CS 477/677 Analysis of Algorithms

Spring 2020

Homework 2

Due date: February 11, 2020

1. ($\mathbf{U} \&$ G-required) [30 points] Solve the following recurrences using the method of your choice.
a) $T(n)=3 T\left(\frac{n}{3}\right)+n^{2}$
b) $T(n)=8 T\left(\frac{n}{2}\right)+n^{3}$
c) $T(n)=4 T\left(\frac{n}{2}\right)+\sqrt{n}$
2. (U \& G-required) [30 points] Consider the following recursive algorithm:
```
ALGORITHM Min1(A[0..n - 1])
//Input: An array A[0..n - 1] of integer numbers
if \(n=1\)
    return \(\mathrm{A}[0]\)
else temp \(\leftarrow \operatorname{Minl}(\mathrm{A}[0 . . n-2])\)
    if temp \(\leq \mathrm{A}[n-1]\)
            return temp
        else
            return \(\mathrm{A}[n-1]\)
```

a) [10 points] What does this algorithm compute?
b) [20 points] Set up a recurrence relation for the algorithm's basic operation count and solve it.

3. (U \& G-required) [40 points]

(a) [15 points] Write pseudocode for a recursive algorithm for computing 2^{n}, where n is any nonnegative integer, based on the formula $2^{n}=2^{n-1}+2^{n-1}$.
(b) [25 points] Write a recurrence for the number of additions performed by this algorithm and solve it using the recursion-tree method.
4. (G-Required) [20 points] Use a loop invariant to prove that the following algorithm computes n !:

```
Factorial(n)
{
    i}\leftarrow
    factorial }\leftarrow 
    while ( i \leq n )
    {
        factorial \leftarrow factorial * i
        i}\leftarrow i + 1
    }
    return factorial
}
```


Extra credit:

1. [20 points] Solve the following recurrence:
$T(n)=\sqrt{n} T(\sqrt{n})+n$.
Hint: divide the equation by n throughout and then make a substitution.
