
CS 790(X) – Seminar: Robotics

Instructor: Monica Nicolescu

Lab 1 – Handout

1. Introduction

The purpose of this lab is to get you familiar with the robot programming tools that will be used

throughout the semester. In this class we will use the Player/Stage simulator, which is freely

available from http://playerstage.sourceforge.net/.

Player is a network server for robot control. Running on your robot, Player provides an interface

to the robot's sensors and actuators over the IP network. Your client program talks to Player over

a TCP socket, reading data from sensors, writing commands to actuators, and configuring devices

on the fly. Player supports a variety of robot hardware, in particular the ActivMedia Pioneer

mobile robots.

Stage is a planar 3D simulator that allows for simulating large number of mobile robots, sensors

and objects in a 2D environment. Stage is most commonly used as a Player plugin module,

providing populations of virtual devices for Player. Users write robot controllers and sensor

algorithms as 'clients' to the Player 'server'. The same interface, provided by the Player robot

server, is used to control a robot in the real world or its equivalent in a Stage simulation, which

makes it very easy to transfer the code from simulation to the real robot.

During this semester you will use Player/Stage to develop your own robot controllers. The

software is already installed on the lab computers and can be also easily installed on personal

machines.

2. Player/Stage Architecture

As illustrated in Figure 1, the Player/Stage framework for robot control consists of the following

main components: devices, robot servers, and robot clients.

Devices (e.g., a laser, a camera, or a complete robot) are actual hardware in the real world or

simulated hardware that exists in a virtual environment maintained by Stage.

The server (Player) provides the interface between the robot and any program that requests

information from or sends commands to the robot. Typically, Player is executing locally on the

computer to which the devices of interest are connected. In many cases, this computer is the robot

itself, but it could also be, for example, a desktop machine attached to a SICK laser range-finder.

The client is your controller program, which produces output commands for the robot. The client

can execute anywhere that has network connectivity to the machine hosting the server.

In the beginning, the client establishes a TCP socket connection to the server. The client next

sends some messages to the server to open the devices in which the client is interested. After that,

the server continuously feeds data from those devices to the client, and the client exerts control by

sending appropriate commands back to the server. It will be your job to write a controller (client)

that produces the desired commands for the robot.

3. Getting Started

During the first lab we will experiment with basic functionality in Player/Stage, learn how to use

simple tools and how to write simple controllers. For additional information, study the

Player/Stage tutorial at http://playerstage.sourceforge.net/doc/playerstage_instructions_2.0.pdf.

• Set the path to the Stage world directories. Add the following lines to your .bashrc file:
> export STAGEPATH=<stage-install-directory>/worlds
 export LD_LIBRARY_PATH=/usr/local/lib

• Copy all the files from <stage-install-directory>/worlds to your

work directory

• Download the files from

http://www.cse.unr.edu/~monica/Courses/CS790X/Labs/Lab1 into your

working directory.

Figure 1. Player/Stage client-server interaction.

• From /usr/local/share/player/examples/libplayerc++/ copy to your

work directory the following files: laserobstacleavoid.cc, wallfollow.cc,
sonarobstacleavoid.cc, randomwalk.cc. These files implement the following

controllers:

- laserobstacleavoid.cc: simple obstacle avoidance using the laser

- wallfollow.cc: simple wall following

- sonarobstacleavoid.cc: simple obstacle avoidance using the sonar

- randomwalk.cc: simple wandering behavior

• Run the compiled examples from
 /usr/local/share/player/examples/libplayerc++/

• Start the player server:

> player cs790x.cfg

A window will open with a cave-like environment and one pioneer robot.

• With the player sever running, test the provided sample programs. Look through the code for

these clients and try to understand how the information from the sensor is provided and how

the commands are sent to the actuators. In particular, look at the following proxies:

SonarProxy, Position2dProxy, LaserProxy.

 You can find more details about Player at:

 http://playerstage.sourceforge.net/doc/Player-2.1.0/player/

For this lab, you should make small changes to the provided controllers and observe the change in

the robot’s behavior. For example, you can modify the “laserobstacleavoid” client, such

that your robot does not get stuck in a corner. A simple strategy to solve this problem is to use a

counter that keeps track of successive left-right turns made by the robot.

• Create a new world file. In <stage-install-directory>/worlds/bitmaps you

will find sample bitmaps for the environments used in the worlds directory. Use gimp to

create a new environment of your own and incorporate that into a new .world and .cfg

file. In this environment, add three robots: one yellow, one red and one green. Create a static

“yellow” colored target (taking example from everything.world). You can also add

more robots and static objects of various colors. Test the sample programs, and their modified

versions in this new environment.

There is nothing to submit for this lab. However, you should have the modified controllers and

the new environment finished by the end of the next lab session on September 7.

