1. **(U & G-required) [30 points]** Solve the following recurrences using the method of your choice.
 a) \(T(n) = 3 \cdot T\left(\frac{n}{3}\right) + n^2 \)
 b) \(T(n) = 8T\left(\frac{n}{2}\right) + n^3 \)
 c) \(T(n) = 4T\left(\frac{n}{2}\right) + \sqrt{n} \)

2. **(U & G-required) [30 points]** Consider the following recursive algorithm:

   ```
   ALGORITHM Min1(A[0..n - 1])
   //Input: An array A[0..n - 1] of integer numbers
   if n = 1
       return A[0]
   else
       temp ← Min1(A[0..n - 2])
       if temp \leq A[n - 1]
           return temp
       else
           return A[n - 1]
   ```

 a) [10 points] What does this algorithm compute?
 b) [20 points] Set up a recurrence relation for the algorithm’s basic operation count and solve it.

3. **(U & G-required) [40 points]**
 a) [15 points] Write pseudocode for a recursive algorithm for computing \(2^n \), where \(n \) is any nonnegative integer, based on the formula \(2^n = 2^{n-1} + 2^{n-1} \).
 b) [25 points] Write a recurrence for the number of additions performed by this algorithm and solve it using the recursion-tree method.
4. (G-Required) [20 points] Use a loop invariant to prove that the following algorithm computes $n!$:

```plaintext
Factorial(n)
{
    i ← 1
    factorial ← 1
    while ( i ≤ n )
    {
        factorial ← factorial * i
        i ← i + 1
    }
    return factorial
}
```

Extra credit:

1. [20 points] Solve the following recurrence:

$$T(n) = \sqrt{n}T(\sqrt{n}) + n.$$

Hint: divide the equation by n throughout and then make a substitution.