a second parent that is farther away 

spatially from the first parent but still has above-average 

fitness. The set of available chromosomes for the second 

parent is comprised of all of the chromosomes in the current 

epoch of the population that have a fitness value that is 

above average for that epoch. Again, a chromosome is 

selected using a simple roulette wheel selection, but this 

time the weights for this second selection are based on the 

distance of the chromosome from the first parent. 

Chromosome Generation 
In the canonical genetic algorithm, there are two main 

methods for new chromosome generation: crossover and 

mutation [11]. A canonical version of crossover is the 

Single-Point Crossover. Our work uses variations on this 

method of crossover for floating point operations. 

Wright discusses the implications of crossover on binary 

strings of data when the string is broken down into sub-

sections each representing a parameter [20]. For instance, if 

the binary string represents four 8-bit integer numbers, there 

are four subsections of the 32 bits corresponding to the four 

8-bit integers. Should crossover choose a point in the middle 

of one of these sub-sections, it will introduce a perturbation 

into the crossover. This perturbation can be viewed as a 

mutation, as the resulting chromosome would likely not 

contain 8-bit integers that are in the union of the two parent 

chromosomes' 8-bit integer values.  

However, in a chromosome built from real-valued 

parameters, there are no sub-sections where this perturbation 

can be placed. In many applications where real-valued 

parameters need to be encoded using a binary encoding 

scheme, a real number would be encoded into a binary 

number, reducing its precision but allowing the encoding. 

Wright showed methods to deal with this loss of precision 

[20]. Since this can be done in a number of ways, we chose 

to use 5 different operations, each based in part on either the 

crossover or the mutation (or both) operations [23]. These 

are Uniform Mutation [12], N-Point Mutation, Uniform 

Crossover, N-Point Crossover, and Linear Interpolation 

[12][20]. 

Co-Evolution 
We found that the DPEA algorithm was effective in 

evolving a population that had high-performance 

chromosomes relative to the opponents that were used in the 

evolutionary process. However, the chromosomes evolved 

this way would generally do significantly worse against 

opponents that were not involved with their evolution. To 

account for this, we implemented a co-evolutionary 

algorithm, where two populations of chromosomes were 

evolved together and used each other to provide new 

opponents. 

 Two separate populations were initialized with random 

chromosomes. These chromosomes, after initialization, were 

used to automatically generate epoch 1 for co-evolution. 

Epoch 1 denotes the first epoch of co-evolution, while epoch 

0 is the first epoch for DPEA evolution. 

At the beginning of each epoch, the co-evolution 

algorithm would select a set of chromosomes from each 

population to be used as opponents for the other population. 

Selection was based on the fitness of the opponents in the 

previous epoch. For this work, 5 opponents were selected for 

each population. 

Except in epoch 1, when all 5 opponents came from epoch 

0, the method of selection was straightforward. The first 

opponent was the best chromosome evolved in the last 

epoch. The third through fifth opponents were the first 

through third opponents from the previous epoch. The 

second opponent was randomly selected from all previous 

epochs such that it was not a duplicate of the ones already 

selected. This is depicted in the following picture: 

 
In addition to these 5 opponents, we also evaluated each 

chromosome against a static opponent. This static opponent 

did not move any of its vehicles. The vehicles simply shot 

back at any other vehicle that entered their firing range. 

Since there were no expected terminal fitness levels for 

co-evolution, the algorithm was terminated at an arbitrary 



 

 

 

point in time. The algorithm advanced each population to the 

next epoch using a slight modification to the algorithm used 

for evolution alone.  

In evolution alone, the target fitness was determined by 

the initial chromosomes in only one population. However, in 

co-evolution, we used the higher target fitness from both 

populations, requiring both populations to reach a similar 

fitness level at each epoch. 

The fitness level achieved during each epoch was relative 

to the populations being evolved. Since the populations were 

switching to new opponents at each epoch, the fitness of 

each chromosome was also relative to the epoch in which 

the chromosome was evaluated. To provide a more objective 

evaluation of how the algorithm performed over time, we 

wanted to see how the evolved tactics performed against 

opponents that had never been seen during evolution. To 

show this, we selected the best chromosome in each epoch 

from each population. For each of these chromosomes, we 

evaluated its performance against a set of 3 opponents that 

were never encountered during evolution, using a scenario 

(vehicle layout) that was also never seen during evolution. 

With this methodology, we felt like we could empirically 

show that the algorithm did produce generalized tactics and 

that these tactics performed better over time relative to 

opponents that had never been seen before. 

IV. RESULTS / DISCUSSION 
There were two phases to this research. First, create an 

evolutionary environment where a tactic can be learned 

against an opponent. Second, create a co-evolutionary 

environment where a tactic can learn to generalize against 

other opponents. 

Scenarios 
For all of the experimentation, we selected two game 

scenarios, each with six identical vehicles per player. The 

layouts of these scenarios were somewhat arbitrary. In the 

first scenario, we grouped player 1’s vehicles into the two 

corners of the top half of the playing field while grouping all 

of player 2’s vehicles in the middle of the lower half of the 

field. In the second scenario, we separated player 1’s 

vehicles evenly across the top half of the field, while 

grouping player 2’s vehicles in the bottom corners of the 

field. While we did want to have a variety of initial grouping 

configurations, this didn't seem to affect the results. The 

evolved tactics take care of grouping implicitly after each 

game starts. 

For each scenario, Herkermer played 6 games using 

chromosomes from the population being evolved. These 

games used different combinations of scenario layouts and 

sides (e.g. Scenario 1 / Player 2, etc).  

We also created two types of opponents. First, we used a 

Static Agent, where the desired speed and heading was 

simply set to zero. Second, we used a Hand-Crafted agent, 

which was simply a Herkermer agent whose chromosomes 

contained values that were manually set by us.  

Evolution 
The process of evolution to improve tactics against a 

specific set of opponents went well. The overall fitness of 

the population improved over time in a manner typical of 

learning algorithms. It took the algorithm on average 2,000 

evaluations to bring the fitness level to roughly 0.70. 

While evolution did indeed increase the fitness of the 

population over time, an interesting phenomenon occurred in 

some of the evolution trials. Common to any search 

algorithm that is not exhaustive is the problem of local 

maxima/minima [17]. In order to get around local maxima, 

an evolutionary algorithm must be able to explore an area of 

the search space that is relatively far away from where the 

search is currently concentrating. 

Consider the following picture. This graph shows how 

often the use of each of the five generators resulted in a new 

chromosome being added to the population. Superimposed 

on the graphs is the chromosome count for each epoch. By 

looking at the super-imposition of the chromosome count, it 

is clear that the N-Point Mutation chromosome generation 

operation was used heavily in those epochs with the most 

chromosomes. In these epochs, relatively many 

chromosomes were generated in order to advance the 

population to its next fitness target. We hypothesize that it 

was difficult to find a better alternative to a local maxima in 

these epochs. N-Point Mutation was the generator that was 

most successful in advancing the population by the largest 

amount during these epochs.  

 
These results show that our algorithm was adaptive to the 

current state in the search and was able to overcome many 

local maxima given enough time. It showed that the 

algorithm was able to evolve chromosomes that provide 

good tactics against those opponents that were used in the 

evolutionary process.  

 
However, these tactics did not do as well against 

opponents that have never been seen before. The preceding 

figure shows the range of fitness values for each epoch, with 



 

 

 

the range plus or minus one standard deviation above and 

below the average for each epoch highlighted. This 

population was evolved to a relatively high maximum fitness 

of 0.894.  

However, in the graph following this we see that it did 

worse against the “hand-crafted” tactic. While the best 

chromosomes in each epoch were able to beat the hand-

crafted opponent, the majority of them could not beat it. 

Further, the best chromosomes could not beat the new 

opponent by as much as they beat the opponent they were 

trained against. We expected this as the outcome for 

evolution conducted in this manner. 

 

Co-Evolution 
The process of using co-evolution to generalize tactics 

went well. The tactics evolved were able to generalize and 

win games, but they were not able to win these games by the 

same margin as those evolved against specific opponents 

when played against those opponents. This was expected, as 

a specialized agent would intuitively do better at what it 

specializes in. 

For co-evolution, the fitnesses of the best chromosomes in 

the population through time were not very meaningful. Since 

each population was continuously being evaluated against a 

different set of opponents, the fitnesses through time did not 

show the increases found in evolution against a specific 

opponent. This is seen in the following picture: 

 
We can see that the fitness range for each epoch was 

large. We can also see that the maximum fitness did not 

grow with time. We didn't expect these values to grow, as 

they were always relative (epoch to epoch) to a new set of 

opponents. At each epoch, the algorithm had to re-evolve the 

chromosomes based on the new opponent set. 

For the purpose of evaluating the tactics resulting from 

co-evolution, we selected a baseline against which the best 

chromosomes from each epoch could test themselves. This 

was accomplished by creating an environment that was not 

seen during co-evolution and evaluating the chromosomes 

from each epoch of co-evolution using this new 

environment. Using a scenario and three opponents that had 

not been used during co-evolution, we tested our approach. 

The opponents we chose are as follows: 

 Static Opponent: This opponent did not move any of its 

vehicles. Its vehicles merely fired at any enemy vehicle that 

came into its firing range. A similar opponent was used 

during co-evolution, but with a different vehicle layout. We 

felt that changing the positions of stationary targets was 

sufficiently different to warrant including this opponent. 

Hand-crafted Opponent: The hand-crafted tactic described 

previously was used as an opponent. This hand-crafted tactic 

was not used during co-evolution. 

Specifically Evolved Opponent: The tactics used by this 

opponent were evolved against a specific and separate set of 

scenarios and opponents. These tactics were the best tactics 

evolved during an external evolutionary procedure. 

The results of playing the tactics described by the best 

chromosomes from each epoch against the above described 

opponents are shown in the following graph. We are 

showing the progress made by the co-evolution process at 

every point when it switched opponents for the populations. 

This data is significant because it shows that the co-

evolution did increase the performance of the tactics against 

previously unseen opponents and situations. 

 

V. CONCLUSION 
In this research, we concentrated on learning effective 

tactics in RTS games. In our experiments, we use both 

evolutionary and co-evolutionary algorithms. The fitness 

function is defined as the score of the RTS game. We use the 

evolutionary algorithms to learn tactics against specific 

opponents, and the co-evolutionary algorithms to generalize 

tactics against a variety of opponents. 

In the first phase of this work, we researched numerous 

methods for providing evolutionary learning. We settled on a 

hybrid algorithm, which we called Diversity Preserving 

Evolutionary Algorithm (DPEA), containing ideas from 

other authors' previous work, as well as ideas of our own. 

We found that our algorithm does a good job at finding a 

good set of tactics that had reasonable spatial diversity 

throughout the solution space. It did well at maintaining a 

spatially diverse population, something that the canonical 

GA does not do well. Our algorithm was able to overcome 

many local maxima to find better solutions elsewhere in the 

solution space. Results showed that the tactics evolved using 

our algorithms were good at defeating known enemy 

players, but not as good at defeating enemies that have never 



 

 

 

been seen before. 

In the second phase of research, we concentrated on 

finding better general tactics- those that would stand a better 

chance of defeating opponents that have never been seen 

before. For this phase, we combined our evolutionary 

algorithm with a co-evolutionary algorithm. We evolved two 

separate sets of tactics against each other, constantly 

changing the opponents that the tactics would have to defeat. 

Through this back-and-forth approach, we were able to 

evolve two sets of tactics that did well against external 

enemies- those that have never been trained against. This 

shows that our algorithm for co-evolution can be used to 

generalize the learning of an evolutionary algorithm. 

We are particularly interested in doing further research 

into the manner in which new chromosomes are generated 

from existing chromosomes. We believe that a certain 

amount of feedback could be utilized when selecting the 

combination of parent chromosomes, child chromosome 

generation algorithm, and parameters to use with the 

generation algorithm. Our intuition is that making more 

informed choices in this area will reduce the amount of time 

taken to evolve chromosomes. 

The idea of using potential fields as the only parameters 

into tactics was interesting to us for general work in 

evolutionary computing. However, it does not provide an 

optimal overall solution for a real RTS game. We would like 

to expand on this work as it relates to RTS games at a 

broader level. We believe that a higher-level AI can provide 

more input into the tactics. For instance, the tactics 

generated in this work will sometimes fail because they 

didn't learn tie-breaking. If a vehicle finds itself directly in 

the middle of two enemy vehicles, it will not move because 

the potential fields from each enemy vehicle will cancel each 

other. This is clearly not a good situation when the enemy 

units are stationary- none of the vehicles will want to move. 

While the potential field approach provided a good fitness 

function within the parameters of these experiments, 

potential fields alone may not be expressive enough to 

represent an optimal overall strategy for an RTS game. 

Videos of some of the results of our trials can be found at 
http://tinyurl.com/4a5g4kl 
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