



Abstract— We investigate the evolution and co-evolution of

tactics in real-time strategy games. In addition, we investigate

the representation of tactics as combinations of potential fields

thus pointing the way towards more compact representations

for tactics that are also amenable to evolutionary search.

Preliminary results from generating tactics against a specific

opponent indicate that an evolutionary algorithm can evolve

good tactics. The generated tactics defeat a known opponent

after a relatively short training cycle. However, these tactics are

specific to the opponents that were trained against - they do not

perform as well against other opponents. Co-evolution leads to

more adaptive tactics. Results from employing a co-

evolutionary approach indicate that co-evolution can generate

tactics that perform better over a set of opponents not

previously encountered.

I. INTRODUCTION
GENERATING tactics to implement strategies in RTS

games is important for generating artificially intelligent

opponents. Although there are many approaches to

generating tactics in computer games, we use evolutionary

computing approaches because we believe that evolutionary

computing will yield flexible, adaptive tactics. Typically,

researchers have built knowledge based systems leading to

intelligent but predictable opponents. It would be interesting

to provide new tactics that were less predictable, yet still

effective.

We focus on using evolutionary algorithms to generate

new tactics that are not based on any pre-conceived notions

about how to play a game. We show that it is possible to

evolve tactics that start with no tactical knowledge of the

game, yet are still able to defeat opponents with regularity.

We focus on tactics in a game with one goal - eliminate

the opponent. That is, it is not the goal to merely survive in

the game – you must eliminate the other player to win and

our evolutionary computing algorithm evolves tactics to

Manuscript received January 15, 2011. This work was supported in part

by the U.S. Office of Naval Research under Award N00014-09-1-1121.

Michael Oberberger is with the Computer Science and Engineering

Department, University of Nevada, Reno, 89502 USA (Phone: 775-830-
0560; e-mail: mike@oberberger.com).

Sushil Louis is with the Computer Science and Engineering Department,

University of Nevada, Reno, 89502 USA (Phone: 775-784-4315; e-mail:
sushil@cse.unr.edu).

Monica Nicolescu is with the Computer Science and Engineering

Department, University of Nevada, Reno, 89502 USA (Phone: 775-784-
1687; e-mail: monica@cse.unr.edu).

accomplish this.

The game that we chose for use in our research involves a

number of vehicles split between two teams. The goal of the

game is for one team to eliminate the other team. The

playing field contains no obstacles- this removed most of the

complexity of path planning. It also allowed us to treat each

vehicle in a game as if it were the generator of a potential

field. It is by tuning the strengths of these potential fields

that we derive our tactics. Other research in using potential

fields has proven that they can be very effective in

implementing tactics in RTS games [10]

Although our approach successfully evolves tactics that

beat a particular opponent, we run up against the well-

known problem in machine learning: over-specialization.

We find that our evolved tactics over-specialize against the

opponents used during evolution. In the second part of our

work, we address this challenge by implementing a co-

evolutionary algorithm that tends to generate more robust

tactics. We show that these co-evolved tactics are better

suited to defeat opponents that were never encountered

during evolution compared to those tactics generated by

evolution alone against specific opponents.

II. BACKGROUND
There are many known methodologies for defining a

tactic for AI agents in Real-Time Strategy (RTS) games

[10][3][13]. Many of these tactics rely on some scripted, or

hard-coded, behavior. This behavior is typically dependent

on the ability to control and coordinate all of the actions of

all movable objects, or vehicles, in the game. The AI is

assumed to have knowledge and a certain level of control

over the state of each vehicle.

Finite State Machines
FSMs have been used frequently to determine how an

agent will behave within a game [21]. An FSM is an

efficient mechanism to give the appearance of intelligence in

an agent. However, it does not have the ability to adapt itself

beyond the logic that was used to design the FSM itself. An

FSM controlled agent must have some concrete knowledge

about what state it is in, what possible actions or

observations it can take or make, and knowledge about what

to do in response. Should a situation arise that the FSM was

not designed to handle, that FSM controlled agent must

Evolving Potential Fields to Direct Tactics in Real Time Strategy

Games

Michael Oberberger, Sushil Louis, Member, IEEE, and Monica Nicolescu

revert to some default behavior. In order to account for a

wide variety of situations, especially when the situations

involve continuous-valued variables, the number of possible

states grows rapidly, thus increasing the complexity of the

FSM. Examples of FSM logic are:

• If the vehicle is close to another vehicle, then move

away from that vehicle.

• Find the vehicle with the most strategic value and target

it

• Group all vehicles such that they create a predefined

formation

• If a vehicle has taken damage, do not engage the enemy

Expert Systems
In other approaches, the game environment uses expert

logic to implement tactics. While in some way similar to an

FSM, Expert Systems typically are able to chain series of

logical rules together to derive a most advantageous action.

By setting up a knowledge base about a particular game,

an expert system could use the game’s full current state to

search the knowledge base for subsets of the state space that

have been identified before. Using as much of the

knowledge that is applicable (including the notion of

probability in determining what is applicable) the expert

system can deduce the most appropriate next action [22].

Evolutionary Systems
The topic of evolutionary algorithms has been studied

since the 1960s [7]. They have been particularly successful

at searching high-dimensional spaces for solutions to a

variety of problems. We show that using evolutionary

algorithms to tune the parameters used in determining the

strengths of potential fields is successful at producing tactics

that are effective against a range of opponent tactics.

Other research in this area has used evolutionary

algorithms to determine the strengths of simple potential

fields, which were then used to derive influence maps [3].

The influence maps were then used to direct the movement

of game entities.

 Our research shows that effective tactics can be evolved

using only potential fields. These fields act to either attract

or repulse one vehicle from another. By tuning the strength

of these fields in the correct manner, we show that these

tactics can be effective in neutralizing an opponent player.

III. METHOD

The Game
The first step in this research was providing an

infrastructure in which to play an RTS game. The game was

designed such that it balanced realism with simplicity. The

basic game design envisioned a 2-player game where each

player controls N vehicles of identical types. Each unit has

basic movement constraints, similar to those found in

popular RTS games such as Starcraft and Warcraft. Each

vehicle can fire upon opponent vehicles, provided the

opponent is within range. The game is over only when all of

one player's vehicles are destroyed, presumably by the other

player. For this work, an open playing field was used. No

obstacles were introduced.

A few assumptions were made about the way the game is

played.

• Because the goal of the game is to destroy the opponent,

a vehicle will always fire upon an opponent vehicle if it is

able to. The game enforces this.

• Control of movement of vehicles is a core component of

the tactics that were being learned. Therefore, the game

imposes no restrictions on the collision of vehicles. In a

typical RTS game, the game engine itself will minimize the

effect of collisions. It will generally either allow the vehicles

to overlap each other, or it will allow the vehicles to touch,

but not move into each other’s space. Generally, an RTS

game will not damage vehicles which collide, while in my

game collisions are something that can severely penalize a

player.

Each vehicle is controlled by two parameters. These are

desired speed, a scalar value in terms of units per second;

and desired heading, another scalar value in terms of radians.

The game uses the characteristics of the vehicle, namely

Seconds to Max Speed and Seconds to Full Circle, combined

with the current state of the vehicle (current velocity, which

is used to derive current speed and current heading), to alter

the speed and heading of each vehicle.

A player loses the game once all of its vehicles are

destroyed. The score of the game is used to determine the

Fitness Landscape for the evolutionary algorithms. The

score for a player is calculated using the following formula:

Where (R)HP are (Remaining/Starting) Hitpoints and

(R)VC is (Remaining/Starting) Vehicle Count at the end of a

game.

Based on the parameters to this function, it should be

obvious that remaining hitpoints and the percentage of

vehicles remaining play an important part in generating a

good score. By introducing collision damage the way that

we did, we provide a fitness landscape that is sharply

affected by any collisions. This can provide a severe penalty

when vehicles collide, especially if the two colliding

vehicles are on the same team.

It should be obvious that there are numerous methods

available for programming an AI to play this game. The

most basic AI will set the desired speed and the desired

heading to some constant value. Since the game will fire

weapons automatically, this simple agent will be able to

inflict some damage on any opponent that engages it.

For this research, an AI lovingly named Herkermer was

designed. Herkermer uses the potential fields generated by

all vehicles in the game to provide the controls for the

movement of its vehicles (desired speed and heading). Using

the positions of every remaining vehicle in the game,

Herkermer can obviously calculate the distances between the

vehicles. These distances, combined with the data found in

the chromosome that configures Herkermer, are used for the

potential field calculations. The results of the potential field

calculations are then used as feedback into the controls for

the vehicle.

Potential Fields
Potential fields between vehicles are what drive the

movement controls for each vehicle under the control of

Herkermer. Herkermer calculates the desired speed and

heading by first summing the potential field vectors, then by

breaking down the sum into its component parts (magnitude

and orientation).

Our potential field is comprised of three virtual forces.

Each of these virtual forces is described by the simple

equation:

Where d is the distance between vehicles and c and e are

parameters determined by the evolutionary algorithm. The

three virtual forces which form our potential field can be

loosely described as an Attractor, pulling close vehicles

towards each other; a Repulsor, pushing close vehicles away

from each other; and a Spring, which pulls vehicles that are

far away closer together. For our experiments, the values for

c and e are typified by the following table:

 Typical “c” Typical “e”

Attractor 2,000 -2

Repulsor 500,000 -3

Spring 1.0 0.9

Each vehicle in the game (that has not been destroyed)

produces a potential field comprised of these three virtual

forces. Each potential field is described by 6 parameters,

which are the coefficient and exponent for each of the three

forces:

Herkermer uses a set of two potential fields (PFS) to

determine the effect of another vehicle on any vehicle it

controls:

The potential field PF
0
 contains the field parameters used

when the vehicle under control has no hitpoints (explained

shortly). The potential field PF
1
 denotes the parameters used

when the vehicle is at full hitpoints. A linear interpolation

between corresponding parameters in the two fields defines

the effective parameters used based on the current health of

the vehicle. This is the effective potential field (EPF), and it

is calculated based on PFS and the remaining hitpoint

percentage:

where hp% is the percentage of remaining hitpoints for

the vehicle under control and lerp is a linear interpolation

function.

For instance, if the vehicle under control is at 50% health,

EPF will be calculated as:

where the x values are those from the equation for PF for

each of PF
0
 and PF

1
, respectively.

The encoding of the chromosome used for the

evolutionary algorithm is a concatenation of two PFS

vectors. The first PFS vector represents the potential field

for friendly vehicles while the second PFS vector is the

potential field of the enemy vehicles.

For our experiments, we only used one type of vehicle in

the game. This PFGrid would need to be expanded if there

were other vehicle types in the game.

The PFGrid contains a total of 24 scalar floating point

values. These values form the chromosome for the

evolutionary algorithm. The chromosome represents a vector

in 24-dimensional space. Each dimension contains the set of

values represented by an 80-bit floating point number.

Since the elements of the PFGrid represent strengths of

potential fields, the difference in these components can

represent significantly different tactics once decoded. For

instance, if the strength of the Repulsor is changed by a

significant amount, two vehicles that would otherwise not

collide may now collide. This made us interested in defining

a distance metric between two PFGrids.

To quote Aggarwal, “… research results show that in high

dimensional space, the concept of proximity, distance, or

nearest neighbor, may not even be qualitatively meaningful”

[1]. In our experiments, we found that using the Euclidean

Distance yielded similar numbers regardless of how different

the tactics represented by the PFGrids were. Eschelman uses

the Hamming distance to determine whether or not two

chromosomes are close in the search space [6].

Knowing something about the search space, namely that

two tactics can behave differently if any one of their PFGrid

components are significantly different, we chose to use what

we called a Floating Point Hamming Distance when

calculating whether or not two PFGrids were close in the

search space. After some of our initial work was completed,

but before we had any meaningful results, we had a sample

database of roughly 40,000 PFGrids. We took a “snapshot”

of these grids and created a vector of values based on the

standard deviation for each value xi in the PF vector. We

called this vector the Standard Deviation Vector (SDV). We

use it in calculating the Floating Point Hamming Distance.

The calculation is straightforward:

where G
0
 and G

1
 were two PFGrids, SDV was the 6-

dimensional Standard Deviation Vector, Int is a function that

returns the integer value of a real number, and mod is the

modulo operator. In this paper, distance or spatial diversity

refers to this equation.

Evolution
We designed an algorithm called Diversity Preserving

Evolutionary Algorithm (DPEA) [23]. We wanted an

algorithm that would both advance the fitness of a

population of chromosomes as well as maintain a spatially

diverse population of chromosomes simultaneously. Deb and

Goldberg provided mechanisms for accomplishing this in

their work, but this work concentrated on binary alphabets,

not real-valued alphabets [4]. By maintaining a higher

diversity in the chromosomes, we were trying to avoid

getting “stuck” on local maxima in the solution space.

DPEA was shown to be effective in accomplishing this goal.

As with most every evolutionary algorithm, we start with

a population of randomly generated chromosomes. For most

of the trials, this population was 100 chromosomes. This

initial set of chromosomes comprises epoch 0. The size of

the initial population is called the initial epoch size (IES) for

the population.

An epoch is something that we defined to provide a reset

point for the population during evolution. As the

population's overall fitness increases, a new epoch is

reached. A new epoch is designed to trim down the

population, leaving a more concise set of valuable

chromosomes. This process is explained below.

Similar to the way Whitley defines the Genitor algorithm

[19], we select one or two chromosomes from the current

epoch of the population and perform some operation on

these chromosomes. The operations available are versions of

crossover and mutation, commonly found in most

evolutionary algorithms. Using one of these operations, we

create a new chromosome from one or two parents. This new

chromosome is then evaluated and a new fitness is assigned.

The new chromosome is added to the epoch unless any of

the following conditions is true:

• While evaluating the chromosome, one of the games

played didn't complete in the allocated amount of time. In

this case, the chromosome, when decoded, results in an

invalid tactic.

• The chromosome is deemed spatially identical to another

chromosome in the population, but its fitness is worse than

the existing chromosome. In this case, the population

already contains a better version of the essentially the same

chromosome.

• The chromosome's fitness is worse than the average

fitness in the population. In this case, we didn't produce a

very good chromosome.

This set of operations is repeated until the current epoch is

ready to become the next epoch. Generation of more epochs

continues until we decided to stop it. Normally, we stopped

evolution when we saw that there was no progress being

made in the overall fitness of the current epoch after

thousands of evaluations of new chromosomes.

Epochs
An epoch is designed to maintain spatial diversity among

the best chromosomes in the population. The goal is to

maintain a diverse set of chromosomes all of which have

good fitness. This work was inspired by the notion of

niching [4][9], and is a key component of DPEA.

Every epoch begins with exactly IES chromosomes. In the

case of epoch 0, these are randomly generated. In the case of

all other epochs, these initial IES chromosomes come from

the previous epoch. When the average of the best IES

chromosomes in the current epoch exceed the average of the

best

 chromosomes that initialized the epoch, a new epoch

is generated.

Chromosomes will be continuously added to the epoch

until the transition condition is met. As such, it is possible to

have epochs with 200 chromosomes in them. It is also

possible to have epochs with 5,000 chromosomes in them.

The number of chromosomes in an epoch does not define an

epoch. We hypothesize about the implication of a large

chromosome count for an epoch in [23].

We developed an algorithm for deciding which

chromosomes from the current epoch will make it into the

next epoch. The goal of this algorithm was to move a set of

chromosomes forward that had good fitness and good spatial

diversity. In researching statistical clustering techniques in

high dimensions [5][15], we found that this problem is quite

a complex field of study unto its own. What we found was

that all of the techniques available were computationally

expensive. We wanted an algorithm that balanced good

clustering with fast execution speeds.

We borrowed from the techniques that are well known,

while reducing the iterative nature of the existing algorithms

[23]. Essentially, we consider all of the chromosomes in the

epoch with above average fitness. Starting at the best

chromosome, we look for the set of all of the chromosomes

that are far away spatially from this chromosome. As we add

each chromosome to this set, the condition for the next

chromosome is that it is far away from every chromosome

that is currently in this set. This makes it more and more

difficult to get added to this set. When there are no more

chromosomes in the above average chromosomes that are far

away from this set, we add the set to the next epoch and

repeat, using the next-highest fitness chromosome that still

remains. We continue to do this until we have IES

chromosomes forwarded to the new epoch.

The new epoch has a starting set of chromosomes that are

all above average in fitness and are also spatially diverse.

Since this algorithm is our own method for niching [4],

we were interested in how it would perform against some

well known multi-modal solution spaces. We designed a test

for this algorithm [23]. Empirically, our test runs show that

our algorithm for epoch generation does indeed maintain

multiple spatially diverse chromosomes that also have high

fitness within the population.

Chromosome Selection
In order to generate a new chromosome, one or two parent

chromosomes must be selected from the chromosomes in the

population. The number of parents is determined by the

actual chromosome generator that is used. All generators use

either one or two parents.

Every chromosome generator requires at least one parent.

This parent is selected from a set of IES chromosomes in the

current epoch of the population with the best fitness values.

We use simple roulette wheel selection based on fitness.

Some chromosome generators require two parents. The

second parent chromosome is selected differently. Because

we want to explore the solution space as much as possible,

we want to select a second parent that is farther away

spatially from the first parent but still has above-average

fitness. The set of available chromosomes for the second

parent is comprised of all of the chromosomes in the current

epoch of the population that have a fitness value that is

above average for that epoch. Again, a chromosome is

selected using a simple roulette wheel selection, but this

time the weights for this second selection are based on the

distance of the chromosome from the first parent.

Chromosome Generation
In the canonical genetic algorithm, there are two main

methods for new chromosome generation: crossover and

mutation [11]. A canonical version of crossover is the

Single-Point Crossover. Our work uses variations on this

method of crossover for floating point operations.

Wright discusses the implications of crossover on binary

strings of data when the string is broken down into sub-

sections each representing a parameter [20]. For instance, if

the binary string represents four 8-bit integer numbers, there

are four subsections of the 32 bits corresponding to the four

8-bit integers. Should crossover choose a point in the middle

of one of these sub-sections, it will introduce a perturbation

into the crossover. This perturbation can be viewed as a

mutation, as the resulting chromosome would likely not

contain 8-bit integers that are in the union of the two parent

chromosomes' 8-bit integer values.

However, in a chromosome built from real-valued

parameters, there are no sub-sections where this perturbation

can be placed. In many applications where real-valued

parameters need to be encoded using a binary encoding

scheme, a real number would be encoded into a binary

number, reducing its precision but allowing the encoding.

Wright showed methods to deal with this loss of precision

[20]. Since this can be done in a number of ways, we chose

to use 5 different operations, each based in part on either the

crossover or the mutation (or both) operations [23]. These

are Uniform Mutation [12], N-Point Mutation, Uniform

Crossover, N-Point Crossover, and Linear Interpolation

[12][20].

Co-Evolution
We found that the DPEA algorithm was effective in

evolving a population that had high-performance

chromosomes relative to the opponents that were used in the

evolutionary process. However, the chromosomes evolved

this way would generally do significantly worse against

opponents that were not involved with their evolution. To

account for this, we implemented a co-evolutionary

algorithm, where two populations of chromosomes were

evolved together and used each other to provide new

opponents.

 Two separate populations were initialized with random

chromosomes. These chromosomes, after initialization, were

used to automatically generate epoch 1 for co-evolution.

Epoch 1 denotes the first epoch of co-evolution, while epoch

0 is the first epoch for DPEA evolution.

At the beginning of each epoch, the co-evolution

algorithm would select a set of chromosomes from each

population to be used as opponents for the other population.

Selection was based on the fitness of the opponents in the

previous epoch. For this work, 5 opponents were selected for

each population.

Except in epoch 1, when all 5 opponents came from epoch

0, the method of selection was straightforward. The first

opponent was the best chromosome evolved in the last

epoch. The third through fifth opponents were the first

through third opponents from the previous epoch. The

second opponent was randomly selected from all previous

epochs such that it was not a duplicate of the ones already

selected. This is depicted in the following picture:

In addition to these 5 opponents, we also evaluated each

chromosome against a static opponent. This static opponent

did not move any of its vehicles. The vehicles simply shot

back at any other vehicle that entered their firing range.

Since there were no expected terminal fitness levels for

co-evolution, the algorithm was terminated at an arbitrary

point in time. The algorithm advanced each population to the

next epoch using a slight modification to the algorithm used

for evolution alone.

In evolution alone, the target fitness was determined by

the initial chromosomes in only one population. However, in

co-evolution, we used the higher target fitness from both

populations, requiring both populations to reach a similar

fitness level at each epoch.

The fitness level achieved during each epoch was relative

to the populations being evolved. Since the populations were

switching to new opponents at each epoch, the fitness of

each chromosome was also relative to the epoch in which

the chromosome was evaluated. To provide a more objective

evaluation of how the algorithm performed over time, we

wanted to see how the evolved tactics performed against

opponents that had never been seen during evolution. To

show this, we selected the best chromosome in each epoch

from each population. For each of these chromosomes, we

evaluated its performance against a set of 3 opponents that

were never encountered during evolution, using a scenario

(vehicle layout) that was also never seen during evolution.

With this methodology, we felt like we could empirically

show that the algorithm did produce generalized tactics and

that these tactics performed better over time relative to

opponents that had never been seen before.

IV. RESULTS / DISCUSSION
There were two phases to this research. First, create an

evolutionary environment where a tactic can be learned

against an opponent. Second, create a co-evolutionary

environment where a tactic can learn to generalize against

other opponents.

Scenarios
For all of the experimentation, we selected two game

scenarios, each with six identical vehicles per player. The

layouts of these scenarios were somewhat arbitrary. In the

first scenario, we grouped player 1’s vehicles into the two

corners of the top half of the playing field while grouping all

of player 2’s vehicles in the middle of the lower half of the

field. In the second scenario, we separated player 1’s

vehicles evenly across the top half of the field, while

grouping player 2’s vehicles in the bottom corners of the

field. While we did want to have a variety of initial grouping

configurations, this didn't seem to affect the results. The

evolved tactics take care of grouping implicitly after each

game starts.

For each scenario, Herkermer played 6 games using

chromosomes from the population being evolved. These

games used different combinations of scenario layouts and

sides (e.g. Scenario 1 / Player 2, etc).

We also created two types of opponents. First, we used a

Static Agent, where the desired speed and heading was

simply set to zero. Second, we used a Hand-Crafted agent,

which was simply a Herkermer agent whose chromosomes

contained values that were manually set by us.

Evolution
The process of evolution to improve tactics against a

specific set of opponents went well. The overall fitness of

the population improved over time in a manner typical of

learning algorithms. It took the algorithm on average 2,000

evaluations to bring the fitness level to roughly 0.70.

While evolution did indeed increase the fitness of the

population over time, an interesting phenomenon occurred in

some of the evolution trials. Common to any search

algorithm that is not exhaustive is the problem of local

maxima/minima [17]. In order to get around local maxima,

an evolutionary algorithm must be able to explore an area of

the search space that is relatively far away from where the

search is currently concentrating.

Consider the following picture. This graph shows how

often the use of each of the five generators resulted in a new

chromosome being added to the population. Superimposed

on the graphs is the chromosome count for each epoch. By

looking at the super-imposition of the chromosome count, it

is clear that the N-Point Mutation chromosome generation

operation was used heavily in those epochs with the most

chromosomes. In these epochs, relatively many

chromosomes were generated in order to advance the

population to its next fitness target. We hypothesize that it

was difficult to find a better alternative to a local maxima in

these epochs. N-Point Mutation was the generator that was

most successful in advancing the population by the largest

amount during these epochs.

These results show that our algorithm was adaptive to the

current state in the search and was able to overcome many

local maxima given enough time. It showed that the

algorithm was able to evolve chromosomes that provide

good tactics against those opponents that were used in the

evolutionary process.

However, these tactics did not do as well against

opponents that have never been seen before. The preceding

figure shows the range of fitness values for each epoch, with

the range plus or minus one standard deviation above and

below the average for each epoch highlighted. This

population was evolved to a relatively high maximum fitness

of 0.894.

However, in the graph following this we see that it did

worse against the “hand-crafted” tactic. While the best

chromosomes in each epoch were able to beat the hand-

crafted opponent, the majority of them could not beat it.

Further, the best chromosomes could not beat the new

opponent by as much as they beat the opponent they were

trained against. We expected this as the outcome for

evolution conducted in this manner.

Co-Evolution
The process of using co-evolution to generalize tactics

went well. The tactics evolved were able to generalize and

win games, but they were not able to win these games by the

same margin as those evolved against specific opponents

when played against those opponents. This was expected, as

a specialized agent would intuitively do better at what it

specializes in.

For co-evolution, the fitnesses of the best chromosomes in

the population through time were not very meaningful. Since

each population was continuously being evaluated against a

different set of opponents, the fitnesses through time did not

show the increases found in evolution against a specific

opponent. This is seen in the following picture:

We can see that the fitness range for each epoch was

large. We can also see that the maximum fitness did not

grow with time. We didn't expect these values to grow, as

they were always relative (epoch to epoch) to a new set of

opponents. At each epoch, the algorithm had to re-evolve the

chromosomes based on the new opponent set.

For the purpose of evaluating the tactics resulting from

co-evolution, we selected a baseline against which the best

chromosomes from each epoch could test themselves. This

was accomplished by creating an environment that was not

seen during co-evolution and evaluating the chromosomes

from each epoch of co-evolution using this new

environment. Using a scenario and three opponents that had

not been used during co-evolution, we tested our approach.

The opponents we chose are as follows:

 Static Opponent: This opponent did not move any of its

vehicles. Its vehicles merely fired at any enemy vehicle that

came into its firing range. A similar opponent was used

during co-evolution, but with a different vehicle layout. We

felt that changing the positions of stationary targets was

sufficiently different to warrant including this opponent.

Hand-crafted Opponent: The hand-crafted tactic described

previously was used as an opponent. This hand-crafted tactic

was not used during co-evolution.

Specifically Evolved Opponent: The tactics used by this

opponent were evolved against a specific and separate set of

scenarios and opponents. These tactics were the best tactics

evolved during an external evolutionary procedure.

The results of playing the tactics described by the best

chromosomes from each epoch against the above described

opponents are shown in the following graph. We are

showing the progress made by the co-evolution process at

every point when it switched opponents for the populations.

This data is significant because it shows that the co-

evolution did increase the performance of the tactics against

previously unseen opponents and situations.

V. CONCLUSION
In this research, we concentrated on learning effective

tactics in RTS games. In our experiments, we use both

evolutionary and co-evolutionary algorithms. The fitness

function is defined as the score of the RTS game. We use the

evolutionary algorithms to learn tactics against specific

opponents, and the co-evolutionary algorithms to generalize

tactics against a variety of opponents.

In the first phase of this work, we researched numerous

methods for providing evolutionary learning. We settled on a

hybrid algorithm, which we called Diversity Preserving

Evolutionary Algorithm (DPEA), containing ideas from

other authors' previous work, as well as ideas of our own.

We found that our algorithm does a good job at finding a

good set of tactics that had reasonable spatial diversity

throughout the solution space. It did well at maintaining a

spatially diverse population, something that the canonical

GA does not do well. Our algorithm was able to overcome

many local maxima to find better solutions elsewhere in the

solution space. Results showed that the tactics evolved using

our algorithms were good at defeating known enemy

players, but not as good at defeating enemies that have never

been seen before.

In the second phase of research, we concentrated on

finding better general tactics- those that would stand a better

chance of defeating opponents that have never been seen

before. For this phase, we combined our evolutionary

algorithm with a co-evolutionary algorithm. We evolved two

separate sets of tactics against each other, constantly

changing the opponents that the tactics would have to defeat.

Through this back-and-forth approach, we were able to

evolve two sets of tactics that did well against external

enemies- those that have never been trained against. This

shows that our algorithm for co-evolution can be used to

generalize the learning of an evolutionary algorithm.

We are particularly interested in doing further research

into the manner in which new chromosomes are generated

from existing chromosomes. We believe that a certain

amount of feedback could be utilized when selecting the

combination of parent chromosomes, child chromosome

generation algorithm, and parameters to use with the

generation algorithm. Our intuition is that making more

informed choices in this area will reduce the amount of time

taken to evolve chromosomes.

The idea of using potential fields as the only parameters

into tactics was interesting to us for general work in

evolutionary computing. However, it does not provide an

optimal overall solution for a real RTS game. We would like

to expand on this work as it relates to RTS games at a

broader level. We believe that a higher-level AI can provide

more input into the tactics. For instance, the tactics

generated in this work will sometimes fail because they

didn't learn tie-breaking. If a vehicle finds itself directly in

the middle of two enemy vehicles, it will not move because

the potential fields from each enemy vehicle will cancel each

other. This is clearly not a good situation when the enemy

units are stationary- none of the vehicles will want to move.

While the potential field approach provided a good fitness

function within the parameters of these experiments,

potential fields alone may not be expressive enough to

represent an optimal overall strategy for an RTS game.

Videos of some of the results of our trials can be found at
http://tinyurl.com/4a5g4kl

REFERENCES
[1] C. Aggarwal, A. Hinneburg, D. Keim. On the Surprising Behavior of

Distance Metrics in High Dimensional Space. Lecture Notes in

Computer Science. Springer, 2001. pp 420-434

[2] Jim Antonisse. A new interpretation of schema notation that overturns

the binary encoding constraint. Proceedings of the Third International

Conference on Genetic Algorithms, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1989, pp 86-91.

[3] P. Avery, S. Louis, B. Avery. Evolving coordinated spatial tactics for

autonomous entities using influence maps. IEEE Symposium on

Computational Intelligence and Games, IEEE Press, 2009. pp 341-348

[4] K. Deb, D. Goldberg. An investigation into Niche and Species

Formation in Genetic Function Optimization. Proceedings of the

Third International Conference on Genetic Algorithms, Morgan

Kaufmann, 1989, pp 42-50

[5] D. Eppstein. Clustering Spring 1999, Available:

http://www.ics.uci.edu/~eppstein/280/cluster.html

[6] L. Eschelman. The CHC Adaptive Search Algorithm: How to Have

Safe Search When Engaging in Nontraditional Genetic

Recombination. Proceedings of the First Workshop on Foundations of
Genetic Algorithms, Morgan Kaufmann, 1991, pp 265-283

[7] L. Fogel, A. Owens, M. Walsh. Artificial intelligence through
simulated evolution. Wiley, New York. 1966

[8] L. Fogel, G. Burgin. Competitive goal-seeking through evolutionary
programming. Final Report, Contract AF 19(628)-5927, Air Force

Cambridge Research Laboratories. 1969

[9] C. Fonseca, P. Fleming. Genetic Algorithms for Multiobjective

Optimization: Formulation, Discussion and Generalization. Proc.

Fifth ICGA, Morgan Kaufmann, 1993

[10] J. Hagelback, S. Johansson. A Multi-Agent Potential Field-Based Bot

for a Full RTS Game Scenario. IEEE Symposium On Computational
Intelligence and Games, IEEE Press, 2008. pp 55-62

[11] J. Holland. Adaptation in natural and artificial systems. Ann Arbor,
The University of Michigan Press, 1975

[12] D. Larose. Data Mining Methods and Models, Wiley-Interscience
2006, pp248-249

[13] R. Leigh, T. Morelli, S. Louis, M. Nicolescu, C. Miles. Finding Attack
Strategies for Predator Swarms using Genetic Algorithms. The 2005

IEEE Congress on Evolutionary Computation, IEEE Press, 2005 vol

3. pp 2422-2428

[14] C. B. Lucasius and G. Kateman. Application of genetic algorithms in

chemometrics. Proceedings of the Third International Conference on
Genetic Algorithms, Morgan Kaufmann, 1989, pp 170-176.

[15] A. McCallum, K. Nigam, L. Ungar. Efficient clustering of high
dimensional data sets with application to reference matching.

Proceedings of the 6th ACM SIGKDD, 2000, pp169-178

[16] C. Rosin, R Belew. New methods for competitive coevolution.

Cognitive Computer Science Research Group, UCSD, San Diego, CA,

Tech. Rep. #CS96-491, 1997

[17] S. Russell, P. Norvig. Artificial Intelligence A Modern Approach.
Pearson Education, Inc. pp 111-116

[18] S. Sivanandam, S. Deepa. Introduction to Genetic Algorithms,
Springer 2008, pp56

[19] Darrell Whitley. The GENITOR algorithm and selection pressure:
why rank-based allocation of reproductive trials is best. Proceedings

of the Third International Conference on Genetic Algorithms, Morgan

Kaufmann, 1989, 116-121.

[20] A. H. Wright. Genetic Algorithms for Real Parameter Optimization.

Proceedings of the First Workshop on Foundations of Genetic
Algorithms, Morgan Kaufmann, 1991, pp. 205-218.

[21] M. Buckland. Programming Game AI by Example. Jones & Bartlett

Publishers. pp 43-82

[22] S. Russell, P. Norvig. Artificial Intelligence A Modern Approach.

Pearson Education, Inc. pp 492-532

[23] M. Oberberger, “Evolving Potential Fields to Direct Tactics in Real

Time Strategy Games”, M.S. Thesis, ECSL, Univ. Nevada, Reno,

2010

