
Learning From Observation and Practice Using Primitives

Darrin C. Bentivegna1,2, Christopher G. Atkeson1,3, and Gordon Cheng1,2

1ATR Computational Neuroscience Laboratories, Department of Humanoid Robotics and
Computational Neuroscience,Kyoto, Japan
2Computational Brain Project, ICORP, Japan Science and Technology Agency, Kyoto, Japan
3 Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract

We explore how to enable robots to rapidly learn from watch-
ing a human or robot perform a task, and from practicing the
task itself. A key component of our approach is to use small
units of behavior, which we refer to as behavioral primitives.
Another key component is to use the observed human behav-
ior to define the space to be explored during learning from
practice. In this paper we manually define task appropriate
primitives by programming how to find them in the train-
ing data. We describe memory-based approaches to learning
how to select and provide subgoals for behavioral primitives.
We demonstrate both learning from observation and learn-
ing from practice on a marble maze task, Labyrinth. Using
behavioral primitives greatly speeds up learning relative to
learning using a direct mapping from states to actions.

Introduction
We are exploring how primitives, small units of behavior,
can speed up robot learning and enable robots to learn dif-
ficult dynamic tasks in reasonable amounts of time. Primi-
tives are units of behavior above the level of motor or mus-
cle commands. There have been many proposals for such
units of behavior in neuroscience, psychology, robotics,
artificial intelligence, and machine learning (Arkin 1998;
Schmidt 1988; Russell & Norvig 1995; Barto & Mahadevan
2003). (Bentivegna 2004) presents a more complete survey
of relevant work, and provides additional detail on the work
described in this paper.

There is a great deal of evidence that biological systems
have units of behavior above the level of activating individ-
ual motor neurons, and that the organization of the brain
reflects those units of behavior. There is evidence from
neuroscience and brain imaging that there are distinct areas
of the brain for different types of movements. Developing
a computational theory that explains the roles of primitives
in generating behavior and learning is an important step to-
wards understanding how biological systems generate be-
havior and learn. A difference between work on behavioral
primitives in biology and in robotics is that in biology the
emphasis is typically on finding behavioral primitives that
are used across many tasks, while in robotics the emphasis

Copyright c° 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

is typically on primitives that are only appropriate for a sin-
gle task or a small set of closely related tasks.

In robotics, behavioral units or primitives are a way to
support modularity in the design of behaviors. Primitives are
an important step towards reasoning about behavior, abstrac-
tion, and applying general knowledge across a wide range
of behaviors. We believe that restricting behavioral options
by adopting a set of primitives is a good way to handle high
dimensional tasks. We believe the techniques described in
this paper will apply to many current challenges in robot-
ics, such as grasping with an anthropomorphic hand, where
object shape and pose can be used to select a grasping primi-
tive. In manipulating deformable objects, such as putting on
clothes, the task is quite complex, but simple actions such as
pushing an arm through a sleeve or using gravity to orient
the clothing are useful primitives to select from. We believe
everyday tasks such as cooking, cleaning, and repair can be
performed by robots using a library of primitives for spe-
cific behaviors and a learned primitive selection algorithm
and subgoal generator.

Our current research strategy is to focus on how to best
utilize behavioral primitives. Therefore, we manually define
primitives. We are deferring the question of how to invent
new primitives until we better understand how primitives are
best used. Because of our emphasis on learning from ob-
servation, the definition of primitives is largely perceptual:
the robot must know how to detect the use of a primitive in
training data. Other aspects of the primitive, such as how to
actually do it, can be learned.

We are exploring a three part framework for primitive use
(Figure 1). A classifier selects the type of primitive to use
in a given context. A function approximator predicts the
appropriate arguments or parameters for the selected prim-
itive (subgoal generation). Another function approxima-
tor predicts the necessary commands to achieve the subgoal
specified by the parameters for the primitive (action gener-
ation). This framework supports rapid learning. The avail-
ability of subgoal information decouples action generation
learning from the rest of the problem and will allow what is
learned at the action level to be reused every time a primi-
tive of the corresponding type is used. In what follows we
describe our approach to learning how to select primitives
and generate subgoals.

We have used two tasks to develop our thinking, the mar-



Primitive 
Selection

Action 
Generation

Subgoal
Generation

Learning from 
Observation

Learning from 
Practice

Primitive 
Selection

Action 
Generation

Subgoal
Generation

Learning from 
Observation

Learning from 
Practice

Figure 1: Three part framework for learning using primi-
tives.

Roll Off WallRoll To Corner 

Guide Roll From Wall

Corner

Figure 2: Left: The hardware marble maze setup. Right:
Marble maze primitives (top view).

ble maze game Labyrinth (Figure 2) and air hockey (Ben-
tivegna, Atkeson, & Cheng 2003; Bentivegna et al. 2002).
We selected these tasks because 1) they are challenging dy-
namic tasks with different characteristics and 2) robots have
been programmed to do both tasks, so they are doable, and
to the extent there are published descriptions, there are other
implementations to compare to. The marble maze task is
similar to parts orientation using tray tilting (Erdmann &
Mason 1988). The marble maze task will allow us to ex-
plore generalization across different board layouts, while air
hockey will allow us to explore generalization across differ-
ent opponents. We have developed versions of these games
to be played by simulated agents and by actual robots. Al-
though hardware implementations necessarily include real
world effects, we can collect useful training data from the
simulations without the cost of running the full robot setups,
and can perform more repeatable and controllable experi-
ments in simulation.

This paper describes some of our work using the mar-
ble maze. In the marble maze a player controls a marble
through a maze by tilting the board that the marble is rolling
on. The actual board is tilted using two knobs and the simu-
lated board is controlled with a mouse. There are obstacles,
in the form of holes and walls. The primitives we have man-
ually designed for the marble maze game are based on our
observations of human players. The following primitives are
currently being explored and are shown in Figure 2:
• Roll To Corner: The ball rolls along a wall and stops when

it hits another wall.
• Corner: The ball is moved into a corner and the board is

then almost leveled, so that the next primitive can move
the ball out of the corner.

• Roll Off Wall: The ball rolls along a wall and then rolls
off the end of the wall.

• Roll From Wall: The ball hits, or is on, a wall and then is
maneuvered off it.

• Guide: The ball is rolled from one location to another
without touching a wall.

Learning From Observation
In learning from observation the robot observes a human or
another robot performing a task, and uses that information to
do the task. In learning from observation without primitives,
the robot learns desired states or state trajectories and cor-
responding low level actions or action sequences (Atkeson
& Schaal 1997). It is difficult to generalize much beyond
the state trajectories or reuse information across tasks. It
is also difficult to reason about what the demonstrator was
trying to do at any time during the observation. Primitives
provide a way to generalize more aggressively, and to reuse
information more effectively. Furthermore, selecting the ap-
propriate primitive can be interpreted as selecting a subgoal
in that point of the task, a simple form of reasoning.

Finding Primitives In The Observation Data
In learning from observation using behavioral primitives, it
is necessary to segment the observation (or training data)
into instances of the primitives. The example tasks, mar-
ble maze and air hockey, have been chosen to some extent
because it is relatively easy to segment an observation into
distinct primitives. We use a strategy based on recognizing
critical events. Examples of critical events for air hockey
include puck collisions with a wall or paddle, in which the
puck speed and direction are rapidly changed. In marble
maze initiating and terminating contact with a wall are ex-
amples of critical events (Figure 3). A combination of geo-
metric knowledge (proximity of the ball to walls) and viola-
tions of dynamic models (the ball does not accelerate in the
direction of board tilt, sudden changes in ball velocity) are
used to infer wall contact. Primitives are defined by creating
algorithms that automatically segment the observed primi-
tives by searching for sequences of critical events. Parame-
ters or subgoals are estimated by observing the state of the
task at the transition to the next observed primitive. In mar-
ble maze, the task state is given by the marble position and
velocity, and the board tilt angles. There are cases where a
primitive can not be identified in the training data (gaps in
the figure).

Learning to Select Primitives and Choose Subgoals
In learning from observation using primitives the learner
learns a policy of which primitive type and subgoal to use
in each task state. The segmented observation data can be
used to train this mechanism. There are many classifiers
and function approximators we could have used. We have
taken a memory-based approach, using a nearest neighbor
scheme for the classifier that selects primitives, and kernel
based regression for the function approximator that provides
subgoals. This provides us with one mechanism, the dis-
tance function, that can be used to improve performance in



0 5 10 15 20 25
0

5

10

15

20

Start position

Goal location

+Y

+X
0 5 10 15 20 25

0

5

10

15

20

Start position

Goal location

+Y

+X

+Y

+X

Figure 3: Top Left: Raw observed data. Top Right: Wall
contact identified by thick line segments. Bottom: Symbols
show the start of recognized primitives: °-Roll To Corner,
¤-Roll Off Wall, ♦-Guide, ∗-Roll FromWall, ×-Corner.

both primitive selection and subgoal generation. Our sys-
tem learns by modifying the calculated distances between a
query and the stored experiences in memory. Memory-based
approaches have a number of other benefits, such as rapid
learning, low interference, and control over forgetting (Atke-
son, Moore, & Schaal 1997).

Each time a primitive is observed in the training data a
corresponding data point is stored in a database that is in-
dexed by the state of the task at the time the primitive was
performed. In marble maze, the state is six dimensional,
including the marble position (mx,my), marble velocity
(ṁx, ṁy), and board tilt angles (bx, by). During execution,
the current state is used to look up in the database the clos-
est or most similar primitive, which determines which kind
of primitive to use. Distance is computed using a weighted
Euclidean metric:

d(x,q) =
X
j

wj(xj − qj)2 (1)

x is a stored experience, q is the query to the data base, and
j indexes components or dimensions. Each dimension is
scaled to range from -1 to 1 based on all the data in the data-
base, and then the following weights are applied: a weight
of 100 on marble positions, 10 on marble velocities, and 1
on board angles. We will discuss the sensitivity to these pa-
rameters in a later section.

After it has been decided which type of primitive to use,
the parameters of that primitive are also specified by the

database of prior observations. The closest N stored ex-
periences that involved the same primitive type are used to
compute the subgoal for the primitive to be performed. We
compute the parameters using kernel regression:

θ̂(q) =

PN
i=1 θi ·K(d(xi,q))PN
i=1K(d(xi,q))

(2)

xi is the ith stored experience, K(d) is the kernel function
and is typically e−d

2/s. As can be seen, the estimate θ̂ de-
pends on the location of the query point, q. We typically
used the 4 closest experiences of the appropriate type to
compute the subgoal, but N can range from 2 to 6 with little
effect.

Results on Learning From Observation
Figure 4 shows the training data and performance using the
training data on the hardware marble maze setup. Figure 5
shows the effect of the number of observed games on learn-
ing from observation for a large number of simulation runs.
In the simulations we turn failures (falling into a hole) into a
time penalty: if the marble falls into a hole or does not make
progress for 15 seconds it is moved forward in the maze and
the player is given a 10 second penalty. One to five games
were randomly selected from a database of 50 human games
with no failures and playing times of 20-26 seconds.

Learning from observation using this memory-based ap-
proach seems to work well. It became clear to us that learn-
ing from observation alone had several problems, however.
Even under ideal conditions the learner just learns to imi-
tate the performance of the teacher, not to do better than the
teacher. In general, the learner did not match the teacher’s
performance. The same mistakes tend to be made over and
over. To improve further, it became clear to us that additional
learning mechanisms were necessary, such as the ability to
learn from practice in addition to learning from watching
others perform.

Learning From Practice
In order to learn from practice, the system needs to have a
way to evaluate performance, or have a defined task objec-
tive function or criterion. This information is used to up-
date primitive selection, and subgoal and action generation.
A tough question is where the task criterion comes from.
Ideally, it should be learned from observation. The learner
should infer the intent of the teacher. This is very difficult,
and we defer addressing this question by manually specify-
ing a task criterion.

Our system learns from practice by changing the distance
function used in the nearest neighbor lookup done in both
selecting primitives and generating subgoals. Let’s consider
the simplest case, where a nearest neighbor classifier is used
to select the primitive used in the experience most similar
to the current context. If the closest primitive actually leads
to bad consequences, we want to increase the apparent dis-
tance, so that a different experience becomes the “closest”
and a different primitive is tried. If the closest primitive
leads to good consequences, we want to decrease the ap-
parent distance. In the nearest neighbor case, decreasing the



Figure 4: Top: The 3 observed games played by the hu-
man teacher. Middle: Performance on 10 games based on
learning from observation using the 3 training games. The
maze was successfully completed 5 times, and the circles
mark where the ball fell into holes. Bottom: Performance
on 10 games based on learning from practice after 30 prac-
tice games. There were no failures.

1 2 3 4 5
0

10

20

30

40

50

60

Number of games observed

Av
er

ag
e 

Ti
m

e 
to

 R
ea

ch
 th

e 
G

oa
l (

se
c.

)

Observation Only
Table
LWPR

Figure 5: Performance in simulation based on one to five
training games: learning from observation using one to five
games (left bars), learning from observation and practice us-
ing tables (middle bars), and learning from observation and
practice using LWPR (right bars). 30 trials using different
randomly selected training games were averaged and the er-
ror bars are standard deviations of the results. The learning
from practice results are based on practicing 300 games.

distance to the closest point has no effect, but in kernel re-
gression it increases the weighting of that subgoal.

Let us continue to consider the simplest case, a near-
est neighbor approach. We use an estimate of the value
function, or actually a Q function, to represent the conse-
quences of choosing a particular primitive in the current task
state (Watkins & Dayan 1992). A Q function takes as ar-
guments the current task state and an action. In our case,
the task state is the query q to the database, and the action
is choosing to use information from stored point xi, so we
have Q(q,xi). We use this Q value as a scale factor applied
to the distance, where C is a normalizing constant (version
1 of the scale factor):

d̂ = d(xi,q) ∗ C

Q(q,xi)
(3)

This scale factor will have the effect of moving a stored ex-
perience in relationship to the query point. Scale factors
C/Q greater than 1.0 will have the effect of moving the data
point farther away from the query point and scale factors
less then 1.0 have the effect of moving the data point closer
to the query point. For example, if the marble falls into a
hole after a selected primitive is performed, the scale fac-
tors associated with the set of data points that voted for that
primitive selection or contributed to the subgoal generation
can be increased. The next time the agent finds itself in the
same state, those data points will appear further away and
will therefore have less effect on the chosen action. We have
also explored using an alternative form of the scale factor
(version 2):

d̂ = d(xi,q) ∗ exp((C −Q(q,xi))/β) (4)



Version 2 of the scale factor will allow the Q values to be
zero or negative and the influence of the Q value on the mul-
tiplier can be controlled by β (typically 20,000).

In our memory based approach, we associate the Q values,
Qi(q,xi), with our experiences, xi. In order to support in-
dexing the Q values with the query q, we actually associate
a table of Q values with each stored experience, and use that
table to approximateQi(q,xi). This also solves the problem
that from one query point state the chosen experiences may
be appropriate, but from a different query point, these ex-
periences may not work very well. With a table associated
with each stored experience, we can handle this effect. In
the marble maze environment the state space is six dimen-
sional. Each dimension is quantized into five cells. Each
stored experience in the database has a table of size 56. For
any query point in the state space, its position relative to the
data point is used to find the cell that is associated with that
query point. Since we expect only a small fraction of the
cells to be used, the tables are stored as sparse arrays and
only when the value in a cell is initially updated is the cell
actually created. The size of the cells associated with a data
point were chosen manually through trial and error with the
cells near the center being smaller then those further away.
To eliminate the need to specify a large number of parame-
ters and to allow the agent to learn its own discretization of
the state space we also explored the use of LWPR models to
encode the Q values.

The Q values are initialized with C and then updated us-
ing a modified version of Q learning. For each of the data
points chosen in the subgoal computation the Q-values are
updated as follows:

Q(qt,xm)← Q(qt,xm)+α · [r + γQ(q̂, x̂)−Q(qt,xm)]
(5)

• α is the learning rate. Since multiple points are used, the weight-
ing given by K(d(xm,qt))

N
i=1

K(d(xi,qt))
is used as the learning rate. This

weighting has the effect of having points that contributed the
most toward selecting the subgoal having the highest learning
rate.

• r is the reward observed after the primitive has been performed.
• γ is the discount factor (typically 0.8).

• Q(q̂, x̂) is the future reward that can be expected from the new
state q̂ and selecting the data points x̂ at the next time step. This
value is given by a weighted average:

Q(q̂, x̂) =

PN
i=1Q(q̂, x̂i)K(d(x̂i, q̂))PN

i=1K(d(x̂i, q̂))
(6)

When each primitive ends the reward function is com-
puted as the sum of the following terms:
• Moving through the maze: the distance in centimeters from the

beginning of the primitive to the end location along the path (the
line drawn on the board) toward the goal.

• Taking up time: −10× the amount of time in seconds from the
time the primitive started to the time it ended.

• Not making any progress during the execution of the primitive:
−50, 000.

• Not completing the execution of the primitive within 4 seconds:
−20, 000. Primitive execution is terminated after 4 seconds.

• Rolling into, and being stable in, a corner: 30, 000. When a
corner is reached, learning stops and restarts from the corner
location. The playing agent only gets a reward the first time it
goes to a corner. Subsequent visits to the same corner will also
reset learning, but will result in no reward. This prevents the
agent from returning to corners just to get high rewards.

• Falling into a hole: −50, 000, the Q-value of the hole state is
0. When the playing agent falls into a hole, learning is stopped
and restarted from the location the marble is placed at when the
game begins again.

• Reaching the goal location in the maze: 10, 000.

After learning from observation, the system now learns
from practice using either tables or LWPR models to alter
the distance function. Figure 4 shows individual games on
actual hardware after learning from practice (using version
1 of the distance function scale factor and tables to represent
the distance function). Figure 5 shows a more comprehen-
sive set of simulation experiments exploring using version
2 of the distance function modification formula and either
local tables or LWPR models to alter the distance function.
Performance of learning from practice using local tables and
LWPR models are about the same. Practice improves perfor-
mance to human levels and also reduces variability. Figure 6
shows the effect of varying the distance function in simula-
tion. The marble position is clearly the most important factor
in learning from observation. However, after learning from
practice, performance is relatively independent of the origi-
nal distance function. The adjustment of the distance scale
factors in learning from practice can compensate for poor
selections of the original distance function.

Comparison: Learning Without Behavioral
Primitives.

We also implemented learning from observation and prac-
tice using as direct a mapping from states to actions as we
could practically implement. We implemented standard Q
learning based on the description of Section 6.5 of (Sutton
& Barto 1998). The Q function was represented as a ta-
ble. We note that this table represents a different kind of
behavioral primitive rather than no primitive at all, because
the same action is used within each cell. We roughly opti-
mized the size of the cells to maximize the learning rate, and
the cell sizes were as follows: marble position cell width:
0.01m, marble velocity cell width: 0.1m/sec, board rota-
tion cell width: 0.01radians, and three possible actions in
each state, which change the rotation angle of the board
by (−0.01radians, 0, 0.01radians). With cells of this size
and a board of size 28cm × 23.5cm, a maximum velocity
of 0.5m/sec and maximum board rotation of 0.14 radians
there were (28 ∗ 24) ∗ (10 ∗ 10) ∗ (28 ∗ 28) = 52, 684, 800
states. This results in 52, 684, 800 ∗ (3 ∗ 3) = 474, 163, 200
state-action pairs or Q values. Since many parts of the board
are inaccessible due to walls and holes the actual number
of possible Q values is smaller than this number. We used



0.01 0.1 1 10 100 1000 10000 100000
0

20

40

60

80

100

120

140

Board Position Weight

A
ve

ra
ge

 T
im

e 
to

 R
ea

ch
 th

e 
G

oa
l (

se
c.

)

Observation Only
Table
LWPR

0.01 0.1 1 10 100 1000 10000 100000
0

10

20

30

40

50

60

70

80

90

100

Position Weight

A
ve

ra
ge

 T
im

e 
to

 R
ea

ch
 th

e 
G

oa
l (

se
c.

)
Observation Only
Table
LWPR

0.01 0.1 1 10 100 1000 10000 100000
0

20

40

60

80

100

120

Velocity Weight

A
ve

ra
ge

 T
im

e 
to

 R
ea

ch
 th

e 
G

oa
l (

se
c.

)

Observation Only
Table
LWPR

Figure 6: Effect of varying distance function parameters on
performance (in simulation): learning from observation us-
ing five games (left bars), learning from observation and
practice using tables (middle bars), and learning from ob-
servation and practice using LWPR (right bars). 30 trials
using different randomly selected training games were aver-
aged and the error bars are standard deviations of the results.
The learning from practice results are based on practicing
for 300 games. The first graph shows the effect of varying
the weight on marble position, the second graph shows the
effect of varying the weight on marble velocity, and the last
graph shows the effect of varying the weight on board angle.

a sparse representation of this table, and typically created
many fewer cells.

The agent uses the Q learning algorithm as described in
Section 6.5 of (Sutton & Barto 1998). The Q values are
updated as follows:

Q(st, at)← Q(st, at)+

α · [rt+1+γmaxa Q(st+1, a)−Q(st, at)] (7)

α, the step-size parameter, is set to 0.2 and γ, the discount
rate, is set to 0.999. rt+1 is the reward received by the
agent when it moves from st to st+1. The reward function
is distTrav ∗ 10 − 1, where distT rav is the distance in
centimeters the marble traveled along the path to the goal.
If the marble moves in the wrong direction, distTrav will
be negative. The −1 term is a penalty on taking time. The
agent receives a reward of −1000 if the marble falls into a
hole and a reward of 0 when the goal location is reached.
The initial Q values, Qinit, are set to a pessimistic number
(-500). We found that using an optimistic number caused the
Q learner to learn much more slowly, since it would explore
all possible states and actions until all optimistic values had
been decreased.

The action-update cycle occurs at 60 times per second.
The agent uses the soft-max function e(Qt(a)−Qinit)/τ

n
b=1 e

(Qt(b)−Qinit)/τ ,
where τ is set to 10.0, to select actions. The agent oper-
ates under the same conditions described previously: if the
marble falls into a hole or does not make progress for 15
seconds it is moved forward in the maze and the player is
given a 10 second penalty. Figure 7 shows the performance
of this agent during 30 trials of 20, 000 games each. The
graph shows the running average of the time to reach the
goal across the 30 trials.

We show the learning curve of the direct mapping ap-
proach after initially training it on 5 randomly selected
human-played games (Figure 7). The Q values were updated
on the 5 randomly chosen games 20 times, as if the agent
was playing the game. Learning from observation improves
performance, and decreases the learning from practice nec-
essary to attain maximum performance.

We also show the performance of our approach averaged
across 30 trials, with learning from observation on 5 ran-
domly selected human-played games followed by learning
from practice. The line marked PRIMITIVES used the ap-
proach described in the previous section. The line marked
PRIMITIVES2 used the same reward function as was used
for the DIRECT case. We see that learning from obser-
vation using primitives is much more effective than learn-
ing from observation without using primitives. Learning
without primitives, after more than 1000 games, eventually
matches and sometimes exceeds the performance of the ap-
proach using behavioral primitives.

Discussion
Our goal is to find ways to simplify robot programming. In
this paper we describe a way to program robots using learn-
ing from observation. We also develop an approach to learn-
ing from practice (reinforcement learning) tailored to im-
proving learning from observation. To use this approach, a



100 101 102 103 1040

20

40

60

80

100

120

140

160

180

Number of games played (30 trials averaged together)

R
un

ni
ng

 A
ve

ra
ge

(2
0 

ga
m

es
) T

im
e(

se
c.

) t
o 

G
oa

l

DIRECT: Observed 5 games 
DIRECT 

PRIMITIVES2

PRIMITIVES 

100 101 102 103 1040

20

40

60

80

100

120

140

160

180

100 101 102 103 1040

20

40

60

80

100

120

140

160

180

Number of games played (30 trials averaged together)

R
un

ni
ng

 A
ve

ra
ge

(2
0 

ga
m

es
) T

im
e(

se
c.

) t
o 

G
oa

l

DIRECT: Observed 5 games 
DIRECT 

PRIMITIVES2

PRIMITIVES 

Number of games played (30 trials averaged together)

R
un

ni
ng

 A
ve

ra
ge

(2
0 

ga
m

es
) T

im
e(

se
c.

) t
o 

G
oa

l

DIRECT: Observed 5 games 
DIRECT 

PRIMITIVES2

PRIMITIVES 

Figure 7: Performance in simulation versus number of
games played. The top (DIRECT) line is learning from prac-
tice using the direct mapping of states to actions. The next
line down (DIRECT: Observed 5 games) is learning from
practice using the direct mapping after being initially trained
on human games. The next lower line (PRIMITIVES2) is
learning from practice using behavioral primitives after ob-
serving human games, using the same reward function as
the direct mapping case. The bottom line (PRIMITIVES) is
learning from practice using behavioral primitives after ob-
serving human games using the more complex reward func-
tion. Standard deviations are shown as error bars.

robot programmer must identify the task states and actions,
define how to find primitives in training data, create a re-
ward function for the task, and demonstrate how to do the
task (potentially through teleoperation). There are several
key ideas:
• Use behavioral primitives to improve generalization and

speed up learning.
• Use memory-based approaches to learning how to select,

provide subgoals for, and perform behavioral primitives.
• Use the observed human behavior to define the space to

be explored during learning from practice.
• Useful subgoals are intermediate states or sets of states.

These subgoals are easily observed, and policies can be
learned to attain them.

• Use an existing library of behavioral primitives, rather
than learn the primitives from scratch.

• Define primitives in perceptual terms, to enable the robot
to detect their usage in training data. Humans describe
how to find primitives in the training data, and robots learn
how to perform them.

(Barto & Mahadevan 2003) reviews recent approaches to
the use of primitives in reinforcement learning. Our em-
phasis on learning from observation gives our work a quite
different focus. We use learning from practice (reinforce-
ment learning) to alter how observed behavior is selected
and combined, rather than trying out an arbitrary range of
behavior. We also do not try to discover or invent primitives,

a major emphasis of other work in reinforcement learning.
Another distinguishing feature of our work is the use of
memory-based approaches to learning (Atkeson, Moore, &
Schaal 1997). We learn from observation by storing ob-
servations in a database. We learn from practice by al-
tering the distance function. (Atkeson, Moore, & Schaal
1997) reviews the use of complex distance functions sim-
ilar to what we have used here in learning from practice.
(Ormoneit & Sen 2002; Santamaria, Sutton, & Ram 1998;
Smart & Kaelbling 2002) are examples of work in reinforce-
ment learning that use memory-based approaches to repre-
sent the value function itself. (Smart & Kaelbling 2002) per-
forms learning from observation by training the Q function
using observation data. Some of our current work includes
implementing value functions for primitives, which will al-
low interesting comparisons with the approach described in
this paper.

Learning using behavioral primitives in the marble maze
task was much faster than learning using a direct mapping
from states to actions. One reason for this is that our ap-
proach to learning using behavioral primitives selects ac-
tions from what the teacher did in the local context. Actions
that the teacher did not apply are not explored in our version
of learning from practice. This is clearly a two-edged sword:
learning is greatly sped up, but ultimate performance might
be limited. Even when restricted to selecting from demon-
strated behavior, the system can learn new strategies. In the
three observed games the human maneuvers the marble be-
low hole 14 (Figure 4). During practice the agent falls into
hole 14 and learns that it can more easily maneuver the mar-
ble around the top of hole 14 by selecting different prim-
itives and generating different subgoals. We did not even
know this action was possible until we observed the robot
do it.

Another reason learning is sped up is that we have pro-
vided opportunities for generalization at the action genera-
tion level. Policies for each primitive are improved using
data from many parts of the board. Interestingly, we have
not taken advantage of another opportunity for generaliza-
tion: generalization of primitive selection and subgoal gen-
eration across the maze and across different mazes. Because
primitive selection and subgoal generation is done in terms
of board coordinates, we cannot use primitive selection and
subgoal generation learned on one maze to improve perfor-
mance on another maze or in different parts of the same
maze. We are exploring indexing primitive selection and
subgoal generation using local features of the maze. Perfor-
mance is currently less using local features than approaches
using maze location, since information is lost about future
consequences of actions.

What task or domain knowledge was used? Clearly the
design of the primitives reflects a great deal of knowledge
of the task. The design of a reward function for learning
from practice also uses knowledge of the task. The reward
function rewarded getting to the end of the maze, and penal-
ized how long each primitive took, failing to make progress,
and falling into a hole. The reward function used knowl-
edge of the local direction to the goal to reward the amount
of progress made by each primitive. This reflects the mar-



ble maze game, which typically has a desired path marked
on the board (Figure 2). It is also easy to calculate such a
path using dynamic programming or the A* algorithm, only
considering marble positions and obstacle locations. The re-
ward function also explicitly rewarded getting to corners, a
very task specific element. Removing some of these features
(corner reward, timeout penalty, and no progress penalty) re-
duced performance somewhat (PRIMITIVES2 line in Fig-
ure 7). In action generation learning we assume symmetry,
that all corners and walls are dynamically the same. This
could easily not be the case. We would have to extend learn-
ing to discover differences between similar situations. Inter-
estingly, the only time information about wall location was
used was in recognizing primitives in the training data. Wall
location was not used by the system while playing the game.
Wall and corner locations are implicit in the subgoals.

It is a common belief that the most important research is-
sue in primitives is how they are invented for a new task.
There are several arguments against this point of view: 1)
For rapid learning, especially from a single observation,
there is not enough data for statistical approaches to discov-
ering primitives to work. 2) Our intuition is that some form
of learning based on physical reasoning (understanding why
corners and walls are useful) is key to obtaining human lev-
els of learning performance. 3) Perhaps biological systems
make use of a selection strategy as well. We are born with
an existing library of biological eye movement primitives
and gaits. It may be the case that biological systems uti-
lize a fixed library of motor primitives during their lifetime.
4) It may be the case that we can manually create a library
of primitives for robots that cover a wide range of everyday
tasks, and that invention of new primitives is simply not nec-
essary or quite rare. Hence the emphasis in this work is on
exploring how to make effective use of existing primitives.
It is our hope that this exploration will inform the design of
a general set of primitives.

What properties should a set of primitives have? In order
to learn from observation, primitives need to be recogniz-
able from observable data. Good primitives divide learn-
ing problems up, so that each individual learning problem is
simplified. For example, primitives that break input/output
relationships up at discontinuities may lead to a set of simple
learning problems with smooth input/output relationships.

There are many issues left to be worked on: How can
we intermix learning from observation and practice? In this
work, learning from practice follows learning from observa-
tion. How can we more effectively generalize across similar
tasks? We are currently exploring how to generalize across
different mazes. In this work we explored model-free learn-
ing approaches. We are currently exploring model-based ap-
proaches, which learn a model and use the learned model to
accelerate policy learning.

Conclusions
We showed how to enable robots to rapidly learn from
watching a human or robot perform a task, and from practic-
ing the task itself. A key component of our approach is to use
behavioral primitives. Another key component is to use the
observed human behavior to define the space to be explored

during learning from practice. We developed memory-based
approaches to learning how to select, provide subgoals for,
and perform behavioral primitives. We demonstrated both
learning from observation and learning from practice on a
marble maze task, Labyrinth. Using behavioral primitives
greatly speeds up learning relative to learning using a direct
mapping from states to actions.

Acknowledgments
Support for all authors was provided by ATR Computational Neu-
roscience Laboratories, Department of Humanoid Robotics and
Computational Neuroscience, and the National Institute of In-
formation and Communications Technology (NiCT). It was also
supported in part by National Science Foundation Award ECS-
0325383, and the Japan Science and Technology Agency, ICORP,
Computational Brain Project.

References
Arkin, R. C. 1998. Behavior-Based Robotics. Cambridge, MA:
MIT Press.
Atkeson, C. G., and Schaal, S. 1997. Learning tasks from a single
demonstration. In Proceedings of the 1997 IEEE International
Conference on Robotics and Automation (ICRA97), 1706–1712.
Atkeson, C. G.; Moore, A. W.; and Schaal, S. 1997. Locally
weighted learning. Artificial Intelligence Review 11:11–73.
Barto, A., and Mahadevan, S. 2003. Recent advances in hierar-
chical reinforcement learning. Discrete Event Systems 13:41–77.
Bentivegna, D. C.; Atkeson, C. G.; and Cheng, G. 2003. Learn-
ing from observation and practice at the action generation level. In
IEEE-RAS International Conference on Humanoid Robotics (Hu-
manoids 2003).
Bentivegna, D. C.; Ude, A.; Atkeson, C. G.; and Cheng, G. 2002.
Humanoid robot learning and game playing using PC-based vi-
sion. In Proceedings of the 2002 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems.
Bentivegna, D. C. 2004. Learning from Observation using
Primitives. Ph.D. Dissertation, Georgia Institute of Technology,
Atlanta, GA, USA. http://etd.gatech.edu/theses/available/etd-
06202004-213721/.
Erdmann, M. A., and Mason, M. T. 1988. An exploration of sen-
sorless manipulation. IEEE Journal of Robotics and Automation
4:369–379.
Ormoneit, D., and Sen, S. 2002. Kernel-based reinforcement
learning. Machine Learning 49:161–178.
Russell, S. J., and Norvig, P. 1995. Artificial Intelligence: A
Modern Approach. Prentice Hall.
Santamaria, J.; Sutton, R.; and Ram, A. 1998. Experiments with
reinforcement learning in problems with continuous state and ac-
tion spaces. Adaptive Behavior 6(2).
Schmidt, R. A. 1988. Motor Learning and Control. Champaign,
IL: Human Kinetics Publishers.
Smart, W. D., and Kaelbling, L. P. 2002. Effective reinforce-
ment learning for mobile robots. In IEEE International Conf. on
Robotics and Automation.
Sutton, R., and Barto, A. 1998. Reinforcment Learning: An In-
troduction. MIT Press.
Watkins, C., and Dayan, P. 1992. Q learning. InMachine Learn-
ing, volume 8, 279–292.


