
In Proceedings of the First International Joint Conference on Autonomous Agents and Multi-Agent Systems
Bologna, ITALY, July 15-19, 2002

A Hierarchical Architecture for Behavior-Based Robots

Monica N. Nicolescu and Maja J. Matarić
monica � mataric@cs.usc.edu

Computer Science Department
University of Southern California

941 West 37th Place, Mailcode 0781
Los Angeles, CA 90089-0781

ABSTRACT
Behavior-based systems (BBS) have been effective in a variety of
applications, but due to their limited use of representation they have
not been applied much to more complex problems, such as ones in-
volving temporal sequences, or hierarchical task representations.
This paper presents an approach to implementing these AI-level
concepts into BBS, without compromising BBS’ key properties.
We describe a Hierarchical Abstract Behavior Architecture that al-
lows for the representation and execution of complex, sequential,
hierarchically structured tasks within a behavior-based framework.
The architecture, obtained by introducing the notion of abstract
behaviors into BBS, also enables reusability of behaviors across
different tasks. The basis for task representation is the behavior
network construct which encodes complex, hierarchical plan-like
strategies. The approach is validated in experiments on a Pioneer
2DX mobile robot.

1. INTRODUCTION
Behavior-based control [2, 13] has become one of the most pop-

ular approaches to embedded system control both in research and in
practical applications. Behavior-based systems employ a collection
of concurrently executing behaviors, processes connecting sensors,
effectors, and each other. An important property of BBS is their
ability to contain state, and thus also construct and use distributed
representations. This ability has been underused, so BBS are yet
to be explored and extended to their full potential. In this paper
we present an approach for embedding representations into BBS
without compromising their key philosophy of non-hybrid repre-
sentation and real-time execution. Toward this end we developed a
Hierarchical Behavior-Based Architecture that addresses two limi-
tations of BBS, both having to do with the use of representation.

The first limitation is the fact that behaviors lack the abstract
(symbolic) representation that would allow them to be employed at
a high level, like operators in a plan. Behaviors are typically in-
voked by built-in reactive conditions, and as a consequence, BBS
are typically unnatural for, and thus rarely applied to complex prob-
lems that contain temporal sequences or hierarchical structures.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’02, July 15-19, 2002, Bologna, Italy.
Copyright 2002 ACM 1-58113-480-0/02/0007 ...$5.00.

Since we seek a method that allows for encoding general (pos-
sibly hierarchical) tasks that would require the sequential activa-
tion of the robot’s behaviors, we need a mechanism that would
allow first the representation and then the execution of such se-
quences/hierarchies.

The second, and related, limitation is that the vast majority of
BBS are still designed by hand for a single task: the standard be-
havior architecture prevents the automatic reusability of behaviors
across different tasks and thus the automatic generation of BBS.
Although behaviors themselves, once refined, are usually reused
by designers and gradually accumulate into behavior libraries, the
remainder of the system that utilizes such libraries is usually con-
structed by hand and involves customized behavior redesign in ac-
cordance with the specifics of any new task. Our aim is to conserve
the robustness and real-time properties of behaviors and to develop
a behavior representation that would support automatic generation
of BBS and behavior reuse for multiple tasks (at least within a class
of related tasks) while avoiding behavior redesign and even recom-
pilation when switching to a different task. Our other work ad-
dresses techniques for automatic generation of behavior networks
[14], but that is outside of the scope of this paper, which focuses on
a BBS architecture that lends itself to these otherwise typically AI
methods.

Attempts to solve these issues have resulted either in hybrid ar-
chitectures [9], or in behavior-based architectures that only partly
address the above problems. We propose a representation that im-
plements these AI concepts into a BBS without compromising the
key principles of behavior-based systems. We present a detailed
discussion of the differences between existing architectures and
ours in Section 5.

The abstract behavior representation that we introduce is based
on behaviors developed for any one or more specific tasks. It is
critical that the practical, robust behaviors come first, and the rep-
resentation is derived from them. This stands in sharp contrast to
approaches that employ high-level sensors and operators assuming
that the low-level controller will provide whatever information and
action was needed by a high level planner (see Section 5).

The abstract behaviors are used to specify one or more tasks, in
the form of behavior networks, which can be generated not only by
hand but also automatically, depending on task complexity. Any
single network represents a task-specific BBS, much like standard
BBS. However, the components of the networks are general, allow-
ing for behavior reuse both off-line (for system specification) and
on-line (for system adaptation to a new task or directive).

In the reminder of the paper we first describe the process of
adapting behaviors for representation, then introduce the notion of
abstract behaviors and the behavior network construct that uses
them to represent general strategies and plans. We describe how

these plans can be defined, and finally, we validate them in real
robot experiments. We end the paper with a review of related work,
directions for future work and conclusions.

2. ADAPTING BEHAVIORS FOR REPRE-
SENTATION

BBS behaviors typically consist of a collection of rules, taking
inputs from sensors or other behaviors in the system, and sending
outputs to the effectors, or other behaviors. The inputs determine
the behavior’s activation status: whether it is on or not, and in some
systems by how much. These are the activation conditions for be-
havior execution. For the purposes of the representation, we dis-
tinguish the following two types of activation conditions (behavior
preconditions):

� world preconditions - conditions that activate the behaviors
based on a particular state of the environment.

� sequential preconditions - task-dependent conditions that
must be met before activating the behavior. These are of-
ten postconditions of other existing behaviors, which allow
for the description of complex temporal sequences.

In standard BBS behaviors, both types of preconditions are tested
together, and without discrimination, thus hard-coding a particular
solution. To change tasks and goals, one often makes the most
changes to these preconditions, while much of the rest of behav-
iors remains unchanged. We achieve the ability to manipulate and
change these conditions at an abstract representation level, sepa-
rate from the behavior repertoire/library, by introducing abstract
behaviors.

With those, behaviors are treated as high-level operators, and
without loss of robustness can be employed to generate various
strategies or plans for specific tasks. While classical planning re-
quires a specific initial state, BBS provide general controllers that
can handle a variety of initial conditions. With the use of abstract
behaviors, we generate networks that are BBS, being triggered by
whatever condition the environment presents.

In their operation, behaviors individually or as a group achieve
and/or maintain the goals of the system, thus achieving the task.
This methodology lends itself to the construction of highly effec-
tive special-purpose systems. This is thus both a strength and a
weakness of the approach. In order to lend generality to a given
system, we first looked for a way to make the behaviors themselves
more general, while still assuring that they would achieve and/or
maintain the goals for which they were designed.

The key step in adapting specialized behaviors to more general
use is in the separation of the activation conditions from the outputs
or actions. By separating those conditions from the actions, we al-
low for a more general set of activation conditions for the behav-
ior’s actions (Figure 1). While this is not necessary for any single
task, it is what provides generality to the system for multiple tasks.
The pairing of a behavior’s activation conditions and its effects,
without the specification of its inner workings, constitute an ab-
stract behavior. Intuitively, this is simply an explicit specification
of the behavior’s execution conditions (i.e., preconditions), and its
effects (i.e., postconditions). The result is a an abstract and general
operator much like those used in classical deliberative systems [8].
The behaviors that do the work that achieves the specified effects
under the given conditions are called primitive behaviors, and may
involve one or an entire collection of sequential or concurrently ex-
ecuting behaviors, again as is typical for BBS.

Abstract and primitive behaviors can both be quite complex, just
as they are within any system embedded in an environment. The

Figure 1: Adaptation of standard behaviors for abstract repre-
sentations

abstract behavior conditions, as in any BBS, are typically far from
low-granularity states, but are instead abstracted, either by hand or
through a generalization process. If they were not, the benefits of
using behaviors as a high-level representation would be lost. Simi-
larly, the primitive behaviors are no lower level than standard BBS
behaviors, meaning they are typically time-extended sequences of
actions (e.g., go-home), not low-granularity single actions (e.g.,
turn-left-by-10-degrees).

Behavior networks then are a means of specifying task plans in
a way that merges the advantages of both abstract representations
and behavior-based systems. The nodes in the networks are ab-
stract behaviors, and the links between them represent precondi-
tion and postcondition dependencies. The task plan or strategy is
represented as a network of such behaviors.

As in any BBS, when the conditions of a behavior are met, the
behavior is activated. Similarly here, when the conditions of an
abstract behavior are met, the behavior activates one or more prim-
itive behaviors which achieve the effects specified in its postcondi-
tions. The network topology at the abstract behavior level encodes
any task-specific behavior sequences, freeing up the primitive be-
haviors to be reused for a variety of tasks. Thus, since abstract
behavior networks are computationally light weight, solutions for
multiple tasks can be encoded within a single system.

In the next sections we present the structure and functionality of
abstract and primitive behaviors, then the construction of networks
and their use.

3. BEHAVIOR REPRESENTATION

3.1 Abstract Behaviors
Adapting specialized behaviors to general use requires a separa-

tion between the execution conditions and actions. We group these
execution conditions and the behavior effects into abstract behav-
iors which have the role of activating the primitive behavior(s) that
achieve the specified effects. In order to include behavior effects
into the abstract representation we provide abstract behaviors with
information about the behavior’s goals and a means of signaling
their achievement to other behaviors that may utilize (and in fact
rely on) these effects.

An important characteristic of our behaviors that makes our ar-
chitecture well suited for high-level, complex tasks, is that they
are parameterizable. The behavior goals are abstracted environ-
mental states, which can also be represented in a “predicate-like”
form on the behavior parameters. For example, a Tracking behav-
ior’s goal could be DistanceToTarget = GoalDistance, where the
distance to the target is obtained from the sensory input and the
GoalDistance is the behavior’s parameter. It is important to notice
that the effects of behaviors are continuously computed from the

robot’s sensors and not high-level symbols that are not grounded
in direct perceptions. Thus, our behaviors become even closer, in
terms of functionality, to the abstract operators used in symbolic
architectures, allowing for multiple parameter bindings and there-
fore multiple and different goals for only one behavior, while still
maintaining the real-time properties of behaviors.

As with operators in a plan, behaviors can undo each other’s ac-
tions while trying to achieve their own goals [7]. In BBS, such
undesirable competition is typically handled either by mutually-
exclusive behavior execution conditions, or by the behavior coordi-
nation mechanism [16]. In this work, we take the former approach,
and use inhibition between behaviors, a common BBS tool, to pre-
vent destructive competition. This methodology directly fits into
the behavior network representations: the network topology also
includes inhibitory links between competitive behaviors.

Structurally, behaviors are composed of a set of processes, run-
ning continuously and concurrently with other behaviors, and an
interface of input and output ports with which they can commu-
nicate with other behaviors. The implementation presented here
utilizes the Port-Arbitrated Behavior paradigm presented by [19].

An Abstract Behavior has the following Input Ports (Figure 2):

� UseBehavior (binary input): signals if the behavior is used
in the current network controller. The behavior is enabled if
the port has a value of 1, and disabled otherwise. This input
is important to the hierarchical representation, as described
in Section 3.4.

� ActivLevel: sums the activation messages received from other
behaviors; its value represents the behavior’s activation level.

� Inhibit (binary input): a value of
�

signals that the behavior
is inhibited by another behavior, a value of � signals that it is
not.

� Sensory Input: a set of inputs from the environment, required
to continuously compute the status of the behavior’s goals.

�������	��
���
�������
�������� � � � : inputs from predecessor behaviors, whose
execution influence the activation of the current behavior.

� Continue (binary input): coming from the corresponding prim-
itive behavior(s) (discussed below).

The Abstract behavior Output Ports are:

� Active (binary output): activates/deactivates the correspond-
ing primitive behavior(s).

� Effects (binary output): signals the current status of the be-
havior’s postconditions as computed from the sensory data.

A disabled or inhibited behavior does not perform any type of
computation for the task. If enabled and non-inhibited, a behavior
runs at a predefined rate at which it continuously checks or sends
its inputs and outputs. However, only if active, the behavior will
actually be allowed to send its action commands to the robot’s ac-
tuator. In a discrete implementation, single activation and deacti-
vation messages could be used per behavior, but this would not be
as robust. Our system, as most BBS, uses continual messaging,
in order to remain reactive to any changes that may occur (in the
environment, the preconditions, etc.).

The abstract behavior activation mechanism is presented in Sec-
tion 3.3, which also presents the methods for encoding and execut-
ing tasks in the form of behavior networks.

Figure 2: Input/output structure of abstract and primitive be-
havior.

3.2 Primitive Behaviors
Primitive behaviors (Figure 2) are activated by abstract behaviors

via the � ������� � input; they are the behaviors that actually achieve
the goals represented by the abstract behaviors.

Primitive behaviors use sensory information in order to compute
the actions sent to the system’s effectors via the � ���!�"
���� output.
The #
��$�!�"��%$� output is used to notify the corresponding abstract
behavior that the execution of the behavior is not yet finished so
that the abstract behavior continues to send activation. This output
is used only in situations in which it is important that the execution
of the primitive behavior not be interrupted, such as those caused
by transience of sensory data. In these cases, it is necessary to ex-
tend the execution of the behavior until its completion. In all other
situations, the abstract behavior can stop sending its activation at
any time, according to its current conditions.

3.3 Behavior Networks

3.3.1 Components and Structure
The purpose of our abstract representation is to allow behavior-

based systems to benefit from two important characteristics of sym-
bolic systems.

First, in order to allow BBS to perform complex temporal se-
quences, we have embedded in the abstract behaviors the represen-
tation of the behavior’s goals and the ability to signal their achieve-
ment through output links to the behaviors that are waiting for the
completion of those goals. The connection of an &('$' �	���)� output
to the precondition inputs of other abstract behaviors thus enforces
the order of behavior execution. The advantage of using real be-
haviors can be seen again when the environment state changes ei-
ther favorably (achieving the goals of some of the behaviors, with-
out them being actually executed) or unfavorably (undoing some
of the already achieved goals): since the conditions are continu-
ously monitored, the system continues with execution of the be-
havior that should be active according to the environmental state
(either jumps forward or goes back to a behavior that should be
re-executed). Also, by introducing the Network Abstract Behavior
construct (Section 3.4) we allow for hierarchical task representa-
tions.

Second, by encoding the task-specific sequences into the net-
work links, we allow behaviors to be reused for different tasks.
In addition, since behaviors’ goals could also be represented in a
“predicate-like” form, they become suitable for use with a general
purpose planner, similarly to classical planning operators, in order
to obtain a solution for a given task. Our behavior networks, since
they rely on real behaviors, also have the advantage that they could
handle a variety of initial conditions within a single task representa-
tion, in contrast to typical plan-representations which are different

for distinct initial conditions.
We distinguish between three types of sequential preconditions,

which determine the activation of behaviors during the behavior
network execution.

� Permanent preconditions: preconditions that must be met
during the entire execution of the behavior. A change from
met to not met in the state of these preconditions automat-
ically deactivates the behavior. These preconditions enable
the representation of sequences of the following type: the ef-
fects of some actions must be permanently true during the
execution of this behavior.

� Enabling preconditions: preconditions that must be met im-
mediately before the activation of a behavior. Their state can
change during the behavior execution, without influencing
the activation of the behavior. These preconditions enable
the representation of sequences of the following type: the
achievement of some effects is sufficient to trigger the execu-
tion of this behavior.

� Ordering constraints: preconditions that must have been
met at some point before the behavior is activated. They en-
able the representation of sequences of the following type:
some actions must have been executed before this behavior
can be executed.

Figure 3: Example of a behavior network

From the perspective of a behavior whose goals are Permanent
preconditions or Enabling preconditions for other behaviors, these
goals are what the planning literature calls goals of maintenance
and of achievement, respectively [17]. In a network, a behavior can
have any combination of the above preconditions. The goals of a
given behavior can be of maintenance for some successor behaviors
and of achievement for others. Thus, since in our architecture there
is no unique and consistent way of describing the conditions rep-
resenting a behavior’s goals, we distinguish them by the role they
play as preconditions for the successor behaviors. Figure 3 shows
an example behavior network and the three types of precondition-
postcondition links.

3.3.2 Behavior Network Execution
Behavior networks allow for two different modes of execution

within the same representation, depending on the constraints on
various parts of the task:

� Sequential execution, for the task segments containing tem-
poral ordering constraints;

� Opportunistic execution, for the task segments for which the
order of execution does not matter.

Sequentiality is enforced by the existence of precondition - post-
condition dependencies between behaviors whose execution needs
to be ordered. Opportunistic execution is achieved by not placing
temporal dependencies between the behaviors which do not require

a particular ordering. The ability to encode both these modes of ex-
ecution within the same behavior network increases the expressive
power of the architecture, through the embedding of multiple paths
of execution within the same representation.

In a network requiring only sequential execution, since all be-
haviors are connected with ordering constraints, there can only be
a single behavior that can be active at a given time. By introducing
the opportunistic mode of execution, we allow multiple behaviors
to be “suitable” for activation at the same time, if their own acti-
vation conditions are met. This raises the problem of concurrent
access to the robot’s actuators. To deal with this issue we choose
the solution of locking the actuators that are used by a behavior for
the entire duration while it is active. The method implements im-
plicit inhibition of behaviors at the actuator level. This provides a
natural way of preventing multiple behaviors to have access to the
same actuators, while still enabling the simultaneous execution of
behaviors that control sets of actuators that are disjunct.

All the behaviors that are used in a network (i.e., have their Use-
Behavior port set) are continuously running (i.e., performing the
computation described below), but only the behaviors that are ac-
tive are sending commands to the actuators at a given time. A de-
fault Init behavior initiates the network links and detects the com-
pletion of the task.

Similarly to [11], we employ a continuous mechanism of acti-
vation spreading, from the behaviors that achieve the final goal to
their predecessors (and so on), as follows: each behavior has an
Activation level that represents the number of successor behaviors
in the network that require the achievement of its postconditions.
Any behavior with activation level greater than zero sends activa-
tion messages to all predecessor behaviors that do not have (or have
not yet had) their postconditions met. The activation level is set to
zero after each execution step, so it can be properly re-evaluated at
each time, in order to respond to any environmental changes that
might have occurred.

The activation spreading mechanism works together with pre-
condition checking to determine whether a behavior should be ac-
tive, and thus able to execute its actions. A behavior is activated
iff:

(It is used in the current controller) AND
(It is not inhibited) AND
(Its controlled actuators are not locked) AND
(The Activation level � � �) AND
(All ordering constraints ������� &) AND
(All permanent preconditions ������� &) AND
((All enabling preconditions �	�
��� &) OR
(the behavior was active in the previous step))

In the current implementation, checking the precondition status
is performed serially, but the process could also be implemented in
parallel hardware.

3.4 Hierarchical Behavior Networks
As robot tasks become more complex and begin to rely on pre-

viously developed skills, it is useful to have a hierarchical task rep-
resentation, which can encapsulate the complex dependencies.

The behavior network representation described so far allows only
for flat representations, in which all the components are abstract
behaviors. While the architecture is expressive and flexible, it does
not have the modularity needed when new, more complex tasks
would have to be created from already existing ones. The best so-
lution would be to specify the new task using abstractions of these

existing modules, rather than combining their underlying behav-
iors into a larger, flat network. In this way, only the precondition-
postcondition dependencies at the higher-level (between the two
sub-networks) would have to be specified, reducing the connectiv-
ity of the network.

We enable this higher-level of representation by introducing the
notion of a Network Abstract Behavior (NAB), which abstracts
away an entire behavior network into a single component. This al-
lows the construction of hierarchical representations of robot tasks,
whose components can be either Abstract Behaviors (ABs) or NABs,
which can be further decomposed into lower level representations.
An example of a generic hierarchical network representation is pre-
sented in Figure 4.

Functionally, a NAB is equivalent to a regular abstract behavior,
in that it performs the same computation and plays the same role
in the network. The postconditions of a NAB will be true when
the execution of the subnetwork it represents is finished. The only
difference between a NAB and an AB is in the connection of their
Active output. For an abstract behavior, the Active output is con-
nected to the Active input of the corresponding primitive behav-
ior(s). For a NAB, the Active output is connected to the UseBe-
havior input of the corresponding component ABs or NABs. Thus,
when a NAB is not active, all behaviors (ABs or NABs) which are
a part of the subnetwork it represents are disabled, and therefore
can be regarded as nonexistent for the task. When a NAB becomes
active, all its underlying behaviors are enabled, and the subnetwork
becomes the current “network” that is being executed. When the
execution of the subnetwork finishes, the NAB signals to the suc-
cessor behaviors the achievement of its goals, just as regular ABs
do, and execution continues at the level of the network containing
the NAB.

Formally, a behavior network is described as follows:

NETWORK-DESCRIPTION =� Number of components (N),�
Component-Description ��� ,

Topology-Description �
where,

Component-Description =� AB-Description
�
ABN-Description �

AB-Description =� Component-ID,
BehaviorID, Number of Parameters (P),�

Parameter Name, Parameter Value �����
NAB-Description =� Component-ID,

NETWORK-DESCRIPTION �
Topology-Description =� Number of Links (L),�

FromComp-ID, ToComp-ID, Link-Type ��	
�
Link-Type =� Ordering

�
Enabling

�
Permanent �

This formalism describes a behavior network by the number N of
its components (ABs or NABs), their descriptions, and the topolog-
ical links between them. The Component-ID is a unique identifier
of the component within the network and the FromComp-ID and
ToComp-ID are the IDs of the start and respectively end-points of
a network link.

Figure 4: A generic hierarchical task representation

4. EXPERIMENTAL RESULTS
We implemented and tested our concepts on a Pioneer 2-DX mo-

bile robot, equipped with two rings of sonars (8 front and 8 rear),
a SICK laser range-finder, a pan-tilt-zoom color camera, a gripper,
and on-board computation on a PC104 stack. We performed the ex-
periments in a 5.4m x 6.6m arena. The robot was programmed us-
ing AYLLU [19], an extension of C for development of distributed
control systems for mobile robots. The robot has a behavior set that
allows it to track colored targets, pick up, and drop objects:

� PickUp(ColorOfObject) - the robot picks up an object of
the color ColorOfObject. Achieves HaveObject = TRUE.

� Drop - the robot drops what it has between the grippers.
Achieves HaveObject = FALSE.

� Track(ColorOfTarget, GoalAngle, GoalDistance) - the robot
tracks a target of the color ColorOfTarget until it gets at
GoalDistance and GoalAngle to the target. Achieves Dist-
ToTarget = GoalDistance AND AngleToTarget = GoalAngle.

Figure 5: The environmental setup

The goal of the validation experiments is to demonstrate the key
features of the presented architecture: hierarchical task represen-
tation, behavior reusability, and the ability for both sequential and
opportunistic execution.

Toward this end, we considered a task consisting of sequenc-
ing of two subtasks: an Object transport task and a Visit targets

task (Figure 6). The setup for this experiment is presented in Fig-
ure 5. The Object transport task requires the sequential execution
of its steps: go to the light green target, pick up the orange box,
go through the gate formed by the yellow and light orange targets,
go to the green target and drop the box there. As the figure shows,
GoThroughGate itself has a subtask representation. The Visit tar-
gets task does not enforce the ordering of the target visits, thus
allowing the robot to perform the task according with the particu-
larities of the environment (i.e., visit the Pink, Light-Green, Yellow
and Orange targets in the order in which they are encountered).

ObjectDelivery1

VisitTargets2

INIT17

 Object Delivery

Drop3

Track4(LGreen,179,268)

PickUp5(OrangeBox)

Track7(Green,0,440)

Drop8

GoThroughGate6

INIT15

 Go Through Gate

Track9(Yellow,0,540)

Track10(LOrange,179,534)

INIT14

 Visit Targets

Track11(Orange,90,750)

INIT16

Track12(Yellow,90,750)Track13(LGreen,90,750)Track18(Pink,90,750)

Figure 6: The hierarchical network representation. The sub-
tasks (NABs) have 3-line borders, and the ABs have one-line
borders. The numbers in the behaviors’ names are their unique
IDs.

Table 1: Order of target visits

Trial 1 Orange Pink Light-Green Yellow
Trial 2 Pink Yellow Orange Light-Green
Trial 3 Light-Green Yellow Orange Pink
Trial 4 Yellow Light-Green Orange Pink
Trial 5 Yellow Orange Pink Light-Green

We performed 5 experiments; in all five, the robot correctly exe-
cuted the task. The order in which the robot visited the targets dur-
ing the Visit targets subtask is shown in Table 1. Since the robot’s
paths are different from one experiment to another, due to limited
sensing and uncertainty in searching for the colored targets, the
robot opportunistically visited the targets as it encountered them.

We thus show that both sequential and opportunistic execution
can be enforced and respectively allowed in a unique task represen-
tation, within a behavior-based framework.

4.1 Discussion
Several aspects of the experiments presented above show the ad-

vantage of the hierarchical representation. First is the ability to en-
code tasks of increasing levels of abstraction, which facilitates the
modular representation of higher-complexity tasks in the behavior-
based framework. Second is that by “abstracting” already known
tasks into NABs, the complexity (connectivity) of the networks that
might include those NABs as subtasks is greatly reduced. The ab-
straction eliminates unnecessary network links that would have to
be specified to and from all the behaviors of a subtask in order to
ensure proper execution and sequencing. For the experiment pre-
sented above, the number of network links would be increased from
31 to 60, from a hierarchical to a flat representation.

In the task representation presented above, based on a given set
of behaviors, multiple instantiations of the same behavior are used
within the same NAB or in separate NABs, without customization
or redesign, although in each case they have different activation
conditions. Due to the fact that those preconditions are embed-
ded in the network topology, the behaviors can be reused without
changes in circumstances requiring different activation conditions.

5. RELATED WORK
By augmenting the behaviors with representations of their goals,

we take advantage of both the ability of the deliberative, STRIPS-
like architectures to operate at high-level of abstractions, and the
robustness of BBS. The common approach to bridging the gap be-
tween these architectures is the use of the hybrid (or three-layer)
systems [9], [1], [3], [6], which need a middle layer to interface
between the different representations and time-scales between the
physical and the abstract levels. In these examples, since the be-
haviors themselves do not contain any type of representation, in
order to perform a more complex task, behaviors have to be acti-
vated from a higher level, which runs at a slower time scale and
uses a different representation. In contrast, our architecture does
not alter the nature of behavior-based systems and allows complex
controllers to be specified in terms of real behaviors having the
same representation and time scale.

In [6] for example, the Sequencer (which activates the robot’s
skills to perform a given the task) relies on event monitors (sent
from the skill manager) to detect when certain world state has been
achieved. While this approach requires the use of wait-for state-
ments to block the task until event messages are received and posted
into a RAP memory, within a behavior network the transition be-
tween task steps flows naturally since the behaviors are able to con-
tinuously detect the relevant environmental conditions.

An early example of embedding representation into BBS was
done by [12]. The representation was also constructed from be-
haviors, and was used exclusively for mapping and path planning.
While the approach successfully integrates deliberative capabilities
into a BBS, it is limited to the navigation task, while our repre-
sentations are meant to be task-independent and could embed any
general behaviors representing the robot’s capabilities: in our case,
both navigation and object manipulation.

An approach to robot programming related to ours has been done
by [10]. They introduce the notion of Robot Schemas, formally de-
fined using the port automaton model [18], and Assemblage Schemas
to construct nested robot task representations. A key difference
from their work is that in our approach behaviors may interact
by actually enabling/disabling or activating/inhibiting each other.
As presented in the description of the NABs’ execution, this ap-
proach also reduces the computational effort, since only the behav-
iors within the currently active subnetwork would be running, the

rest of them being disabled.
Hierarchical architectures for behavior control have also been

developed for agents embedded in virtual environments. [5] de-
scribes a Parameterized Action Representation (PAR), to hierarchi-
cally encode the actions of a virtual human agent. The Hierarchi-
cal Agent Control Architecture (HAC) presented in [4] uses three
hierarchies: for action, for sensors, and for context. The hierar-
chy for structuring the sensory information into increasing levels
of abstraction is similar to our goal representation for the abstract
behaviors, but it is not linked with the behaviors whose goals it
represents. Both the above methods also maintain models of the
environment and update these models as a result of the agent’s ac-
tions, an approach which is generally not practical in dynamic real-
world domains. Another difference is that the knowledge about the
ordering of the steps in a task is maintained at a higher-level re-
sponsible with the activation of high-level actions or PARs [4]; we
encode this task-specific ordering information into behavior links
which naturally make the transition from one behavior’s execution
to another.

6. FUTURE WORK
Our architecture, in its non-hierarchical form, has been success-

fully used for learning task representations from demonstrations
of both human and robot teachers [14], and also for robot-human
communication and interaction [15]. An immediate extension of
this work is to use the architecture for learning hierarchical task
representations, by abstracting already learned, flat representations
and/or directly from demonstration, by using a minimum set of
guiding symbols that could signal parts of the task that can be en-
capsulated together.

At the level of the expressive power of the representation, we
are interested in including the possibility for alternate (disjunct)
activation conditions that would enable behaviors to be activated
by a richer set of conditions.

7. CONCLUSION
This paper presented a Hierarchical Abstract Behavior Represen-

tation, which extends standard behavior-based architectures with
typically AI-level concepts. Toward this end we addressed sev-
eral limitations of BBS: the lack of abstract representation, which
makes them unnatural for complex problems containing temporal
sequences, and the lack of generality, which requires system re-
design from a task to another. The architecture also allows for hier-
archical task decomposition and both sequential and opportunistic
modes of execution. The approach was validated on experiments
with a Pioneer 2DX mobile robot.

Acknowledgments
This work is supported by DARPA Grant DABT63-99-1-0015

under the Mobile Autonomous Robot Software (MARS) program
and by the ONR Defense University Research Instrumentation Pro-
gram Grant N00014-00-1-0638.

8. REFERENCES
[1] P. A. Agre and D. Chapman. What are plans for? Journal of

robotics and autonomous systems(1&2), June 1990, 6:17–34,
1990.

[2] R. C. Arkin. Behavior-Based Robotics. MIT Press, CA,
1998.

[3] R. C. Arkin and T. Balch. Aura: Principles and practice in
review. Journal of Experimental and Theoretical AI,
2-3:175–189, Apr-Sep 1997.

[4] M. S. Atkin, G. W. King, D. L. Westbrook, B. Heeringa,
A. Hannon, and P. Cohen. Spt: Hierarchical agent control: a
framework for defining agent behavior. In Proc., Intl. Conf.
on Autonomous Agents, pages 425–432, May 2001.

[5] R. Bindiganavale, W. Schuler, J. M. Allbeck, N. I. Badler,
A. K. Joshi, and M. Palmer. Dynamically altering agent
behaviors using natural language instructions. In Proc., Intl.
Conf. on Autonomous Agents, pages 293–300, June 2000.

[6] R. P. Bonasso, R. J. Firby, E. Gat, D. K. D. Miller, and
M. Slack. Experiences with an architecture for intelligent,
reactive systems. Journal of Experimental and Theoretical
Artificial Intelligence, 9(2–3):237–256, 1997.

[7] D. Chapman. Planning for conjunctive goals. Aritifical
Intelligence, 32:333–377, 1987.

[8] R. E. Fikes and N. J. Nilsson. Strips: A new approach to the
application of theorem proving to problem solving. Artificial
Intelligence, 2:189–208, 1971.

[9] E. Gat. On three-layer architectures. In D. Kortenkamp, R. P.
Bonnasso, and R. Murphy, editors, Artificial Intelligence and
Mobile Robotics, pages 195–210. AAAI Press, 1998.

[10] D. M. Lyons and M. A. Arbib. A formal model of
computation for sensory-based robotics. IEEE Transactions
on Robotics and Automation, 5(3):280–293, June 1989.

[11] P. Maes. Situated agents can have goals. Journal for Robotics
and Autonomous Systems, 6(3):49–70, June 1990.

[12] M. J. Matarić. Integration of representation into goal-driven
behavior-based robots. IEEE Transactions on Robotics and
Automation, 8(3):304–312, June 1992.

[13] M. J. Matarić. Behavior-based control: Examples from
navigaton, learning, and group behavior. Journal of
Experimental and Theoretical Artificial Intelligence,
9(2–3):323–336, 1997.

[14] M. N. Nicolescu and M. J. Matarić. Experience-based
representation construction: learning from human and robot
teachers. In Proc., IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems, pages 740–745, Maui, Hawaii, USA, Oct 2001.

[15] M. N. Nicolescu and M. J. Matarić. Learning and interacting
in human-robot domains. In C. C. White and K. Dautenhahn,
editors, IEEE Transactions on Systems, Man, and
Cybernetics,Part A: Systems and Humans, Special Issue on
Socially Intelligent Agents - The Human in the Loop,
volume 31, pages 419–430. IEEE, September 2001.

[16] P. Pirjanian. Behavior coordination mechanisms -
state-of-the-art. Tech Report IRIS-99-375, Institute for
Robotics and Intelligent Systems, University of Southern
California, Los Angeles, California, 1999.

[17] S. Russell and P. Norvig. AI: A Modern Approach. Prentice
Hall, NJ, 1995.

[18] M. Steenstrup, M. A. Arbib, and E. G. Manes. Port automata
and the algebra of concurrent processes. Journal of
Computer and System Sciences, 27(1):29–50, Aug. 1983.

[19] B. B. Werger. Ayllu: Distributed port-arbitrated
behavior-based control. In Proc., The 5th Intl. Symp. on
Distributed Autonomous Robotic Systems, pages 25–34,
Knoxville, TN, 2000. Springer.

