CPE 201 - Introduction to Computer Engineering

Fall 2007

Homework 5

Due date: November 27, 2007

1. [10 points] Draw a state diagram for a sequential circuit with one input I, and three outputs x, y , and z . The output xyz should always follow the following sequence: $000,001,010,100$, repeat. The input I stops the sequence whenever is set to 0 . When the input I returns to 1 , the sequence resumes from where it left off. The initial state is 000 .
2. [10 points] Using the five-step process for designing a controller, convert the finite state machine from the figure below to a controller circuit, implementing it using a state register (built with D flip-flops) and logic gates.

3. [10 points] A sequential circuit has two JK flip-flops A and B and one input x. The circuit is described by the following flip-flop input equations:

$$
\begin{array}{ll}
\mathbf{J}_{\mathbf{A}}=\mathbf{x} & \mathbf{K}_{\mathbf{A}}=\mathbf{B} \\
\mathbf{J}_{\mathbf{B}}=\mathbf{x} & \mathbf{K}_{\mathbf{B}}=\mathbf{A}
\end{array}
$$

(a) [5 points] Derive the state equations $\mathrm{A}(\mathrm{t}+1)$ and $\mathrm{B}(\mathrm{t}+1)$ by substituting the input equations for the J and K variables.
(b) [5 points] Draw the state diagram of the circuit.
4. [10 points] Design a 4 -bit register with 2 control inputs s1 and s0, 4 data inputs I3, I2, I1 and I 0 , and 4 data outputs $\mathrm{Q} 3, \mathrm{Q} 2, \mathrm{Q} 1$ and Q 0 . When $\mathrm{s} 1 \mathrm{~s} 0=00$, the register maintains its value. When $s 1 s 0=01$, the register loads $\mathrm{I} 3 . . \mathrm{I} 0$. When $\mathrm{s} 1 \mathrm{~s} 0=10$, the register clears itself to 0000 . When
s1s $0=11$, the register reverses its bits, so 1110 would become 0111 and 1010 would become 0101.

Extra credit:

1. [10 points] Design an 8 bit shifter circuit, that shifts its inputs two bits to the right (shifting in 0s) when the shifter's shift control input is 1 .
