
An Annotated k-deep Prefix Tree for (1-k)-mer Based
Sequence Comparisons

Adrienne Breland1, Karen Schlauch2, Monica Nicolescu1, Frederick C. Harris Jr.1

Dept. of Comp. Sci. & Engr.
1

001-775-784-6974

{breland,monica,fredh}@cse.unr.edu

University of Nevada, Reno
Reno, NV 89557

Department of Biochemistry
2

001-775-784-8974

schlauch@unr.edu

ABSTRACT
In this report, we describe an algorithm for a k-deep annotated

prefix tree. The algorithm provides an alignment-free method for

comparing nucleotide sequences in a computationally efficient

manner. Differences in genomic sequences are measured by

recording and comparing counts of words of length k or less in

each sequence using the algorithm. Tree nodes are annotated with

lists to store the number of times each word occurs in each of a

group of sequences. Count differences among multiple sequences

may be computed in a single tree traversal. Such a tree is built in

linear time and spatially bounded by tree depth rather than

sequence length(s). We then compare sequence groups of both E.

coli and Influenza A virus H1N1 to demonstrate the power of a k-

deep prefix tree when used as sequence comparison tool.

Categories and Subject Descriptors

E.1 [Data Structures]: Trees

General Terms

Algorithms, Measurement, Experimentation, Languages.

Keywords

K-mer, prefix-tree, d square distance.

1. INTRODUCTION
A prefix-tree is a string compression algorithm which reduces

prefix redundancy in a given set of strings. Prefix-trees are tree

graphs similar to tries and dictionaries in natural language

processing and data compression. A prefix-tree is built on a set of

strings X ∈ ∑* where ∑ is a finite alphabet. Each path from the

root to any existing node is labeled by the spelling of a non-empty

prefix of any strings in X. In natural language processing, tries

enable linear time string matching [9] while dictionaries are used

in the GNU zip (gzip) compression algorithm [18]. Tries built on

the English alphabet, ∑ = {a,...,z} grow quickly with a branching

factor of 26, and minimization algorithms are common [1].When

comparing nucleotide sequences, prefix-trees may be built on a

smaller alphabet, ∑ = {A, C, G, T} and can provide fast indexing

of nucleotide words of multiple lengths. A comparable structure

was used in [3] to compare the 12-mer "languages" of human

chromosomes 21 and 22. Prefix-trees are also used in the

assembly program SSAKE [18] to locate overlapping 25-mers

between short nucleotide fragments.

The k-deep prefix tree we present in this report is limited in depth

to include only k levels. It is constructed from the k first

characters of all non-empty prefixes of a single or set of genomic

sequences. The number of nodes required is exponentially

proportional to tree height (k) rather than the total length of

sequences, as is the case with suffix trees [14]. This provides a

compressed and partially or fully dynamically allocated index into

all substrings up to a given length (k) found in a single or groups

of sequences. While index based hash tables are generally used

for this same purpose [2,4,11,12,15], prefix-trees can be more

comprehensive because they may include information regarding

nucleotide words of multiple lengths. Hash tables generally

represent nucleotide word of a single length, and require large,

contiguous blocks of memory for fast look up times. A prefix-tree

may be implemented with dynamic memory and is equivalent to

multiple hash tables for each word length (1,..,k), with direct links

between each word and its prefix and suffix(es).

Our algorithm also includes node annotation. Tree nodes are

annotated with substring occurrence counts, which record the

number of times that a substring terminating at each node occurs

in each of a set of sequences. Lists at each node allow the storage

of information pertaining to multiple sequences in a single tree.

This facilitates all-against-all sub word count differencing among

a set of sequences in a single tree traversal. The use of tree node

annotation is also seen in Generalized Suffix Trees to enables

suffix comparisons among multiple sequences [6], and is

discussed in detail in [5].

A k-mer denotes a substring (word) of a genomic nucleotide

sequence of length k; a (1-k)-mer is a word of length k or less.

Nucleotide word counts can form the basis of alignment-free

sequence comparisons. Sequence comparisons derived from k-mer

compositions have been used to construct phylogenies which

encompass the tree of life [13], as well as enabled sub-species

clustering of viral isolates [7]. The word length k best suited in k-

mer based comparative measures is often arbitrarily chosen, and

must be addressed as a research question in its own right [16]. A

fully annotated k-deep prefix tree allows data exploration and the

inclusion of multiple word lengths in a single analysis.

In the following, we describe annotated k-deep tree construction

and its algorithmic complexity. We then describe how (1-k)-mer

composition comparisons among multiple genomic sequences

may be conducted in a single tree traversal. Finally, we illustrate

these methods on two sample data sets.

2. K-DEEP PREFIX TREE

2.1 Tree Construction

A single sequence k-deep prefix tree is built from all substrings of

length k or less in a genomic sequence 𝑆𝑗 = 𝑠𝑗1
…𝑠𝑗 𝑙𝑗

 , where

𝑠𝑗 ∈ 𝐴, 𝐶, 𝐺, 𝑇 , and 𝑙𝑗 denotes the length of 𝑆𝑗 . Let 𝑤 be a

substring of 𝑆𝑗 , and let 𝑤 denote its length. In the resulting tree,

each path from the root to any internal or leaf node at level ℓ, 1≤ ℓ

≤ k, spells a substring 𝑤 of 𝑆𝑗 such that 𝑤0 …𝑤ℓ−1 =

 𝑠𝑗 𝑚
…𝑠𝑗𝑚+ ℓ

 , 0 < 𝑚 ≤ 𝑆𝑗 − ℓ − 1. 𝑠𝑗𝑚 denotes the character

at position in 𝑆𝑗 where substring 𝑤 begins. The tree is built in

linear time proportional to 𝑆𝑗 by parsing 𝑆𝑗 once with a sliding

window.

Figure 1(a-e). Building a 3-deep annotated prefix-tree from

the sequence "CATGAT".

In Figures 1(a-f), building a 3-deep prefix-tree from the sequence

"CATGAT" is illustrated. Because each node is regarded as a

prefix string termination, sentinel nodes marking end of strings

are not required. A sequence is parsed by a single spaced sliding

window of length k, where in the given example k = 3. Each

overlapping nucleotide string determined by the window is

inserted into the tree. Each tree node may point to up to four

children {'a'_child, 'c'_child, 'g'_child, 't'_child}. The default

value for all of a node’s children is set to NULL. If a word path

in the tree does not yet exist, it is built upon insertion. This

removes the potential for wasting memory on nodes which

represent non-existent words in the set of sequences being

examined.

As a word is inserted into the tree, existing nodes may be

traversed, or new nodes may be created. At each node involved,

either in a traversal or creation, a count at that node is

incremented. This process of editing each node that is passed

through yields the inclusion of information regarding all

substrings of length 1,… ,k. Nodes at any level of the tree, ℓ ,

1 ≤ ℓ ≤ k contain counts of all unique strings of length ℓ found

in the sequence used to build the tree. The length of a unique

substring terminated at a node is implicitly represented by the

nodes level in the tree.

Count lists at each node allow the inclusion of multiple sequences

in a single tree. If 𝑁 sequences are examined, each node contains

an integer count list of length 𝑁. When parsing sequences

𝑆𝑗 , j ∈ N, passing through a node causes an increment only at

position j in the count list located at that node. Figure 2 illustrates

a 3-deep tree built from the sequences "CATGA" and "ATCAT".

Figure 2. Node annotation for 2 sequences .

In Figure 2, (1-k)-mer counts for “CATGA” are stored in the first

index of the count list at each node. Counts for “ATCAT” are

stored in the second index. By maintaining node based count lists,

a single tree can contain the complete (1-k)-mer composition of

multiple sequences. This can then lead to all-against-all k-mer

based sequence comparisons in a single tree traversal.

2.2 Algorithmic Complexity

Assuming that N sequences are used to build a depth limited

prefix tree, the asymptotic time required to build the tree is linear,

⊖ S𝑗
j=N

j=1 as each sequence 𝑆𝑗 need be parsed only once. If k

is the maximum word length of interest, the maximum number of

nodes in the tree is given by K, where K= 4xx=k
x=0 . Each non-root

node contains a list of counts containing the number of times that

the prefix terminated at that node occurs in each sequence. Thus,

the space required is asymptotically bounded by 𝛰 1 + (𝐾 − 1) ∗
𝑁 ≈ 𝛰(𝐾 ∗ 𝑁).

This can allow a space reduction of very long sequences. For

example, a 10-deep tree constructed from 5 human sequences of

chromosome 11 (approximate length ≈ 1.3 𝑥 108 base pairs)

could maximally contain approximately 1.4 𝑥 106 nodes with 5

integer counts, four pointer addresses (parent, 'a'_child, 'c'_child,

'g'_child, 't'_child) and one character stored per node. The

sequences alone would contain a sum of approximately 1.3 𝑥 109

characters. A fully expanded 10-deep tree would reduce the total

sequence space by at least 2 orders of magnitude.

Space requirements may further be reduced by omitting word

counts of nodes in upper levels of the tree. These nodes represent

shorter k-mers and may sometimes be nonspecific enough for

analysis. Assuming k-mers where k≤u are deemed non interesting,

the space required would be bounded by 𝛰 𝑐 + 𝐾 ∗ 𝑁 , 𝑐 =

 4𝑥𝑥=𝑢
𝑥=0 , 𝐾 = 4𝑥𝑥=𝑘

𝑥=𝑢+1 . While this does not offer drastic

improvement, it can prove useful when space becomes a limiting

factor for large values of k.

3. NODE BASED DISTANCE SCORING

Figure 3. The specific word terminated and its occurrence

counts may be determined at each node.

The k-deep prefix-tree is a succinct method that enables sequence

exploration and comparison. Each non-root tree node includes the

representation of a sequence substring, and the number of times

the substring appears in a set of sequences (Figure 3). For

example, at the node indicated in Figure 3, we may determine that

the substring “TCA” appears only four times in the first of a set of

sequences. Note that if “TCA” did not occur in any sequence, the

node in Figure 3 would not have been created. Determining the

nucleotide word terminated by any node requires a trace back

through parent pointers from that node to the root. This is

accomplished in time linear to the tree level of the node, which is

the length of the word.

From a k-deep prefix-tree built upon 𝑁 sequences, an 𝑁𝑥𝑁

distance matrix 𝑀 tabulating pair-wise distances may be

completed by visiting each tree node only once while

incrementally modifying matrix positions. Each distance matrix

entry 𝑀𝑖𝑗 , 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 will be computed as the sum of the

distance for each word 𝑤 between sequences 𝑆𝑖 and 𝑆𝑗 , for all

words 𝑤 in the set 𝑊 of all (1-k)-mers found in the sequence set.

Distance may be defined by the researcher as any count based

measure. Distance matrices in this form provide a simple platform

for sequence clustering and phylogenetic tree construction.

Figure 4 provides the pseudocode for a recursive all against all

comparison of non-root nodes. In this pseudocode, a pre-order

tree traversal is conducted. Pair-wise distance scores among all

sequence pairs 𝑖, 𝑗 are computed at each node. Resulting values

are added to each corresponding matrix position. Thus after a tree

traversal is complete, at each resulting matrix position:

𝑀𝑖𝑗 = 𝑀𝑗𝑖 = 𝑇𝑟𝑒𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑤)

𝑊

𝑤

3.1 Example Comparisons
As an example, we build k-deep prefix trees and compute distance

matrices for two genomic data sets. The data sets are composed of

microbial subspecies strains and contain sequences which are all

similar in length. These data sets include; 1.) 12 HA segments of

human H1N1 Influenza A virus and 2.) five complete Escherichia

coli chromosomal sequences. Pair- wise sequence distances within

data sets are computed using weighted 𝑑2 distance [17]

calculations, a count based differencing measure. In the following

section, the 𝑑2 distance, as presented by [17] is described.

Tree depths are dependent on the data set. We follow the

approximation in [16] suggesting that setting 𝑘 ≈ 𝑙𝑜𝑔4(𝑆𝑛),

where 𝑆𝑛 is sequence length allows for a sufficiently descriptive

k value of prokaryotic sequences. As our data sets contain

multiple sequences or varying length, we use average sequence

length per data set so that 𝑘 ≈ 𝑙𝑜𝑔4(𝑆𝑛). The best integer fit to

our data yield k=5 for the H1N1 sequences and k=13 for the

E.coli sequences.

3.2 d
2
 Distance

The 𝑑2 distance is a method for scoring k-mer count differences

between genomic sequences. The 𝑑2 comparison is an example of

a comparison metric which can be implemented on a node by

node basis. Comparing k-mer counts between genomic sequences

is referred to as the 𝑑𝑘
2 distance. This measure has been used to

cluster expressed sequence tabs (EST's) [8]. The 𝑑𝑘
2 distance

between two sequences 𝑆𝑖 and 𝑆𝑗 is described in [17] as:

𝑑𝑘
2 𝑖, 𝑗 = 𝑝𝑥

4𝑘

𝑥=1

(𝑐𝑥 𝑖 − 𝑐𝑥 𝑗)2 (1)

where k is a fixed integer word length, cx i and cx j indicate

counts of word wx in sequences 𝑆𝑖 and 𝑆𝑗 respectively.

𝑓𝑜𝑟 𝑖 = 1:𝑁 − 1

 𝑓𝑜𝑟 𝑗 = 𝑖 + 1:𝑁

𝑀𝑗𝑖 = 𝑀𝑖𝑗 += 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗)

Tree_distance (node * curnode){

 if(curnode →a_child != NULL)

 Tree_distance (curnode →a_child)

 if(curnode →c_child != NULL)

 Tree_distance (curnode →c_child)

 if(curnode →g_child != NULL)

 Tree_distance (curnode →g_child)

 if(curnode →t_child != NULL)

 Tree_distance (curnode →t_child)

 }end Tree_distance

Figure 4. Pseudocode for distance scoring pre-order tree

traversal.

The information required for the calculation of 𝑑𝑘
2 distances

between sequence pairs is contained within the described k-deep

nucleotide tree. Confining k to a single value equates to

examining nodes at a single tree depth. Current usage of this

measure is often limited to nucleotide words of length six, i.e. k =

6 [10]. However, in [17] it is suggested that it may be

advantageous to allow a range of values for k, with:

𝑑2 𝑖, 𝑗 = 𝑑𝑘
2 𝑖, 𝑗 (2)

𝑢

𝑘= 𝑚

where 𝑚 is the user defined minimum word length and 𝑢 is the

user defined maximum. If 𝑚 = 1 and 𝑢 = 𝑘, computing this

distance score is achieved by visiting each node in a k-deep prefix

tree in a single traversal. It is this measure that we use to compute

distance matrices for our example datasets. The asymptotic time

required for a node based d2 traversal is:

𝑂(𝐾 𝑥 𝑁 +
𝑁𝑥 𝑁 − 1

2
 = 𝑂 𝐾𝑁2 (3)

where K= 4xx=k
x=1 and 𝑁 is the number of sequences examined.

The k-deep tree allows the repeated iterative trial of any number

of comparison subsets and or weights for computing pair-wise d2

distances among multiple sequences. All k-mer counts are

maintained and can be returned to as a starting point. The weight

associated with a unique (1-k)-mer may be derived from

descriptive measures regarding it in the data set. Using this

approach, weights can be derived independently on a node by

node basis requiring no additional tree traversals. In this report,

two different node based weighting schemes are applied to 𝑑2

distances computed for each data set. This allows that the effect of

changing weighting schemes can be examined in resulting

Neighbor Joining (NJ) cladograms.

As a reference to other weighting schemes, we also compute

unweighted 𝑑2 distances within data sets. Thus 𝑝𝑥 = 1 (eq.1) at

all nodes to compute unweighted distance matrices.

3.3 GC-content Weighting
Because each non root node in a k-deep prefix tree represents a

unique (1-k)-mer, it is possible to weight difference values

computed at that node based on the k-mer sequence it represents.

For example, repetitive sequences may be ignored or k-mers

containing specific sub words may be selected. In this example,

we perform weighting based on GC content. GC content is the

percentage of G or C nucleotides in a word divided by the total

number of nucleotides it contains. This yields a value between

zero and one. We combine both GC content weighting and cutoff

values in this first weighting scheme. The weight for any (1-k)-

mer with at least 80% GC content is equivalent to its GC content.

Any (1-k)-mer with less than 80% is given a zero weight. Thus px

in equation 1 is defined as:

𝑝𝑥 =

 𝑛𝑥(𝐺, 𝐶)

𝑛𝑥(𝐴, 𝐶, 𝑇, 𝐺)
 𝑖𝑓

𝑛𝑥(𝐺, 𝐶)

𝑛𝑥(𝐴, 𝐶, 𝑇, 𝐺)
≥ 0.8

0 𝑒𝑙𝑠𝑒

where 𝑛𝑥(𝐺, 𝐶) denotes the number of occurrences nucleotide

bases G and C in subword wx. This weighting scheme requires a

trace back from each node to the tree root to compute GC content

of the (1-k)-mer indexed by that node. The time required for this

is linearly proportional to node level, or (1-k)-mer length. An all-

against-all comparison of count list values may be conducted

based on the determined GC score and resulting weight. All-

against-all comparisons may be omitted by determining a zero

weight. While the asymptotic computation time does not change,

in our analysis this weighting scheme greatly reduced the total

number of nodes examined in an all-against-all fashion in both

datasets.

3.4 Presence vs. Absence Weighting
We define a weighting scheme based on word presence and

absence across sequence sets. We define nucleotide words which

are present in at least one sequence and absent in at least one other

sequence to exhibit presence/absence variation. Weights are given

a value of zero or one based on this observation. Thus if px

represents the weight for wx and 𝐶𝑥 (𝑗) the count of wx in

sequence 𝑆𝑗 , then:

𝒑𝒙 =

 𝟏 𝒊𝒇 𝑪𝒙(𝒋)

𝑵

𝒋

> 0 and 𝑪𝒙(𝒋) = 𝟎

𝑵

𝒋

𝟎 𝒆𝒍𝒔𝒆

For example, assume a given word only occurs in three out of five

sequences. This word would be given a weight equal to one and

would contribute to final pair-wise distance scores. If however, it

was found at least once in all five sequences, it would be assigned

a zero weight and yield no contribution. This weighting scheme

also allows a potential reduction in the number of nodes which

must be examined fully. At each node, the entire count list of N

sequences must be examined to determine if at least one count is

zero and at least one is greater than zero. As in the GC content

weighting scheme, all-against-all comparisons may be avoided if

a zero weight is determined.

4. RESULTS

4.1 Neighbor Joining Cladograms
Figures 5 and 6(a-c) display Neighbor Joining (NJ) [16]

cladograms computed with no weight, GC-content weighting, and

presence/absence weighting. The H1N1 dataset contains three

sequences representing each of four locations; Alaska, Texas,

Mexico, and California. Differences exist among all three

cladograms with regards to branched cluster formations among

geographic groups. For example, GC-content weights resulted in

MX_2 and MX_3 being closest neighbors, while

presence/absence weighting resulted in MX_1 and MX_3 being

closest neighbors. The unweighted d2 distance resulted in

Texas_05 being included in a branched cluster with samples

originating from Mexico.

Figure 5. Cladogram of H1N1 sequences using unweighted(a), GC-content weighting(b) and presence/absence weighting(c)

schemes.

Figure 6. Cladogram of E. coli sequences using unweighted(a), GC-content weighting(b) and presence/absence weighting(c)

schemes.

Table 1. Actual vs. total possible number of nodes.

𝑫𝒂𝒕𝒂𝒔𝒆𝒕 k 𝒑𝒐𝒔𝒔𝒊𝒃𝒍𝒆
𝒏𝒐𝒅𝒆𝒔 𝑲
 𝟒𝒊𝒌
𝒊=𝟎

𝒂𝒄𝒕𝒖𝒂𝒍
𝒏𝒐𝒅𝒆𝒔 𝑲𝟏 %

𝑲𝟏

𝑲

H1N1 5 1,364 1,181 86.6%
E.coli 13 89,478,484 22,311,042 2.9%

Table 2. Number of nodes weights (p) found to be greater than

zero using GC-content weighting scheme. 𝐊𝟏 − 𝟏 is the total

number of non-root tree nodes.

𝑫𝒂𝒕𝒂𝒔𝒆𝒕 𝒑 %
𝒑

 𝑲𝟏 − 𝟏

H1N1 135 11.4%
E.coli 462,681 2.1%

Table 3. Number of nodes weights (p) found to be greater than

zero using presence/absence weighting scheme. 𝐊𝟏 − 𝟏 is the

total number of non-root tree nodes.

𝑫𝒂𝒕𝒂𝒔𝒆𝒕 𝒑 %
𝒑

𝑲𝟏 − 𝟏

H1N1 296 25.1%
E.coli 18,654,648 83.6%

Cladograms of the five E. coli samples were identical between the

unweighted and GC-content weighted 𝑑2 distance calculations.

Presence/absence weighting primarily resulted in a difference in

the placing of the Ecoli_3 sample.

Determining the accuracy of these cladograms is not in the scope

of this research. Instead, our goal is to present an algorithm for

experimentation with various weighting schemes and more

generally, k-mer based differencing measures.

4.2 Space Compression
For each data set, the number of nodes created in k-deep prefix

trees were a fraction of the total number of possible nodes. That

is, the actual number of unique (1-k)-mers encountered in each

data set verses the total number of possible nucleotide k-mers of

lengths (1,..,k).

Table 1 shows this ratio for each data set. In each case, using a

prefix-tree allowed a reduction in the total required memory space

which would be necessary if using uncompressed hash tables.

The ratio of actual vs. total number of possible nodes was 86.6%

and 2.9% for the H1N1 and E .coli datasets respectively. The

degree of compression enabled by the k-deep prefix tree is

particularly reflected in the E. coli data set.

4.3 Weight Based Computation Reduction
Each weighting scheme described includes zero weights. This

dictates that certain nodes do not contribute to total distance

scores and all-against–all comparisons were not required at those

nodes. Tables 2 and 3 report the actual number of nodes with

greater than zero weights found in GC-content and

presence/absence weighting. Tables 2 and 3 also list the

percentage of tree nodes at which full computations were

required.

While both weighting schemes enabled a reduction in number of

nodes fully examined, the GC-content weight scheme provided

the greatest reduction. Only 11.4% and 2.1 % of all tree nodes

contributed to distance matrices in the H1N1 and E.coli datasets

using GC-content weights. The percentage of nodes examined

fully using the presence/absence weighting scheme were 25.1%

and 83.6%.

These results suggest that definitive word based features may be

extracted through experimentations such as these. The E .coli

cladograms based on the GC-content and the unweighted d2

distance were identical. However GC-content distances were

based on only approximately 2% of all nodes used to compute the

unweighted scores.

5. CONCLUSIONS and FUTURE WORK
We described an algorithm for the construction of an annotated k-

deep prefix tree. In a k-deep prefix tree, each non-root tree node

represents a unique (1-k)-mer which exists in the genomic

sequence(s) from which the tree was constructed. In this report,

we annotated each node with occurrence counts, denoting the

number of times that the (1-k)-mer terminated at that node occurs

in each sequence.

We then provided an example usage of the tree by computing

weighted and unweighted 𝑑2 distances matrices for sample data

sets. The 𝑑2 distance is a k-mer based distance measure, and the

information required to compute 𝑑2 distances is contained within

the described k-deep tree. We presented two weighting schemes:

1.) the GC nucleotide content of each word terminated at non-root

nodes and 2.) presence/absence occurrence variation derived from

count lists at each non-root node. Resulting Neighbor Joining

cladograms were then compared.

In the E. coli dataset, two cladograms based on unweighted and

GC-content weighted distance matrices were identical. This was

surprising given that the GC-weighted distances were derived

from only approximately 2% of the nodes used to compute

unweighted distances. This illustrates the potential for extraction

of important k-mer based features through experimentation with

annotated k-deep prefix trees.

Future work will include research into the potential for reliance on

more static rather than dynamic memory allocation. This would

allow faster tree traversal by ensuring that traversing links

between nodes resulted in fewer page faults. Future work will

also use our k-deep tree algorithm to examine differences between

sets of sequence based on several weighting schemes and k-

values.

6. REFERENCES
[1] Aho A.V. and Corasick, A. J. 1975. Efficient string

matching: An Aid to Bibliographic Search.

Communications of the ACM 18,333-341.

[2] Altschul S.F., Gish, W., Miller, W., Myers, E.W., and

Lipman, D.J. 1997. Basic Local Alignment Search Tool.

Mol. Bio. 215, 403-410.

[3] Arnau V. and Marin, M. 2003. A fast Algorithm for the

Exhaustive Analysis of 12-Nucleoitde-Long DNA

Sequences. Applications to Human Genomic.

Proceedings of the IEEE International Parallel

Distributed Processing Symposium(IPDPS’03).

[4] Arnau V., Gallach M., and Marin I. 2008. Fast

comparison of DNA sequences by oligonucleotide

profiling. Proceedings of the IEEE International Parallel

and Distributed Processing Symposium.

[5] Apostolico A, Bock, M.E., Leonardi, S., and Xu, X.

2000. Efficient Detection of unusual words. J. Comput.

Biol.

[6] Bieganski, P., Reidl, J., Cartis, J., V., Retzel, E. F. 1994.

Generalized suffix trees for biological sequence data:

applications and implementation. in System SciencesV:

Biotechnology Computing, Proceedings of the Twenty-

Seventh Hawaii International Conference on 5, 35-44.

[7] Breland, A., Nasser, S., Schlauch, K., Nicolescu, M.,

Harris, F.C. Jr. 2008. Efficient Influenza A Virus Origin

Detection. Journal of Electronics and Computer Science

10, 1-8.

[8] Burke, J., Davison, D., and Hide, W. 1999. d2_cluster: a

validated method for clustering EST and full-length

cDNAsequences. Gen. Res. 9, 1135-1142.

[9] Daciuk, J., Mihov, S., Watson, B.W., and Watson, R.E.

2000. Incremental Construction of Minimal Acyclic

Finite_State Automata. Association for Computational

Linguistics 28, 207-216.

[10] Hazelhurst, S.2004. An efficient implementation of the

d2 distance function for EST clustering:preliminary

investigations. Proceedings of the 2004 annual research

conference of the South African institute of computer

scientists and information technologists on IT research

in developing countries 7, 229-233.

[11] Iseli C., Ambrosini, G., Bucher, P., and Jongeneel, C. V.

2007. Indexing Strategies for Rapid Searches of Short

Words in Genome Sequences. PLoS One 2, e579.

[12] Kent, W.J. 2002. BLAT-The BLAST-Like Alignment

Tool. Gen. Res. 12, 656-664.

[13] Kirzhner, V., Bolshoy, A., Volkovich, Z., Korol, A., and

Nevo, E. 2005. Large-scale genome clustering across

life based on a linguistic approach. Biosystems 81, 208-

222.

[14] McCreight, E.M.1976. A space-economical suffix tree

construction algorithm. JACM 23, 262-272.

[15] Ning, Z., Cox, A., Mullikin, J. 2001. SSHAHA:A fast

search method for large DNA databases. Gen. Res. 11,

1725-1729.

[16] Saitou, N and Nei, M. 1987. The neighbor-joining

method: a new method for reconstructing phylogenetic

trees. Mol. Bio. Evol. 4, 406-425.

[17] Torney, D.C., Burke, C., Davidson, D., Sirkin, K.M.

1990. Computation of d2:A measure of sequence

dissimilarity, computers and DNA, SFI Studies in the

sciences of complexity. Bell, G., Marr, T., editors, VII.

New York, NY: Addison-Wesley.

[18] Wayner P. 2000. Compression algorithms for real

programmers. Morgan Kaufman Publishers Inc., San

Franciso, CA.

