
University of Nevada, Reno

Evolving Potential Fields to
Direct Tactics in Real Time Strategy Games

A thesis submitted in partial ful�llment of the
requirements for the degree of Master of Science in Computer Science

by

Michael Oberberger

Dr. Sushil Louis, Thesis Adviser

December 2010

i

Abstract

This thesis investigates the use of co-evolution to generate tactics in real-time strategy games.

Games like Chess have been used to test AI approaches since the 1960s. Modern video games with

simulated worlds now allow us to investigate AI approaches in less abstract spaces, thus allowing

research results to be perhaps more immediately applicable. Real-time strategy games, a genre of

modern video games, are widely used in wargaming and what-if scenario analysis in the military and

in industry. Since good tactics can determine whether you win or lose, this thesis focuses on competent

tactics generation in real-time strategy games.

There are many ways to generate players for games. Many classical approaches employ a system of

logic that relies on expert knowledge about the game and perhaps known e�ective strategies. Although

they are good for certain kinds of problems, expert systems' approaches have been shown to be brittle

and generally do not learn from experience. This work uses an evolutionary approach to learning

tactics for RTS games. Since evolutionary techniques are generally good at learning solutions to

speci�c problems, this work also employs co-evolutionary techniques to generate more robust tactics

that are e�ective against potentially unseen opponents.

My results from generating tactics against a speci�c opponent indicate that an evolutionary algo-

rithm can evolve good tactics. The generated tactics defeat a known opponent after a relatively short

training cycle. However, these tactics are speci�c to the opponents that were trained against - they

do not perform as well against other opponents.

Co-evolution leads to more adaptive tactics. My results from employing a co-evolutionary approach

indicate that co-evolution can generate tactics that perform better over a set of previously unseen

opponents.

These results indicate the potential for co-evolutionary and evolutionary approaches to tactic gen-

eration. Because they may not be biased by human preconception, I believe that such approaches also

have the potential to generate completely new and surprising tactical solutions to di�cult problems.

ii

Acknowledgments

I would like to thank my committee members Dr. Konstantinos Bekris and Dr. Donald Pfa� for

their valuable time and feedback.

Without the help of my parents, Walter and Marlies, I would not have had the time to get this

work completed. They have helped me enormously during this process. I cannot thank them enough.

Dr. Sushil Louis has dedicated a lot of his time to helping me get this work to a presentable state.

I appreciate his aid, insight, and monumental patience. He has my most humble gratitude for his

e�orts.

Acknowledgment goes to the O�ce of Naval Research for providing me funding during this research

under award number N00014-09-1-1121.

Finally, to my twin sons Daeven and Cole, I cannot ever express how thankful and fortunate I am

to have you in my life. You have made me a better person by letting me be your Daddy. Without you

guys, I would still be working for a corporation somewhere and not living a life that makes me happy.

I will always be beholden to you for how you've a�ected my life's ambitions.

iii

Contents

Abstract i

Acknowledgments ii

1 Introduction 1

1.1 Evolving Tactics in Games . 1

1.2 Thesis Structure . 2

2 Background 4

2.1 Evolutionary Algorithms . 4

2.1.1 The Canonical GA . 4

2.1.2 Evolutionary Algorithms in General . 6

2.2 Potential Fields . 6

2.3 RTS Games . 7

2.4 Other uses of Potential Fields and Evolution in RTS Games 7

2.5 Summary . 8

3 Methodology 9

3.1 The RTS Game . 9

3.1.1 Vehicle Information . 10

3.1.2 Vehicle Collisions . 10

3.1.3 Weapons Fire . 11

3.1.4 Movement of Vehicles . 11

3.1.5 Score . 11

3.1.6 The Agent . 13

iv

3.2 Potential Fields . 13

3.2.1 Potential Field Composition . 13

3.2.2 Encoding . 15

3.2.3 Spatial Diversity and Distance . 16

3.3 Evolution . 17

3.3.1 Epochs . 18

3.4 Chromosome Selection . 22

3.5 Chromosome Generation . 23

3.5.1 Uniform Mutation . 25

3.5.2 N-Point Mutation . 25

3.5.3 Uniform Crossover . 27

3.5.4 N-Point Crossover . 28

3.5.5 Linear Interpolation . 30

3.6 Co-Evolution . 31

3.7 Summary . 33

4 Results and Discussion 34

4.1 RTS Game Scenarios . 34

4.2 Evolution . 36

4.2.1 Local Maxima . 40

4.3 Co-Evolution . 42

4.4 Video of Results . 46

4.5 Summary . 47

5 Conclusion 49

v

Listings

3.1 Is a new chromosome acceptable? . 18

3.2 High Level Pseudocode for Evolution . 19

3.3 Pseudocode for checking if an Epoch is done . 19

3.4 Pseudocode for Evolving an Epoch . 21

3.5 Pseudocode for N-Point Crossover . 29

vi

List of Figures

2.1 The Canonical GA Algorithm . 5

2.2 Single Point Crossover . 5

3.1 Simple Grid for One Vehicle Type . 15

3.2 Grid for Two Vehicle Types . 15

3.3 Selection of Parent Chromosomes . 22

3.4 Perturbation E�ect of Binary Crossover . 23

3.5 Normalization Vector for Potential Field Parameters 24

3.6 Uniform Mutation in Two Dimensions . 25

3.7 N-Point Mutation in Two Dimensions . 26

3.8 Uniform Crossover in Two Dimensions . 27

3.9 Uniform Crossover in Two Dimensions, with perturbation 28

3.10 A Potential E�ect of Crossover . 29

3.11 N-Point Crossover . 29

3.12 The "Lerpor"- Linear Interpolating Generator . 30

3.13 Opponent Selection by Epoch . 32

4.1 First Scenario for Experiments . 35

4.2 Second Scenario for Experiments . 35

4.3 Scenario for Co-Evolution Testing . 36

4.4 Average Performance . 37

4.5 Performance- Focused Initial Population . 38

4.6 Performance- Uniformly Random Initial Population . 39

4.7 Limits placed on Parameters for Uniform Random Generation 39

vii

4.8 Statistics for Evolved Populations . 40

4.9 Performance - Generator Usefulness 1 . 41

4.10 Performance - Generator Usefulness 2 . 42

4.11 Performance - Speci�c Opponent . 43

4.12 Performance vs. Unseen Opponent . 43

4.13 Performance by Epoch for Co-Evolution . 44

4.14 Best Fitness by Evaluation Count for Co-Evolution . 45

4.15 Co-Evolution Performance vs. Unseen Opponent . 46

4.16 Videos with YouTube Links . 48

1

Chapter 1

Introduction

Generating tactics to implement strategies in RTS games is important when one is interested in provid-

ing interesting opponents which are controlled by computers. There are many ways to implement these

tactics in computer programs. Typically, computer programs have implemented logic that included

the knowledge and experience of human beings. This has led to Arti�cial Intelligence (AI) opponents

which could be described as predictable. It would be interesting to provide new tactics that were less

predictable, yet still e�ective.

This thesis focuses on using evolutionary algorithms to generate new tactics that are not based on

any pre-conceived notions about how to play a game. I show that it is possible to evolve tactics that

start with no tactical knowledge of the game, yet are still able to defeat opponents with regularity.

I focus on tactics in a game with one goal - eliminate the opponent. The tactics are evolved to

accomplish this. Namely, it is not the goal to merely survive in the game - one must eliminate the

other player to win.

There is a well-known problem in machine learning: over-specialization. I �nd that the tactics that

evolve over-specialize against the opponents used during evolution. In the second part of my work,

I address this challenge by implementing a co-evolutionary algorithm that tends to generate more

robust tactics. I show that these co-evolved tactics are better suited to defeat opponents that were

never encountered during evolution than those tactics generated by evolution alone against speci�c

opponents.

1.1 Evolving Tactics in Games

There are many known methodologies for de�ning a tactic for AI agents in Real-Time Strategy (RTS)

games [Hagelback and Johansson, 2008, Avery, et.al. 2009, Leigh, et.al. 2008]. Many of these tactics

2

rely on some scripted, or hard-coded, behavior. This behavior is typically dependent on the ability to

control and coordinate all of the actions of all movable objects, or vehicles, in the game. The AI is

assumed to have knowledge and a certain level of control over the state of each vehicle.

In some of the approaches cited above, the game environment uses expert logic to implement

tactics. Examples of this logic are:

• If the vehicle is close to another vehicle, then move away from that vehicle.

• Find the vehicle with the most strategic value and target it

• Group all vehicles such that they create a prede�ned formation

• If a vehicle has taken damage, do not engage the enemy

These are only a small subset of the rules that may apply to a tactic. They serve only as examples of

expert logic.

The topic of evolutionary algorithms has been studied since the 1960s [Fogel and Owens, 1966].

They have been particularly successful at searching high-dimensional spaces for solutions to a variety

of problems. I show that using evolutionary algorithms to tune the parameters used in determining

the strengths of potential �elds is successful at producing tactics that are e�ective against a range of

opponent tactics.

My research shows that e�ective tactics can be evolved using only potential �elds. These �elds

act to either attract or repulse one vehicle from another. By tuning the strength of these �elds in the

correct manner, I show that these tactics can be e�ective in neutralizing an opponent player.

1.2 Thesis Structure

Chapter 2 explains the necessary background material and topics used in this research. I include

overviews of evolutionary algorithms, real-time strategy games, and potential �elds. Then, past work

on these topics is explained.

Chapter 3 covers the methodologies used to evolve tactics using potential �elds. I describe the RTS

game designed for use in this thesis. Then, the encoding of tactics in a manner conducive to evolution

3

is explained. I describe my evolutionary algorithm, along with how it di�ers and how it is similar to

other evolutionary algorithms. Finally, my co-evolutionary algorithm is explained.

Chapter 4 describes the speci�cs and results of the experiments conducted in this research. I

include commentary on how the evolutionary process worked in the experiments. Then, I show that

it is possible to derive e�ective tactics using only potential �elds when using evolutionary and co-

evolutionary algorithms.

Chapter 5 discusses the conclusion of the experiments. I also include some of the future work that

this thesis could inspire.

4

Chapter 2

Background

This chapter describes RTS games, virtual potential �elds, and evolutionary algorithms. The primary

focus of my research is in evolutionary algorithms, so those are described �rst. The application of

evolutionary algorithms to my problem is next. Finally, I outline other related work pertaining to the

use of potential �elds in games and the use of evolutionary algorithms in games.

2.1 Evolutionary Algorithms

Evolutionary algorithms have been studied for decades [Fogel and Owens, 1966, Fogel and Burgin, 1969].

They were formalized by John Holland in the 1970's [Holland, 1975]. The Genetic Algorithm (GA)

in Holland's work was based on a simpli�ed view of the evolution of a biological system according to

certain Darwinian principles. GAs have been found to be quite e�ective in searching high-dimensional

multi-modal solution spaces, especially when the function describing the �tness of a solution is a

non-continuous function.

2.1.1 The Canonical GA

The canonical GA starts with a problem and a randomly created population of possible solutions,

referred to as chromosomes to mirror their biological counterpart. Each chromosome contains data

that, once decoded appropriately, is proposed as a candidate solution to the problem. The decoded

data's ability to solve the problem becomes that chromosome's �tness.

The GA evaluates all of the chromosomes' �tnesses at the start of every generation. It then uses

three operators- selection, crossover, and mutation- to create the next generation of chromosomes.

Figure 2.1 shows the process used by the canonical GA.

Selection chooses chromosomes to act as parents when producing o�spring. It biases towards higher

5

Figure 2.1: The Canonical GA Algorithm

�tness chromosomes, assuming that high �tness parents are more likely to produce high �tness o�-

spring. The canonical form of selection is the roulette wheel method, where a chromosome's probability

of selection is proportional to its �tness. Therefore, higher �tness chromosomes receive a better chance

of becoming parents than lower �tness chromosomes.

Each selection of a parent happens independently of previous selections. This means that chromo-

somes with higher �tness can be chosen multiple times and can create many o�spring with multiple

partners.

After the couples are selected, they are, with a certain probability, a�ected by the crossover oper-

ator. Crossover combines parts from two parents to make two o�spring. If the parts of each parent

that lead to high �tness get combined in the right manner, the o�spring can potentially have higher

�tness than their parents. In turn, high �tness o�spring have a good chance of becoming parents in

the next generation, which further pushes the population towards better solutions.

The canonical method of crossover is single-point crossover. In this method, the crossover operator

chooses the same random point in both parents. The �rst part of the �rst parent and the second part

of the second parent form a �rst new o�spring, while the opposite parts form a second new o�spring.

See Figure 2.2.

Figure 2.2: Single Point Crossover

After crossover of couples creates the new population, that population is subject to the mutation

operator. Mutation has a small chance of randomly changing some part of a chromosome. Mutation

6

is insurance against permanent loss of genetic material [Sivanandam and Deepa, 2008].

2.1.2 Evolutionary Algorithms in General

In evolutionary systems, one is typically interested in maximizing (or minimizing) some function

f(x1, x2, ...xn) where each parameter xi is limited by some �alphabet�. In Holland's work, this alphabet

is the binary alphabet: xi ∈ {0, 1}. This is the alphabet used for the canonical genetic algorithm- the

algorithm most studied by researchers in this �eld [Holland, 1975].

There are many functions f that are not easily de�ned by, or are not well suited for, a binary

alphabet. In Antonisse's work, an argument is presented that, with a di�erent interpretation of

schemata, there are many more schemata using non-binary alphabets than with binary alphabets

[Antonisse, 1989]. Wright shows that it is possible to present an alphabet of real values and, with

certain crossover operators, Holland's schema theorem holds true [Wright, 1991]. My research builds

on that of Wright, in that it presents a real-valued alphabet for the vector of parameters passed to

function f .

In a canonical GA, the use of a generation provides one type of approach to evolution. Each

generation involves the operations mentioned to evolve a completely new population of chromosomes.

However, other work, including Whitley's, abandons the generational approach in favor of creating

new chromosomes on an individual basis [Whitley, 1989]. This Genitor approach is one of the bases

of my research.

2.2 Potential Fields

Potential �elds are omnipresent in our universe. Two of the most commonly recognized potential �elds

are seen in models of magnetics and gravity. While advances in quantum theory may dispute these as

proper forces of attraction1, the observable model of both gravity and magnetics is still a natural and

pervasive idea.

Gravity's potential �eld between two bodies of mass is typically described using the equation:

FG = gm1m2

d2 . This equation can be generalized as F = cde, where c is a real coe�cient, d is the

1Gravity, for instance, is now typically explained using a �eld model, where masses distort spacetime rather than

actually attract each other

7

distance between two objects, and e is a real exponent. In the case of the simpli�ed equation of

gravity, c = gm1m2 and e = −2. Using this general equation F = cde, we can de�ne a potential �eld

between vehicles which is useful in providing a tactic.

2.3 RTS Games

There are many types of RTS games available today. These RTS games are generally focused on

eliminating your opponent. However, in order to accomplish this, there are commonly many sub-goals

in the game. These subgoals include resource collection, creation of buildings, creation of combat and

utility units (based on what buildings have been built), etc. This work does not concentrate on any of

these sub-goals of RTS games. It focuses speci�cally on providing tactics for the movement of vehicles

which maximizes the ability to eliminate the other player, given the vehicles and game rules available.

2.4 Other uses of Potential Fields and Evolution in RTS Games

There has been other research in using potential �elds or evolution to provide strategies in RTS games.

For instance, in Leigh's work, a canonical GA is used to evolve a speci�c set of parameters selected

by the authors based on what they deemed to be relevant to the game [Leigh, et.al. 2008]. Some of

these parameters included:

• When is a target considered close

• What is the range of vision

• What �eld of view should be used to recognize targets

Each of these parameters worked in conjunction with a piece of program logic to alter the behavior

of a unit in some way. Overall, there were approximately 22 parameters that were evolved. Each of

the parameters was approximated using a binary alphabet, where the precision of each parameter was

based on the author's judgment of what would be appropriate.

In Hagelback and Johansson's work, the authors used potential �elds to drive all tactics in a full

RTS game [Hagelback and Johansson, 2008]. This includes resource gathering, unit production, explo-

ration, etc. There were approximately 10 di�erent types of �elds de�ned in the research. The resulting

8

computer-controlled agent did well in an international RTS tournament, defeating the previous year's

winner 330-70 over 400 games. However, all of the potential �elds employed by this research had

parameters (coe�cients, exponents, etc) that were hand-selected by the authors. Many of the �elds

employed were discrete functions, involving if-then type logic to determine what form the �eld would

take. They did not describe any machine learning methodology to optimize the parameters to any of

their potential �elds.

In Avery's work, in�uence maps were used to derive tactics for ships in a capture-the-�ag setting

[Avery, et.al. 2009]. In de�ning the in�uence maps, this work used a form of potential �eld to derive

the in�uence for each of a set of grid cells. The battle�eld was represented by a grid of discrete cells.

Each cell may be empty, contain a friendly or enemy unit, or contain the �ag. Avery's work used a

GA to evolve the parameters used by the potential �eld when generating the in�uence map. However,

once the in�uence map was generated, it used a path planner to direct the movements of the vehicles

based on the in�uences in each grid cell.

In my work, I show that using a combination of potential �elds and evolutionary algorithms, one can

de�ne and generate e�ective tactics. Unlike Leigh's work, I do not have any expert logic that de�nes

part of the tactic. Unlike Hagelback's work, I do not hand-craft the parameters to the potential �elds.

And unlike Avery's work, I use the potential �elds in an online manner to direct the movement of

vehicles, rather than use a path planner.

2.5 Summary

In this chapter, I covered some background information on evolutionary algorithms, RTS games, and

potential �elds. In the next chapter, I explain the methods and algorithms I used to evolve the

strengths of potential �elds such that they provided e�ective tactics in an RTS game.

9

Chapter 3

Methodology

I begin this chapter by describing a simple RTS game that provides the rules and �tness function for

my evolutionary algorithm. Next, I explain how the potential �elds were designed such that they were

able to provide input controls for the game. I then describe how the chromosomes for the evolutionary

algorithm were encoded such that they provided a representation of the potential �elds. Following

that, I explain how my basic evolutionary algorithm operates. Finally, I show how co-evolution was

implemented.

3.1 The RTS Game

The �rst step in this research was providing an infrastructure in which to play an RTS game. The

game was designed such that it balanced realism with simplicity. The basic game design envisioned a

2-player game where each player controls N vehicles of identical types. Each unit has basic movement

constraints, similar to those found in popular RTS games such as Starcraft and Warcraft. Each vehicle

can �re upon opponent vehicles, provided the opponent is within range. The game is over only when

all of one player's vehicles are destroyed, presumably by the other player. For this work, an open

playing �eld was used. No obstacles were introduced.

A few assumptions were made about the way the game is played.

• Because the goal of the game is to destroy the opponent, a vehicle will always �re upon an

opponent vehicle if it is able to. The game enforces this.

• Control of movement of vehicles is a core component of the tactics that were being learned.

Therefore, the game imposes no restrictions on the collision of vehicles. In a typical RTS game,

the game engine itself will minimize the e�ect of collisions. It will generally either allow the

10

vehicles to overlap each other, or it will allow the vehicles to touch, but not move into each

others space. Generally, an RTS game will not damage vehicles which collide, while in my game

collisions are something that can severely penalize a player.

3.1.1 Vehicle Information

Each vehicle in the game has the following statistics:

Statistic Typical
Value

Purpose

Hitpoints 100 hps
The basic unit of health for a vehicle. A vehicle's Hitpoints is decremented

when (a) that vehicle is hit by an opponent's weapon; and (b) when a vehicle

collides with any other vehicle. A vehicle is destroyed when its Hitpoints

reaches zero.

Size 20 units The size of the vehicle. Used to determine if two vehicles have collided. Also

used to determine how close one vehicle is to another. A unit is an arbitrary

unit of length, currently set as one pixel on the computer screen.

Maximum

Speed

25 units /

second

This is the maximum speed of a vehicle, in terms of units per second.

Maximum

Reverse Speed

-10 units /

second

This is the maximum speed of a vehicle when it is moving in the opposite

direction of its current orientation in the game

Seconds to

Max Speed

2 seconds The amount of game time required to alter the speed of the vehicle from a

complete stop to its Maximum Speed. This is an approximation of

acceleration.

Seconds to Full

Circle

5 seconds The amount of game time required for the vehicle to turn in a complete circle.

Max Damage 20 hps The maximum number of hitpoints that are removed from the target when

this vehicle �res at another vehicle. This value is decreased in linear

proportion to the distance between the two vehicles to approximate the

chance to miss the target.

Range 100 units The maximum distance at which the vehicle can �re at another vehicle. If a

target vehicle is farther than Range, a vehicle cannot �re upon that target.

Armor 10 hps The amount of damage that is absorbed by the armor of the vehicle. This

value is removed from the incoming damage from weapons �re before the

damage is applied to (removed from) this vehicle's hitpoints.

Hit Chance at

Max Range

50% When at maximum range, this value is multiplied by the Max Damage of the

vehicle before the shot hits the target. This approximates the chance that the

vehicle has of missing the target based on how far away it is from its target.

Cooldown 1 second
The amount of game time that must elapse between shots.

3.1.2 Vehicle Collisions

When two vehicles collide (regardless of which player controls the vehicles), each vehicle's current

hitpoints are subtracted from the other vehicle's current hitpoints. The net e�ect of this calculation

is that one of the vehicles will be destroyed while the other vehicle will be damaged. In the case that

11

both colliding vehicles have exactly the same number of hitpoints, both will be destroyed.

In a real-world scenario, say for instance ships at sea, if two ships were to collide there would be

consequences. Some damage will be done when ships collide. This damage can be viewed from two

points of view. On the one hand, damage is generally not considered a good thing. On the other hand,

if one player chooses to be suicidal, ramming an opponent's ship may be in the overall best interest

of the player. I decided to enforce these rules around collisions as part of the game mechanics and let

the evolutionary algorithm decide whether or not collisions were in the best interest of the AI.

3.1.3 Weapons Fire

When a vehicle has multiple targets (opponent vehicles) within its range, it will �re upon the opponent

vehicle with the fewest remaining hitpoints. While this is not the optimal method for designing a �ring

solution, its simplicity is appropriate for these simulations.

3.1.4 Movement of Vehicles

Each vehicle is controlled by two parameters. These are desired speed, a scalar value in terms of units

per second, and desired heading, another scalar value in terms of radians.

The game uses the characteristics of the vehicle, namely Seconds to Max Speed and Seconds to Full

Circle, combined with the current state of the vehicle (current velocity, which is used to derive current

speed and current heading), to alter the speed and heading of each vehicle.

There is a movement heuristic provided by the game- IfABS(desiredHeading−currentHeading) >

π
2 , the game will reverse the desired speed until this condition is no longer met. This has the e�ect of

slowing down vehicles when their desired heading is behind them. This allows vehicles to turn around

more quickly.

3.1.5 Score

A player loses the game once all of its vehicles are destroyed. The score for a player is calculated using

the following formula:

12

ScoreWinner =

(
RHPWinner ·RV CWinner

HPWinner · V CWinner

)(
HPWinner
HPLoser

)2

2

ScoreLoser = −ScoreWinner

where

HP : The sum of the starting hitpoints for the player.

RHP : The sum of the remaining hitpoints for all vehicles not destroyed at the end of the game. This

value is zero for the loser of a game.

V C: The total number of vehicles for a player.

RV C: The count of remaining vehicles (vehicles that were not destroyed) for a player at the end of

the game.

The range of this function for either player is [−1, 1]. In the case of a tie, which occurs when both

players' �nal shots destroy the other player simultaneously, the score is zero. This formula gives credit

to the winner for its total remaining hitpoints and its total remaining vehicle count. Further, it is

meant to take into account any di�erences in team sizes - defeating an opponent that has more total

hitpoints will yield a better score than defeating an evenly matched opponent. I consider the score of

a game1 as the �tness function for the evolutionary algorithm.

Based on the parameters to this function, it should be obvious that remaining hitpoints and the

percentage of vehicles remaining play an important part in generating a good score. By introducing

collision damage the way that I did, I provide a �tness landscape that is sharply a�ected by any

collisions. This can provide a severe penalty when vehicles collide, especially if the two colliding

vehicles are on the same team. The implications of this e�ect is reviewed later in this thesis.

1In most training scenarios, the average of a set of scores

13

3.1.6 The Agent

It should be obvious that there are numerous methods available for programming an AI to play this

game. The most basic AI will set the desired speed and the desired heading to some constant value.

Since the game will �re weapons automatically, this simple agent will be able to in�ict some damage

on any opponent that engages it.

For this work, an AI lovingly named Herkermer was designed. Herkermer uses the potential �elds

generated by all vehicles in the game to provide the controls for the movement of its vehicles (desired

speed and heading). Using the positions of every remaining vehicle in the game, Herkermer can

obviously calculate the distances between the vehicles. These distances, combined with the data found

in the chromosome that con�gures Herkermer, are used for the potential �eld calculations. The results

of the potential �eld calculations are then used as feedback into the controls for the vehicle.

3.2 Potential Fields

Potential �elds between vehicles are what drive the movement controls for each vehicle under the

control of Herkermer. Herkermer calculates the desired speed and heading by �rst summing the

potential �eld vectors, then by breaking down the sum into its component parts (magnitude and

orientation). How Herkermer uses the information found in the chromosome to navigate the vehicle is

described below.

3.2.1 Potential Field Composition

A potential �eld is comprised of three virtual forces. Each of these virtual forces is described by the

simple equation

F = cde

where

c: A coe�cient

d: The distance between vehicles

e: An exponent

14

Intuitively, the distance is provided by the game state. The c and e values are provided by the

chromosome and evolved during the evolutionary process.

The three virtual forces which form a potential �eld are:

Attractor: The attractor has a stronger e�ect on vehicles that are close to each other. It simulates

the force of gravity, which increases in intensity relative to the inverse of the distance squared

between two bodies. A typical attractor may look like F = 2000d−2.

Repulsor: The repulsor acts as a sort of �negative gravity�, or similar to opposing poles of magnets.

It is used to keep vehicles from getting too close to each other, thereby avoiding collisions. It

is typically stronger than the attractor, but with a higher (negative) exponent. This allows the

attractor to bring vehicles closer together until they reach the point where the repulsor provides

an equal opposing virtual force. A typical repulsor may look like F = 500000d−3.

Spring: The spring is used to bring vehicles that are far away from each other closer together. When

vehicles are far apart, the magnitude of the attractor alone is relatively small (and the repulsor

smaller still). The spring's value is higher when vehicles are farther away, thus drawing vehicles

into the con�ict from wherever they may be on the playing �eld. A typical spring may look like

F = 1.0d0.9.

Each vehicle in the game (that has not been destroyed) produces a potential �eld comprised of these

three virtual forces. Each potential �eld is described by 6 parameters, which are the coe�cient and

exponent for each of the three forces:

PF = {Ac, Ae, Rc, Re, Sc, Se} = {x0, x1, x2, x3, x4, x5} (3.1)

Herkermer uses a set of two potential �elds (PFS) to determine the e�ect of another vehicle on

any vehicle it controls:

PFS = {PF 0, PF 1}

The potential �eld PF 0 contains the �eld parameters used when the vehicle under control has no

hitpoints (explained shortly). The potential �eld PF 1 denotes the parameters used when the vehicle

15

is at full hitpoints. A linear interpolation between corresponding parameters in the two �elds de�nes

the e�ective parameters used based on the current health of the vehicle. This is the e�ective potential

�eld (EPF), and it is calculated based on PFS and the remaining hitpoint percentage:

EPF = lerp(PF 0, PF 1, hp%)

where hp% is the percentage of remaining hitpoints for the vehicle under control and lerp is a

linear interpolation function. For instance, if the vehicle under control is at 50% health, EPF will be

calculated as:

EPF = {x
0
0 + x10
2

,
x01 + x11

2
, ...,

x05 + x15
2

}

where the x values are those from Equation (3.1) for each of PF 0 and PF 1 respectively.

3.2.2 Encoding

Herkermer's con�guration chromosome requires a matrix, or grid, of potential �eld sets. This grid is

composed of the PFS values between two types of units. For each type combination, two PFS vectors

need to be provided- one for friendly units of that type, and one for enemy units of that type. For this

research, only one type of vehicle was used, so the simple grid is shown in Figure 3.1.

Figure 3.1: Simple Grid for One Vehicle Type
PFGrid PFS values

Friend PFSF

Enemy PFSE

However, for a game with two vehicle types, the matrix would look like Figure 3.2.

Figure 3.2: Grid for Two Vehicle Types
PFGrid Type 0 Type 1

Type 0 Friend PFSF00 PFSF01

Type 0 Enemy PFSE00 PFSE01

Type 1 Friend PFSF10 PFSF11

Type 1 Enemy PFSE10 PFSE11

The number of PFS vectors (PFS Count) grows exponentially with the number of types N :

PFS count = 2N2

16

This collection of PFS values is called a PFGrid. The PFGrid serves as the con�guration input

for Herkermer. Herkermer gets all other information (vehicle positions, etc) from the game itself once

the game starts.

The PFGrid also serves as the DNA for the chromosome in the evolutionary algorithm. For the

current work, with only one vehicle type, this chromosome is made up of 6 ∗ 2 ∗ 2 = 24 real values.

Stated di�erently, the chromosome represents a vector in 24-dimensional space.

3.2.3 Spatial Diversity and Distance

Since the components of the PFGrid represent strengths of potential �elds, the di�erence in these

components can represent signi�cantly di�erent tactics once decoded. For instance, if the strength of

the repulsor is changed by a signi�cant amount2, two vehicles that would otherwise not collide may

now collide. This made me interested in de�ning a distance metric between two PFGrids.

A PFGrid represents a vector, or a point, in N -dimensional space. N is at least 24 in this work. To

quote Aggarwal, �Recent research results show that in high dimensional space, the concept of proximity,

distance, or nearest neighbor, may not even be qualitatively meaningful � [Aggarwal, et.al. 2001]. In

my experiments, I found that using the Euclidean Distance (
√∑

i(x
1
i − x2i)2) yielded similar numbers

regardless of how di�erent the tactics represented by the PFGrids were. Eschelman uses the Hamming

distance to determine whether or not two chromosomes are close in the search space [Eschelman, 1990].

Knowing something about the search space, namely that two tactics can behave di�erently if any

one of their PFGrid components are signi�cantly di�erent, I chose to use what I call a Floating Point

Hamming Distance when calculating whether or not two PFGrids were close in the search space.

After some of my initial work was completed, but before I had any meaningful results, I had a

sample database of roughly 40,000 PFGrids. I took a �snapshot� of these grids and created a vector

of values based on the standard deviation for each value xi from Equation (3.1). I called this vector

the Standard Deviation Vector (STV). I use it in calculating my Floating Point Hamming Distance.

The calculation is straightforward:

Distance(G0, G1) =

23∑
i=0

Int

(
|G0

i −G1
i |

SDVimod 6

)
(3.2)

2What is considered signi�cant is what the evolutionary algorithm is meant to determine

17

where G0, G1 were two PFGrids, SDV was the 6-dimensional Standard Deviation Vector, Int is

a function that returns the integer value of a real number, and mod is the modulo operator. In this

thesis, distance or spatial diversity refers to Equation (3.2).

3.3 Evolution

I designed an algorithm called Diversity Preserving Evolutionary Algorithm (DPEA). I wanted an

algorithm that would both advance the �tness of a population of chromosomes as well as maintain a

spatially diverse population of chromosomes simultaneously. Deb and Goldberg provided mechanisms

for accomplishing this in their work, but this work concentrated on binary alphabets, not real alphabets

[Deb and Goldberg, 1989]. By maintaining a higher diversity in the chromosomes, I was trying to

avoid getting �stuck� on local maxima in the solution space. DPEA was shown to be e�ective in

accomplishing this goal.

As with most every evolutionary algorithm, I start with a population of randomly generated

PFGrids, or chromosomes. For most of the trials, this population was 100 chromosomes. This

initial set of chromosomes comprises epoch 0. The size of the initial population (usually 100) is called

the initial epoch size, or IES for the population.

An epoch is something that I de�ned to provide a reset point for the population during evolution.

As the population's overall �tness increases, a new epoch is reached. A new epoch is designed to trim

down the population, leaving a more concise set of valuable chromosomes. This process is explained

below.

Similar to the way Whitley de�nes the Genitor algorithm [Whitley, 1989], I select one or two chro-

mosomes from the current epoch of the population and perform some operation on these chromosomes.

The operations available are versions of crossover and mutation, commonly found in most evolution-

ary algorithms. These operations are explained below. Using one of these operations, I create a new

chromosome from one or two parents. This new chromosome is then evaluated and a new �tness is

assigned. The chromosome is deemed acceptable according to the algorithm shown in 3.1.

The new chromosome is thrown away if any of the following conditions is true:

• While evaluating the chromosome, one of the games played didn't complete in the allocated

18

Listing 3.1: Is a new chromosome acceptable?

FUNCTION Is_Acceptable(pop ,ch)

IF NOT ch.Completed_All_Games

RETURN FALSE

IF MIN(Distance(ch , pop.AllChromosomesInEpoch)) = 0

RETURN FALSE

LET avg = AverageFitness(pop.AllChromosomesInEpoch)

IF ch.Fitness < avg

RETURN FALSE

RETURN TRUE

END_FUNCTION

amount of time. In this case, the chromosome, when decoded, results in an invalid tactic.

• The chromosome is deemed spatially identical3 to another chromosome in the population, but

its �tness is worse than the existing chromosome. In this case, the population already contains

a better version of the same chromosome.

• The chromosome's �tness is worse than the average �tness in the population. In this case, we

didn't produce a very good chromosome.

Otherwise, the chromosome is added to the population. This set of operations is repeated until the

current epoch is ready to become the next epoch.

Generation of more epochs continues until I decided to stop it. Normally, I stopped evolution when

I saw that there was no progress being made in the overall �tness of the current epoch after thousands

of evaluations of new chromosomes.

The pseudo-code for this algorithm is found in Listing 3.2.

3.3.1 Epochs

An epoch is designed to maintain spatial diversity among the best chromosomes in the population.

The goal is to maintain a diverse set of chromosomes all of which have good �tness. This work was

inspired by the notion of niching [Deb and Goldberg, 1989, Fonseca and Fleming, 1993], and is a key

component of DPEA.

3Its �oating point hamming distance is 0

19

Listing 3.2: High Level Pseudocode for Evolution

LET pop = Initial_Population

DO UNTIL Some_External_Termination_Event

WHILE NOT Epoch_Is_Done(pop)

LET ch = Generate_New_Chromosome(pop)

IF IsAcceptable(pop , ch)

Add_To_Epoch(pop , ch)

END_WHILE

Evolve_Epoch(pop)

END_DO

Every epoch begins with exactly IES chromosomes. In the case of epoch 0, these are randomly

generated chromosomes. In the case of all other epochs, these initial IES chromosomes come from

the previous epoch. When the average of the best IES chromosomes in the current epoch exceed

the average of the best IES
4 chromosomes that initialized the epoch, a new epoch is generated. The

pseudocode for determining when to move to the next epoch is in Listing 3.3.

Listing 3.3: Pseudocode for checking if an Epoch is done

FUNCTION Epoch_Is_Done(pop)

LET initial = pop.InitialChromosomes.OrderByFitnessDescending

LET target = AverageFitness(initial.Take(INITIAL_EPOCH_SIZE / 4))

LET best = pop.AllChromosomes.OrderByFitnessDescending

LET current = AverageFitness(best.Take(INITIAL_EPOCH_SIZE))

IF current > target

return TRUE

ELSE

return FALSE

END_FUNCTION

Chromosomes will be continuously added to the population until the transition condition is met.

As such, it is possible to have epochs with 200 chromosomes in them. It is also possible to have epochs

with 5,000 chromosomes in them. The number of chromosomes in an epoch does not de�ne an epoch.

In the Discussion chapter, I hypothesize about the implication of a large chromosome count for an

epoch.

I developed an algorithm for deciding which chromosomes from the current epoch will make it into

20

the next epoch. The goal of this algorithm was to move a set of chromosomes forward that had good

�tness and good spatial diversity. In researching statistical clustering techniques in high dimensions

[McCallum, et. al 2000, Eppstein, 1999], I found that this problem is quite a complex �eld of study

unto its own. What I found was that all of the techniques available were computationally expensive.

I wanted an algorithm that balanced good clustering with fast execution speeds. This led me to the

algorithm outlined in Listing 3.4.

I borrowed from the techniques that are well known, while reducing the iterative nature of the

existing algorithms. Essentially, I consider all of the chromosomes in the epoch with above average

�tness. Starting at the best chromosome, I look for the set of all of the chromosomes that are far away

spatially from this chromosome. As I add each chromosome to this set, the condition for the next

chromosome is that it is far away from every chromosome that is currently in this set. This makes it

more and more di�cult to get added to this set. When there are no more chromosomes in the above

average chromosomes that are far away from this set, I add the set to the next epoch and repeat,

using the next-highest �tness chromosome that still remains. I continue to do this until I have IES

chromosomes forwarded to the new epoch.

This gives the new epoch a starting set of chromosomes that are all above average in �tness and

are also spatially diverse.

3.3.1.1 Testing Epoch Evolution

Since this algorithm is my own method for niching [Deb and Goldberg, 1989], I was interested in how

it would perform against some well known multi-modal solution spaces. So I designed a test for this

algorithm. Using the same model used for evolving chromosomes for the RTS tactics (a variation on

Genitor, and described above), I ran my own simulations on one of the functions used in Deb and

Goldberg's research: F (x) = sin6(5πx) where 0.0 ≤ x ≤ 1.0. My algorithm for epoch evolution

was able to �nd and maintain all 5 peaks provided by this function using a population size of 50

and a simple hill climber as a chromosome generator. Changing this function to a 25-peak function,

F2(x) = sin6(25πx), my algorithm was able to maintain all 25 peaks over 100 runs 95% of the time.

For the 25 peak trials, I used a population size of 300 and again a simple hill-climber. Empirically,

21

Listing 3.4: Pseudocode for Evolving an Epoch

PROCEDURE Evolve_Epoch(pop)

LET available = pop.AboveAverageChromosomesInEpoch

LET selected = <empty >

WHILE selected.Count < EPOCH_SIZE

LET ch = available.First ()

LET working = { ch }

available.Remove(ch)

Increase_Working_Set(working , available)

selected.Add(working)

END_WHILE

pop.Epoch = pop.Epoch + 1

pop.ChromosomesInEpoch = selected

END_PROCEDURE

PROCEDURE Increase_Working_Set(working , available)

// "found" is TRUE as long as we are adding to the working set

LET found = true

WHILE found

FOR_EACH ch IN available

found = true

FOR_EACH good IN working

IF good.Distance(ch) < 1

found = false

END_FOR_EACH

IF found // ch is not close to any "working"

working.Add(ch)

available.Remove(ch)

END_IF

END_FOR_EACH

END WHILE

END_PROCEDURE

22

this shows that my algorithm for epoch generation does indeed maintain multiple spatially diverse

chromosomes that also have high �tness.

3.4 Chromosome Selection

In order to generate a new chromosome, one or two parent chromosomes must be selected from the

chromosomes in the population. The number of parents is determined by the actual chromosome

generator that is used. All generators use either one or two parents. They all use the following

algorithms for the selection of their parent(s). Figure 3.3 shows this graphically.

Figure 3.3: Selection of Parent Chromosomes

Every chromosome generator requires at least one parent. This parent is selected from a set of

IES chromosomes in the current epoch of the population with the best �tness values. I use simple

roulette wheel selection based on �tness.

Some chromosome generators require two parents. The second parent chromosome, if one is re-

23

quired by the generator, is selected di�erently. Because we want to explore the solution space as much

as possible, we want to select a second parent that is farther away spatially from the �rst parent but

still has above-average �tness. The set of available chromosomes for the second parent is comprised of

all of the chromosomes in the current epoch of the population that have a �tness value that is above

average for that epoch. Again, a chromosome is selected using a simple roulette wheel selection, but

this time the weights for this second selection are based on the distance of the chromosomes from the

�rst parent.

3.5 Chromosome Generation

In the canonical GA, there are two main methods for new chromosome generation: crossover and

mutation [Holland, 1975]. A canonical version of crossover is the Single-Point Crossover, described

in the Background chapter of this thesis. My work uses variations on this method of crossover for

�oating point operations.

Wright discusses the implications of crossover on binary strings of data when the string is broken

down into sub-sections each representing a parameter [Wright, 1991] . For instance, if the binary

string represents four 8-bit integer numbers, there are four subsections corresponding to the four

8-bit integers. Should crossover choose a point in the middle of one of these sub-sections, it will

introduce a perturbation into the crossover. This perturbation can be viewed as a mutation, as the

resulting chromosome would likely not contain 8-bit integers that are in the union of the two parent

chromosomes' 8-bit integer values. This is shown in Figure 3.4.

Figure 3.4: Perturbation E�ect of Binary Crossover

It is clear that the second sub-section of the child chromosome (the child chromosome is in the

middle of the �gure) contains the value 121. Neither of the parent chromosomes contain this value.

This value was generated by the random nature of where the crossover point was placed (in this

example, in the middle of the second sub-section). From this, we can conclude that the random nature

24

of the pure crossover function has the side e�ect of perturbing the data. This is an important feature

of the canonical GA.

However, in a chromosome built from real-valued parameters, there are no sub-sections where this

perturbation can be placed. In many applications where real-valued parameters need to be encoded

using a binary encoding scheme, a real number would be encoded into a binary number, reducing

its precision but allowing the encoding. Wright showed methods to deal with this loss of precision

[Wright, 1991]. However, in order to accomplish this, we need to re-evaluate what the crossover and

mutation operators actually do. Since this can be accomplished in a number of ways, I chose to use 5

di�erent operations, each based in part on either the crossover or the mutation (or both) operations.

For this work, each chromosome is comprised of 24 real-valued parameters. This can be viewed as

a point, or vector, in 24-dimensional space. For the following discussion, the examples show only 2

dimensions because its really hard to represent 24 dimensions with a picture!

Further, each parameter in the chromosome has a di�erent scale. A set of six normalization

parameters were chosen as representative of the base unit of scale for the six values in the PF vector

shown in Equation (3.1). This normalization vector is used to express the scale of each type of

potential �eld parameter. The values used are shown in Figure 3.5. This normalization vector is

used by some of the generators when creating new random values for each of the PF vector values.

These normalization values, multiplied by a con�guration constant, are typically used as the standard

deviation for Gaussian distributions around existing PF vector values.

Figure 3.5: Normalization Vector for Potential Field Parameters
Attractor Repulsor Spring

Coe�cient Exponent Coe�cient Exponent Coe�cient Exponent

250 0.075 10,000 0.1 0.2 0.05

These chromosome generation operations, in the context of this algorithm, act to either explore the

solution space or focus the search on one part of the solution space. Further, since the quality of the

population of chromosomes cannot be hurt by exploring in a poor direction4, the algorithm randomly

selects which of the following generation algorithms is used each time a new chromosome is generated.

The rest of this section describes the new chromosome generation operations.

4Poor Direction referring to a direction that leads to lower �tness values

25

3.5.1 Uniform Mutation

In Uniform Mutation, a single parent chromosome is selected. Then, each component of the parent

chromosome is mutated by some amount. The amount mutated is a Gaussian distribution centered on

the parent value. The standard deviation is based on some constant times the normalization vector

shown in Figure 3.5. For this work, the constant used was 1. This produces a new PFGrid in a

manner very similar to the method employed by Larose, called �Random Shock� [Larose, 2006].

The resulting chromosome in 2d-space could be viewed as falling within the circles found in Figure

3.6. This type of mutation doesn't resemble the mutation operator described in Holland's work, as

it acts on all members of the chromosome to move the point in N-dimensional space [Holland, 1975].

This type of chromosome generation was meant to focus on one particular area of the solution space.

This is a form of simple hill-climbing.

Figure 3.6: Uniform Mutation in Two Dimensions

3.5.2 N-Point Mutation

In N-Point Mutation, only a few of the parameters in the parent chromosome are mutated. The actual

number of mutations N is based on a Gaussian distribution around a constant number with a small

26

standard deviation. For this work, 2.4 was the mean number for N (10% of the chromosome values),

and the standard deviation was 0.6. Typically, 2 or 3 of the parameters in the chromosome will be

mutated.

For each parameter that gets mutated, the same type of mutation as seen in Uniform Mutation is

used. Namely, a Gaussian distribution centered on the parent value with a standard deviation based

on a constant times the normalization vector component. For this work, the constant value that the

normalization component was multiplied by was 10, yielding quite a large range of possible new values

for the parameters selected.

The resulting chromosome after N-Point Mutation can be visualized in two dimensions using Figure

3.7. In this �gure, one of the two dimensions was chosen for mutation, with the possible new values

shown.

Figure 3.7: N-Point Mutation in Two Dimensions

The mechanism behind this type of mutation most resembles the mutation operator described in

Holland's work. It acts on only a speci�c small subset of the parameters of the chromosome to move

it in the solution space. It is a hybrid of a focused and an exploratory operation. Empirical evidence

27

shows that it is particularly good at exploration (see Discussion). While this is a form of hill climbing,

it acts to explore more than Uniform Mutation does. This is due to the high value used for the

Gaussian distribution's standard deviation.

3.5.3 Uniform Crossover

In Uniform Crossover, two parent chromosomes are combined to produce a new chromosome. Much

like in uniform crossover for a canonical GA, each parameter of the resulting chromosome is taken from

one or the other parent chromosome. The parent chosen for each parameter is a random operation.

Figure 3.8: Uniform Crossover in Two Dimensions

The basic operation of Uniform Crossover will result in a new chromosome that is on one of the

corners of the hypercube de�ned by the parent chromosomes. This is shown for two dimensions in

Figure 3.8. Since each of the parameters for the new chromosome must contain the parameters of

one of the parent chromosomes, none of the natural perturbations shown in Figure 3.4 will occur.

To compensate for this, at the end of the process of taking values from one or the other parent, the

resulting chromosome is moved in the solution space using the same algorithm for Uniform Mutation,

but with a smaller randomness (shown in Figure 3.9).

28

Figure 3.9: Uniform Crossover in Two Dimensions, with perturbation

Wright studied this type of operation in his research [Wright, 1991]. It is hypothesized that if

the two parent chromosomes are both spatially close to the same local maxima in the solution space,

that local maxima will have a high probability of lying within the circled region region of Figure

3.10. However, when the components of the parent chromosomes are combined into the new child

chromosome using Uniform Crossover, the resulting chromosome will likely be outside the suggested

circled region (shown by the hollow circles in Figure 3.10). This suggests that Uniform Crossover acts

as an exploration operator, not a focusing operator.

3.5.4 N-Point Crossover

N-Point Crossover is a similar operation to Uniform Crossover, but with one signi�cant di�erence.

Its focus is to leave long chains of parameters from the parent chromosomes unaltered in the new

chromosome. This crossover works in a similar fashion to its counterpart for canonical GAs. It can be

seen pictorially in Figure 3.11.

The number of crossover points is a random function. As the algorithm scans the parameters of

the chromosomes, a random number is generated in the range [0, 1). If this random number is less

29

Figure 3.10: A Potential E�ect of Crossover

Figure 3.11: N-Point Crossover

than some percentage P , the algorithm switches which parent it takes chromosomes from when �lling

in the new chromosome. I used 10% for this parameter P . This may be clearer by looking at the

pseudo code in Listing 3.5.

Listing 3.5: Pseudocode for N-Point Crossover

LET newChromosome = Blank_Chromosome

LET parentChromosome [2] = Parent_Chromosomes

LET source = 0

FOR i = 1 TO ChromosomeLength

IF Random_Number (0,1) < Probability_To_Switch

source = 1 - source

newChromosome[i] = parentChromosome[source][i]

END_FOR

Both Uniform and N-Point Crossover act as exploration operations. N-Point Crossover was meant

30

to act with less exploration and more focus. In practice, this was found to be generally true, but not

to the degree that I has hoped.

3.5.5 Linear Interpolation

In the Linear Interpolation generator, which I call the Lerpor, I once again consider the idea presented

in Wright's work and in Larose' work that the best solution may lie in the region between two points

in the solution space (shown in Figure 3.10) [Wright, 1991, Larose, 2006]. Larose called this �Whole

Arithmetic Crossover�. The Lerpor does not have any obvious counterpart in the canonical GA.

Referring to Figure 3.12, we look for a point on the line joining the parent chromosomes. A point

is selected on this line, biased by the �tness of each of the parent chromosomes. This point is closer

to the parent with the higher �tness. Then, this point is moved in one direction or the other by some

small amount. The amount moved is again a Gaussian distribution centered on the selected point with

a constant standard deviation, in this work set at 0.1. This is shown in Figure 3.12 as the segment on

the line between the parenthesis. Once this point is selected, a small Uniform Mutation is introduced,

providing the new value for the chromosome.

Figure 3.12: The "Lerpor"- Linear Interpolating Generator

The Lerpor is designed speci�cally to be a focusing generator. It concentrates on pulling a good

chromosome in the direction of another good chromosome, with the hope that a better solution lies

31

between them. Empirically, it has shown itself to provide good chromosomes more often when the

population is still advancing at a rapid rate.

In this section, I described how chromosomes were generated. This section concludes the evolution

part of my research. Next, I describe the co-evolution phase.

3.6 Co-Evolution

I found that my algorithm was e�ective in evolving a population that had high-performance chromo-

somes relative to the opponents that were used in the evolutionary process. However, the chromosomes

evolved this way would generally do signi�cantly worse against opponents that were not involved with

their evolution. To account for this, I implemented a co-evolutionary algorithm, where two popu-

lations of chromosomes were evolved together and used each other to provide new opponents. This

co-evolution algorithm is explained in this section.

Two separate populations were initialized with random chromosomes. These chromosomes, after

initialization, were used to automatically generate epoch 1 for co-evolution. Epoch 1 denotes the �rst

epoch of co-evolution, while epoch 0 is the �rst epoch for standard evolution.

At the beginning of each epoch, the co-evolution algorithm would select a set of chromosomes from

each population to be used as opponents for the other population. Selection was based on the �tness

of the opponents in the previous epoch. For this work, 5 opponents5 were selected for each population.

Except in epoch 1, when all 5 opponents came from epoch 0, the method of selection was straight-

forward. The �rst opponent was the best chromosome evolved in the last epoch. The third through

�fth opponents were the �rst through third opponents from the previous epoch. The second opponent

was randomly selected from all previous epochs such that it was not a duplicate of the ones already

selected. This is depicted in Figure 3.13.

Using this approach, I was able to train each population against an ever changing set of opponents.

This set of opponents had three notable traits:

Consistency: The majority (3 of 5) of the opponents were opponents the population had trained

against before. This provided a sort of momentum in learning. When this consistency was not

5The number 5 was an arbitrary choice that balanced run times with maintaining a good representative set of

opponents

32

Figure 3.13: Opponent Selection by Epoch

present in the opponent set, I found that the populations did not converge to good results as

often, and it took them much longer to converge to good results.

Randomness: The introduction of the random element at index 1 (the row highlighted with dots)

provides a couple of features. First, it allowed good chromosomes from early epochs to re-enter

the training mix. This is similar to the Hall of Fame approach [Rosin and Belew, 1997]. Next,

it allowed for an obvious degree of randomness in the choices for opponents. This helped prevent

the co-evolution from over-specializing in only those most recent opponents.

Challenge: The new epoch had to train against the best chromosome from the previous epoch. This

chromosome is assumed to be the best so far, although that may not be the case (consider the

rock-paper-scissors6 analogy). By selecting a chromosome in this way, I guaranteed that each

epoch had at least one of its chromosomes present in the opponent set for at least three future

epochs- more if the random element happened to be selected that epoch again in the future.

In addition to these 5 opponents, I also evaluated each chromosome against a static opponent. This

static opponent did not move any of its vehicles. The vehicles simply shot back at any other vehicle

that entered their �ring range.

Since there were no expected terminal �tness levels for co-evolution, the algorithm was terminated

at an arbitrary point in time. The algorithm advanced each population to the next epoch using a

slight modi�cation to the algorithm shown in Listing 3.3. In evolution alone, the target �tness was

6In the game of Rock-Paper-Scissors, there is no one best choice- the value of the choice is wholly dependent on the

other player's choice.

33

determined by the initial chromosomes in only one population. However, in co-evolution, I used the

higher target �tness from both populations, requiring both populations to reach a similar �tness level

at each epoch.

The �tness level achieved during each epoch was relative to the populations being evolved. Since the

populations were switching to new opponents at each epoch, the �tness of each chromosome was also

relative to the epoch in which the chromosome was evaluated. To provide a more objective evaluation

of how the algorithm performed over time, I wanted to see how the evolved tactics performed against

opponents that had never been seen during evolution. To show this, I selected the best chromosome in

each epoch from each population. For each of these chromosomes, I evaluated its performance against

a set of 3 opponents that were never encountered during evolution, using a scenario (vehicle layout)

that was also never seen during evolution. With this methodology, I felt like I could empirically show

that the algorithm did produce generalized tactics and that these tactics performed better over time

relative to opponents that had never been seen before.

3.7 Summary

In this chapter, I explained the methodology used to evolve the parameters to potential �elds such that

these potential �elds can be used e�ectively as implicit tactics in an RTS game. In the next chapter, I

discuss the results of my experiments. I also comment on why certain phenomena were present in the

evolutionary process.

34

Chapter 4

Results and Discussion

There were two phases to this research. First, create an evolutionary environment where a tactic can

be learned against an opponent. Second, create a co-evolutionary environment where a tactic can

learn to generalize against other opponents. In this chapter, I discuss the RTS game scenarios that

were used in evolution and co-evolution, followed by the results of both evolution and co-evolution.

4.1 RTS Game Scenarios

For all of the experimentation I selected two game scenarios, each with six identical vehicles per player.

The layouts of these scenarios are in Figures 4.1 and 4.2. This choice was somewhat arbitrary. I did

want to have a variety of initial grouping con�gurations, but this didn't seem to a�ect the results. The

evolved tactics take care of grouping implicitly after each game starts.

For each scenario, Herkermer played 6 games using chromosomes from the population being evolved.

These games used di�erent combinations of scenario layouts and sides (e.g. Scenario 1 / Player 2, etc).

I also created two types of opponents:

Static Agent: The Static Agent simply sets the desired speed and the desired heading to zero. This

agent merely provides the opponent with a set of targets that shoot back. It was used to see how

well evolution performs against static targets. These types of targets could be viewed as gun

turrets- stationary guns that merely �re on enemies as they approach. This served to help guide

the initial creation of PFGrid values for populations. If a new, randomly generated PFGrid

could not complete a game against this type of agent, it was not included in the population.

This would be the case if a new PFGrid caused the vehicles to simply run away from enemy

vehicles. Running away is clearly not conducive to the overall goal of eliminate your opponent.

35

Figure 4.1: First Scenario for Experiments

Figure 4.2: Second Scenario for Experiments

36

Figure 4.3: Scenario for Co-Evolution Testing

Hand Crafted: I created a set of hand-crafted values for a PFGrid that was used to con�gure a

Herkermer agent. I hand-crafted these values without any view towards optimization. With these

values, I wanted a high degree of con�dence that vehicles wouldn't collide with other vehicles

that are on the same team. I also wanted them to be e�ective enough to simply win a game

against a Static Agent.

For co-evolution, I created a third scenario shown in Figure 4.3. This provided di�erent starting

positions for the players. It allowed me to show how well a tactic was adapted to a scenario that was

never seen during the co-evolution process.

4.2 Evolution

The process of evolution to improve tactics against a speci�c set of opponents went well. Figure 4.4

shows the progress made by the evolutionary algorithm over the course of time for 10 runs of the

evolutionary algorithm. The picture shows that the algorithm followed what should be a recognizable

pattern for learning algorithms of this type. The graph shows the �tness minimum, maximum, and

average plus and minus one standard deviation through time. Each point on the X-axis represents

the information for the chromosomes that were generated during the interval indicated by the X-axis.

This explains why the maximum �tness is higher than future �tnesses in the interval from 300-400, the

37

Figure 4.4: Average Performance

interval from 800-900, etc. The averages (the boxes on each vertical line) contain the more meaningful

data.

In Figures 4.5 and 4.6, I show the progress made by the evolutionary algorithm over the course of

time for a single run of the evolutionary algorithm. In these graphs, I show the epoch that corresponded

to each point on the �tness line. This gives some indication of how a typical run of evolution looks. The

graphs show the progress based on initial populations which were generated in two di�erent ways. The

scenarios (number and layout of vehicles) for these populations were also considerably more complex

than the scenarios used for the averages found in Figure 4.4.

The reason I chose two di�erent initial population generation schemes was to explore how the

algorithm worked under various starting conditions. In one of the populations, the initial values were

more focused on an area of the search space that was known to contain a tactic that would simply win

against a static opponent. In the other population, the initial values were selected with few conditions

placed on the parameters.

In Figure 4.5, the initial 100 chromosomes of the population were generated based loosely on a

38

Figure 4.5: Performance- Focused Initial Population

set of hand-crafted potential �eld parameters. The hand-crafted parameters were designed such that

they would win a scenario against a Static Agent, but with a low score. Each of the 100 initial

chromosomes for this population was generated by repeatedly mutating this hand-crafted chromosome

using the Uniform Mutation algorithm found in Section 3.5.1. The degree of mutation (the standard

deviation for the Gaussian distribution) was ten times the normalization values found in Figure 3.5.

For the second population, shown in Figure 4.6, the initial 100 chromosomes were generated using

a uniformly random distribution of values for each parameter in the chromosome. The limits placed

on each parameter are shown in Figure 4.7. In all of the testing performed, values near the edges of

any of these ranges were never found in an acceptable chromosome.

When Figures 4.5 and 4.6 are compared, they show graphically that the evolutionary algorithm

performed approximately the same regardless of the type of initial population. The shape of the �tness

line, plotted on a logarithmic scale, shows the learning progressed in a similar fashion to many machine

learning algorithms. This was encouraging to me that my algorithm was an e�ective machine learning

algorithm.

39

Figure 4.6: Performance- Uniformly Random Initial Population

Figure 4.7: Limits placed on Parameters for Uniform Random Generation
Attractor Repulsor Spring

Coe�cient Exponent Coe�cient Exponent Coe�cient Exponent

0 to 50,000 -6.5 to 0.01 -30,000 to 0 -8 to -0.1 0 to 30 0.0001 to 4

Some statistics about the two evolved populations shown in Figures 4.5 and 4.6 are shown in Figure

4.8. An interesting statistic in this table is the last one. Looking at the average distance between

the best chromosome and the rest of the chromosomes with �tness above zero, we see distances in

the 200-300 range. However, the best chromosomes found in the two respective populations had a

distance metric of 3,147 between them. This represents the fact that these two evolutions produced

two signi�cantly di�erent tactics, but each tactic performed roughly equally as well.

One can also see that the uniformly random initial population took roughly 225,000 evaluations to

reach a maximum �tness of approximately 0.66. In the population with the focused initial chromo-

somes, approximately the same �tness of 0.66 was reached after around 124,000 evaluations. It took

the evolutionary algorithm just under twice as long to reach the same �tness level for a much more

randomized initial population.

40

Figure 4.8: Statistics for Evolved Populations
Default Initial
Population

Uniformly Random
Initial Population

Average Total Chromosomes In Population 2,428 5,318
Average Total Chromosomes Evaluated 123,630 225,231

Average Epochs 5 10
Average Best Fitness 0.6608 0.6617

Average Fitness, Top 100 Chromosomes 0.6527 0.6523
Average Distance From Top Chromosome,

Best 100 Chromosomes
262.49 39.53

Average Distance From Top Chromosome,
All Fitnesses > 0

217.33 324.80

Average Distance between Two Best
Chromosomes

3,147

Another surprising statistic was the spatial diversity of the top 100 chromosomes in the uniformly

random population. I expected this number to be much higher, as was seen in the diversity in this

population for all �tnesses above zero. However, this number was relatively small. I hypothesize that

this is because the population converged to one area of the solution space at the end. This may be

because the majority of the initial chromosomes ended up in areas of the solution space where the

local maxima were not very good.

4.2.1 Local Maxima

While these graphs are important to show that the evolution did indeed increase the �tness of the pop-

ulation over time, they do not show an interesting phenomenon that occurred in some of the evolution

trials. Common to any search algorithm that is not exhaustive is the problem of local maxima/minima

[Russel and Norvig, 2003]. Local maxima are areas of the solution space where changing the input

vector by a small amount in any direction will not be able to �nd a higher �tness value, but a higher

�tness value does indeed exist somewhere else in the solution space. In order to get around local max-

ima, an evolutionary algorithm must be able to explore an area of the search space that is relatively

far away from where the search is currently concentrating.

Canonical hill-climbing algorithms are notorious for getting stuck at local maxima. There are many

techniques available (simulated annealing, random restarts, etc) that try to overcome this problem. I

believe that a hallmark of a good search algorithm is that it can adapt to its current situation (stuck

or not stuck on local maxima) in order to explore as much of the solution space as possible.

41

Figure 4.9: Performance - Generator Usefulness 1

Consider Figures 4.9 and 4.10. These graphs show how often the use of each of the �ve generators

resulted in a new chromosome being added to the population. Superimposed on the graphs is the

chromosome count for each epoch. By looking at the super-imposition of the chromosome count, it is

clear that the N-Point Mutation chromosome generation operation was used heavily in those epochs

with the most chromosomes. In these epochs, relatively many chromosomes were generated in order

to advance the population to its next �tness target. I hypothesize that it was di�cult to �nd a better

alternative to a local maxima in these epochs. N-Point Mutation was the generator that was most

successful in advancing the population by the largest amount during these epochs.

These empirical results show that my algorithm was adaptive to the current state in the search and

was able to overcome local maxima given enough time. It showed that, regardless of the composition

of the initial population, the algorithm was able to evolve chromosomes that provide good tactics

against those opponents that were used in the evolutionary process.

However, these tactics did not do as well against opponents that have never been seen before.

Consider the population evolved whose �tness is plotted against epochs in Figure 4.11. The �gure

42

Figure 4.10: Performance - Generator Usefulness 2

shows the range of �tness values for each epoch, with the range plus or minus one standard deviation

above and below the average for each epoch highlighted. This population was evolved to a relatively

high maximum �tness of 0.894. However, the following graph in Figure 4.12 shows that it did worse

against the hand-crafted tactic. While the best chromosomes in each epoch were able to beat the hand-

crafted opponent, the majority of them1 could not beat it. Further, the best chromosomes could not

beat the new opponent by as much as they beat the opponent they were trained against. I expected

this as the outcome for evolution conducted in this manner.

4.3 Co-Evolution

The process of using co-evolution to generalize tactics went well. The tactics evolved were able to

generalize and win games, but they were not able to win these games by the same margin as those

evolved against speci�c opponents when played against those opponents. I expected this result, as a

1In Figure 4.12, there were chromosomes that represented tactics that could not complete a game against this new

opponent. Those chromosomes were removed from the population.

43

Figure 4.11: Performance - Speci�c Opponent

Figure 4.12: Performance vs. Unseen Opponent

44

specialized agent would intuitively do better at what it specializes in.

For co-evolution, the �tnesses of the best chromosomes in the population through time were not

very meaningful. Since each population was continuously being evaluated against a di�erent set of

opponents, the �tnesses through time did not show the increases found in evolution against a speci�c

opponent. This is shown in Figures 4.13 and 4.14. In Figure 4.13, we can see that the �tness range

for each epoch was large. We can also see that the maximum �tness did not grow with time. I didn't

expect these values to grow, as they were always relative (epoch to epoch) to a new set of opponents.

At each epoch, the algorithm had to re-evolve the chromosomes based on the new opponent set.

The data in Figure 4.14, showing the maximum �tness in the population over time, is not mean-

ingful for a di�erent reason. Over time, the populations' opponents will change. In some epochs, a

population may be opposed by relatively weak chromosomes2. When evaluated against these weak

opponents, one would expect high �tness values. If this happens early in the process of co-evolution,

the maximum population �tness will re�ect the �tness against an early weak opponent. This explains

why Figure 4.14 looks the way it does.

Figure 4.13: Performance by Epoch for Co-Evolution

2Relative to the opponent chromosomes in other epochs

45

Figure 4.14: Best Fitness by Evaluation Count for Co-Evolution

For the purpose of evaluating the tactics resulting from co-evolution, I selected a baseline against

which the best chromosomes from each epoch could test themselves. This was accomplished by creating

an environment that was not seen during co-evolution and evaluating the chromosomes from each epoch

of co-evolution using this new environment. I chose a third scenario (vehicle layout), shown in Figure

4.3, that was not used during co-evolution. I then chose three opponents that had not been used

during co-evolution3. These opponents are described here:

Static Opponent: This opponent did not move any of its vehicles. Its vehicles merely �red at any

enemy vehicle that came into its �ring range. A similar opponent was used during co-evolution,

but with a di�erent vehicle layout. I felt that changing the positions of stationary targets was

su�ciently di�erent to warrant including this opponent.

Hand-crafted Opponent: The hand-crafted tactic described in Section 4.1 was used as an opponent.

This hand-crafted tactic was not used during co-evolution.

3It is statistically possible that two of these three opponents could have evolved naturally during co-evolution. These

two mentioned here were checked against the chromosomes in the populations, and they were not found.

46

Speci�cally Evolved Opponent: The tactics used by this opponent were evolved against a speci�c

and separate set of scenarios and opponents. These tactics were the best tactics evolved during

an external evolutionary procedure.

Figure 4.15: Co-Evolution Performance vs. Unseen Opponent

The results of playing the tactics described by the best chromosomes from each epoch against

the above described opponents are shown in Figure 4.15. Epochs are used in this graph because the

opponents changed for the populations when new epochs were generated. I am showing the progress

made by the co-evolution process at every point when it switched opponents for the populations. This

data is signi�cant because it shows that the co-evolution did increase the performance of the tactics

against previously unseen opponents and situations.

4.4 Video of Results

I have selected a set of tactics to publish in video form. These have been posted to YouTube. These

videos are shown in Figure 4.16. In that Figure, Player 0 starts at the top of the screen and Player 1

starts at the bottom. The HC opponent was the hand-crafted PFGrid used with Herkermer, described

in Section 4.1.

47

4.5 Summary

This chapter contains the results of my research. I showed the RTS game scenarios that I used for

evolution and co-evolution. Then I showed how the process of evolution improved the �tness of the

chromosomes in the population over time. Finally, I demonstrated how using co-evolution provided

stronger tactics over time when played against opponents never seen during co-evolution, even though

the overall �tness of the chromosomes in the populations didn't grow at the same rate.

48

Figure 4.16: Videos with YouTube Links
YouTube Link Player Oppon't Score Notes

http://www.youtube.com

/watch?v=GafZ7GLUBvU

0 Static -1 Horrible Tactics. Merely allows vehicles to crash into each other. No signi�cant

formations

http://www.youtube.com

/watch?v=wsNlZ6GWz5A

0 Static -.4083 A little better at staying away from team-mates, but still collides with them. Very

suicidal against enemies

http://www.youtube.com

/watch?v=c-PEtvZbZog

1 HC .0549 Started recognizing formations- couldn't quite get them down though. Doesn't want

to collide with own vehicles, but will ram opponent

http://www.youtube.com

/watch?v=hBPwh5z9eao

1 Static -.1344 Same tactic as above, but against a static opponent. The same-team collision in the

bottom left corner lost the game for this tactic. Tried to get formation down, but

very sloppy. Still suicidal towards opponents.

http://www.youtube.com

/watch?v=aVZ_y69LcUg

0 Static .8479 A very successful tactic, but slow to execute. Did not create formations very

quickly. It did do very well in protecting its hurt units.

http://www.youtube.com

/watch?v=YzvAegkFw2Y

0 HC .6124 A fast game against the hand-crafted opponent. So fast that formations weren't

observable in this game.

http://www.youtube.com

/watch?v=nUm9D8KHhPs

0 Static .8462 The best chromosome from a uniformly random initial population. Formations were

�loose�. Focused on protecting weak units.

http://www.youtube.com

/watch?v=1Rb4NREfRjY

0 Static .8469 The best chromosome from a focused initial population. Stronger notion of

formation in this one. The tighter formation allowed it to pick o� the fourth vehicle

in the bottom left before moving across. Lucky that the hurt unit didn't die at the

end- A longer game may have provided di�erent results.

The focused initial population provided a �prettier� formation, but it didn't seem to be as worried about its hurt units.

http://www.youtube.com

/watch?v=kZU3q5bDAik

0 HC .5906 The best chromosome from a uniformly random initial population against the

hand-crafted Herkermer tactic. It grouped closely and forced a same-team collision

on the opponent's team.

http://www.youtube.com

/watch?v=noGnvjV9qmA

0 HC .5315 The best chromosome from the focused initial population. This one did not group

as tightly around the enemy, allowing the enemy to get in more shots against it.

The following three were evolved against a speci�c scenario with a static opponent.

http://www.youtube.com

/watch?v=0IuToUbQmsY

0 Static .8942 The scenario it evolved against / specialized in. This seemed very cautious. It

formed tight formations. No collisions. It seemed aware of hurt vehicles.

http://www.youtube.com

/watch?v=Br5UjsGAddo

0 Static .6189 Against a di�erent initial layout of vehicles. It lost a signi�cant amount of �tness

due to changing the vehicle layout. It seemed very interested in formations. It did

have a same-team collision in tight quarters. It did protect weaker units.

http://www.youtube.com

/watch?v=beCwLKLV6dQ

0 HC .4466 Against the hand-crafted Herkermer agent. It seemed very aggressive. It did try to

surround the opponent, but it lost half of its vehicles in the process.

The following were the results from co-evolution

http://www.youtube.com

/watch?v=qndzj5WCE2A

1 Spec .8347 Used a bit of deception to draw �re while others swarmed in.

http://www.youtube.com

/watch?v=f3-sG_JBN_c

1 Static .5765 Didn't use the formation very strongly. It did seem like hurt vehicles ran away from

even their friends.

http://www.youtube.com

/watch?v=hVHctL_2WYY

1 HC .5424 In this case, running away from friends allowed the hurt unit to survive

49

Chapter 5

Conclusion

In this research, I concentrated on learning e�ective tactics in RTS games. In my experiments, I use

both evolutionary and co-evolutionary algorithms, which are techniques that were meant to search

complicated spaces for vectors that maximize a �tness function. The solution space for my problem

is a 24-dimensional space with many local maxima. The vectors in this space contain the parameters

used to de�ne potential �elds between vehicles in an RTS game. The �tness function is de�ned as the

score of the RTS game. I use the evolutionary algorithms to learn tactics against speci�c opponents,

and the co-evolutionary algorithms to generalize tactics against a variety of opponents.

In the �rst phase of this work, I researched numerous methods for providing evolutionary learn-

ing. I settled on a hybrid algorithm, which I called Diversity Perserving Evolutionary Algorithm

(DPEA), containing ideas from other authors' previous work, as well as ideas of my own. I found that

my algorithm does a good job at �nding a good set of tactics that had reasonable spatial diversity

throughout the solution space. It did well at maintaining a spatially diverse population, something

that the canonical GA does not do well. My algorithm was able to overcome many local maxima to

�nd better solutions elsewhere in the solution space. Results showed that the tactics evolved using my

algorithms were good at defeating known enemy players, but not as good at defeating enemies that

have never been seen before.

In the second phase of research, I concentrated on �nding better general tactics- those that would

stand a better chance of defeating opponents that have never been seen before. For this phase, I

combined my evolutionary algorithm with a co-evolutionary algorithm. I evolved two separate sets of

tactics against each other, constantly changing the opponents that the tactics would have to defeat.

Through this back-and-forth approach, I was able to evolve two sets of tactics that did well against

50

external enemies- those that have never been trained against. This shows that my algorithm for

co-evolution can be used to generalize the learning of an evolutionary algorithm.

With these results, I can now expand the scope of this research to include other games and other

strategies. Knowing that I have a basis for learning that balances generality with ability to learn, I

can begin to explore more complex games with more complex rules. I can also look deeper at the

theoretical foundations behind my algorithms in an attempt to �ne-tune them to minimize learning

time.

I am particularly interested in doing further research into the manner in which new chromosomes

are generated from existing chromosomes. I believe that a certain amount of feedback could be utilized

when selecting the combination of parent chromosomes, child chromosome generation algorithm, and

parameters to use with the generation algorithm. My intuition is that making more informed choices

in this area will reduce the amount of time taken to evolve chromosomes.

The idea of using potential �elds as the only parameters into tactics was interesting to me for

general work in evolutionary computing. However, it does not provide an optimal overall solution

for a real RTS game. I would like to expand on this work as it relates to RTS games at a broader

level. I believe that a higher-level AI can provide more input into the tactics. For instance, the tactics

generated in this work will sometimes fail because they didn't learn tie-breaking. If a vehicle �nds

itself directly in the middle of two enemy vehicles, it will not move because the potential �elds from

each enemy vehicle will cancel each other. This is clearly not a good situation when the enemy units

are stationary- none of the vehicles will want to move. While the potential �eld approach provided

a good �tness function within the parameters of these experiments, potential �elds alone may not be

expressive enough to represent an optimal overall strategy for an RTS game.

51

Bibliography

[Aggarwal, et.al. 2001] C. Aggarwal, A. Hinneburg, D. Keim. On the Surprising Behavior of Distance

Metrics in High Dimensional Space. Lecture Notes in Computer Science. Springer,

2001. pp 420-434

[Antonisse, 1989] Jim Antonisse. A new interpretation of schema notation that overturns the binary

encoding constraint. Proceedings of the Third International Conference on Genetic

Algorithms, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1989, pp

86-91.

[Avery, et.al. 2009] P. Avery, S. Louis, B. Avery. Evolving coordinated spatial tactics for autonomous

entities using in�uence maps. IEEE Symposium on Computational Intelligence and

Games, IEEE Press, 2009. pp 341-348

[Deb and Goldberg, 1989] K. Deb, D. Goldberg. An investigation into Niche and Species Formation

in Genetic Function Optimization. Proceedings of the Third International Conference

on Genetic Algorithms, Morgan Kaufmann, 1989, pp 42-50

[Eppstein, 1999] D. Eppstein. Clustering Spring 1999, Available:

http://www.ics.uci.edu/~eppstein/280/cluster.html

[Eschelman, 1990] L. Eschelman. The CHC Adaptive Search Algorithm: How to Have Safe Search

When Engaging in Nontraditional Genetic Recombination. Proceedings of the First

Workshop on Foundations of Genetic Algorithms, Morgan Kaufmann, 1991, pp 265-

283

52

[Fogel and Owens, 1966] L. Fogel, A. Owens, M. Walsh. Arti�cial intelligence through simulated evo-

lution. Wiley, New York. 1966

[Fogel and Burgin, 1969] L. Fogel, G. Burgin. Competitive goal-seeking through evolutionary program-

ming. Final Report, Contract AF 19(628)-5927, Air Force Cambridge Research Labo-

ratories. 1969

[Fonseca and Fleming, 1993] C. Fonseca, P. Fleming. Genetic Algorithms for Multiobjective Optimiza-

tion: Formulation, Discussion and Generalization. Proceedings of the Fifth Interna-

tional Conference on Genetic Algorithms, Morgan Kaufmann, 1993

[Hagelback and Johansson, 2008] J. Hagelback, S. Johansson. A Multi-Agent Potential Field-Based

Bot for a Full RTS Game Scenario. IEEE Symposium On Computational Intelligence

and Games, IEEE Press, 2008. pp 55-62

[Holland, 1975] J. Holland. Adaptation in natural and arti�cial systems. Ann Arbor, The University

of Michigan Press, 1975

[Larose, 2006] D. Larose. Data Mining Methods and Models, Wiley-Interscience 2006, pp248-249

[Leigh, et.al. 2008] R. Leigh, T. Morelli, S. Louis, M. Nicolescu, C. Miles. Finding Attack Strategies for

Predator Swarms using Genetic Algorithms. The 2005 IEEE Congress on Evolutionary

Computation, IEEE Press, 2005 vol 3. pp 2422-2428

[Lucasius and Kateman, 1989] C. B. Lucasius and G. Kateman. Application of genetic algorithms in

chemometrics. Proceedings of the Third International Conference on Genetic Algo-

rithms, Morgan Kaufmann, 1989, pp 170-176.

[McCallum, et. al 2000] A McCallum, K. Nigam, L. Ungar. E�cient clustering of high dimensional

data sets with application to reference matching. Proceedings of the 6th ACM SIGKDD,

2000, pp169-178

[Rosin and Belew, 1997] C. Rosin, R Belew. New methods for competitive coevolution. Cognitive Com-

puter Science Research Group, UCSD, San Diego, CA, Tech. Rep. #CS96-491, 1997

53

[Russel and Norvig, 2003] S. Russell, P. Norvig. Arti�cial Intelligence A Modern Approach. Pearson

Education, Inc. pp 111-116

[Sivanandam and Deepa, 2008] S. Sivanandam, S. Deepa. Introduction to Genetic Algorithms,

Springer 2008, pp56

[Whitley, 1989] Darrell Whitley. The GENITOR algorithm and selection pressure: why rank-based al-

location of reproductive trials is best. Proceedings of the Third International Conference

on Genetic Algorithms, Morgan Kaufmann, 1989, 116-121.

[Wright, 1991] A. H. Wright. Genetic Algorithms for Real Parameter Optimization. Proceedings of

the First Workshop on Foundations of Genetic Algorithms, Morgan Kaufmann, 1991,

pp. 205-218.

