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Abstract— Extracting microorganisms from their natural en-
vironment has become a popular technique. These metagenomic
fragments lack enough information that can mark them into
taxonomic groups. In this paper, we implement a fuzzy k-
means classifier to separate fragments into taxonomic groups
present in a metagenomic data set. The fuzzy classifier is used to
group shotgun sequence fragments as small as 500 base pairs
according to their DNA signatures, namely GC Content and
oligonucleotide frequencies. A comparison of using different
signatures is done and we analyze results and compare them.
The classifier is also tested to classify Acid Mine Drainage
metagenome into classes to represent the major Archea and
Bacteria groups. The classification achieved an accuracy of 99 %
for Acid Mine Drainage a published environmental genome
sample.

I. INTRODUCTION

DNA is the building block of all life on this planet, from
single cell microscopic bacteria to more advanced creatures
such as humans. Microorganisms live in communities, and
their structure and behavior is influenced by their habitat.
Most microorganisms genomes are known from pure cul-
tures of organisms isolated from the environment, be it a
natural organism-associated (i.e, human) or artificial system.
Cultivation-based approaches miss majority of the diversity
that exists however, such that development of cultivation-
free methods has been implied. In the past, microbial DNA
was sequenced by culturing microorganisms in a controlled
environment. Cultivating these organisms did not reveal
enough information about these communities of organisms.
Invitro cultivation methods allow the extraction of DNA
from only a limited selection of microbial species that can
grow in artificial environments. These methods do little to
characterize the properties of globally distributed microbes,
because the vast majority of them have not been cultured.
New techniques in genomic sciences have emerged that
allow an organism to be studied in its natural habitat as
part of a community. Research has broadened from studying
single species to understanding microbial systems and their
adaptations to natural environments.

Metagenomics involves sampling of microbial DNA from
natural environments rather than relying on traditional, single
species cultivation techniques. In this approach DNA of
multiple microorganisms is collected from its environment
rather than culturing it. This, coupled with rapid develop-
ments in molecular biology is changing our understanding
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of bacterial evolution and naturally existing microbial sys-
tems. As an illustration, traditional culture and PCR-based
techniques showed a bias of Firmicutes and Bacteroides as
the most abundant microbial groups in the human gastroin-
testinal (GI) tract. Metagenomic sampling has revealed that
Actinobacteria and Archaea are actually most prolific [9].
Research has broadened from the study of single species
to understanding microbial systems and their adaptations to
natural environments. This has been achieved by developing
methods which can extract mixed DNA directly from envi-
ronmental samples [2], [17]. In this way, metagenomics is
the application of modern genomic techniques to the study
of microbial communities in their natural environments, by-
passing the need for isolation and lab cultivation of individual
species [4].

The whole genome(DNA) or metagenome population can-
not be sequenced all at once because available methods of
DNA sequencing can handle only short stretches of DNA
at a time. Although genomes vary in size from millions of
nucleotides in bacteria to billions of nucleotides in humans,
the chemical reactions researchers use to decode the DNA
base pairs are accurate for only 600 to 700 nucleotides
at a time [27]. Genomes are cut at random positions then
cloned to obtain the smaller fragments, also known as
shotgun sequences. Obtaining shotgun sequences has allowed
sequencing projects to proceed at a much faster rate, thus
expanding the scope of the realistic sequencing venture [26].

Even though the metagenomic approach makes the ac-
quisition of genomic fragments easier, the approach has
limitations. The diverse genomes fragments acquired together
at the same time need to be assembled to make meaningful
conclusions. Assembly is a computationally expensive pro-
cess and can become slow for large data set. The metagenome
approach of acquiring DNA fragments often lack suitable
phylogenetic marker genes, rendering the identification of
clones that are likely to originate from the same genome
difficult or impossible [18]. Therefore taxonomical classifi-
cation of genomic fragments can help assembling sequence.

Pre-assembly grouping of metagenomic fragments into
classes can lead to faster and more robust assembly by re-
ducing the search space. This is because DNA from different
organisms could be seperated into groups, thus assembly of
smaller groups can replace assembling the entire data set.
Fuzzy logic is used for classification as sequences contain
some errors, thus approximate results suit that data better
than crisp results. In this paper we perform a taxonomical
classification based on genomic DNA signatures. The DNA
signatures chosen are GC content, tri- and tetra-nucleotide



frequencies. The proposed method uses a fuzzy classifier
with the given signatures as feature set. The technique
is verified with artificial shotgun sequences created using
strains of Escherichia coli to measure correctness. It is also
used to classify acid mine drainage environmental sequences.

Even though studies have successfully taxonomically dif-
ferentiated fragments of sizes greater than 1000bp [19], [24]
, there is a lack of availability of applications that classify
shorter(500-900bp) shotgun fragments. Our approach is de-
signed with goal of classifying these types of fragments.
We present a tool that allows user to read fragments and
obtain groups of classes that represent taxonomical groups.
The remainder of this paper is laid out as follows: Section II
presents background information on environmental genomics
and DNA signatures. Section III gives an overview of K-
means clustering algorithm. Section V contains the conclu-
sions and future work.

II. BACKGROUND

This section covers the literature review of environmental
genomes, DNA signatures and sequence differentiation. We
will discuss DNA signatures that are used in our current
approach. The sections cover GC content and nucleotide
frequencies.

A. Environmental Genomics

Cultivating microorganisms in isolation does not reveal
much information about their environment. This culture
independent approach was first used more than two decades
ago [12]. Metagenomics or environmental genomics has
impacted microbiology by shifting focus away from clonal
isolates towards the estimated 99% of microbial species that
cannot currently be cultivated [4], [7], [15]. An illustrative
example of this is the Sargasso sea project [21]. Microbial
samples collected through the filtering of sea water contained
large amounts of novel genetic information including 148
new bacterial phylotypes, 1.2 million new genes, and 782
new rhodopsin-like photoreceptors. Bacteriorhodopsin en-
ables the capture of light energy without chlorophyll, it was
previously unknown that this type of phototrophy was quite
abundant in marine waters. A similar metagenomic project
giving new insight into natural existing bacterial systems was
the sampling of an underground Acid Mine Drainage(AMD)
biofilm [20]. Because this sample was from a system with
low complexity, almost all DNA from species present were
completely reconstructed. This allowed the examination of
strain differences and naturally forming lineages. It also
enabled access to the full gene complement for at least two
species, providing detailed information such as metabolic
pathways and heavy metal resistance.

Separation of specific genomic fragments and reconstruc-
tion is a complex process that involves identification of
certain features exhibited by entire taxonomic groups. These
features are used to group the metagenomic sample into
classes.

B. DNA Signatures

DNA signatures are specific patterns that are observed
within a DNA strand. These patterns can be observed in
specific regions such as coding region or can be observed
throughout a genome. There have been several studies on the
patterns found in DNA sequences. These patterns can lead
to certain information about the DNA or a region within the
DNA. In context to this paper we will mention two kinds of
signatures GC Content and oligonucleotide frequencies.

A DNA strand consists of four nucleotide Adenine(A),
Cytosine(C), Guanine(G) and Thymine(T). These four nu-
cleotide have hydrogen bonds that bond them with each other.
A bonds specifically with T and C bonds with G. AT pairs
have two hydrogen bonds whereas GC pairs have three. The
three hydrogen bonds of CG pairs is the fact that makes the
bonds thermostable.

GC content is found to be variable with different or-
ganisms, this is viewed to be contributed by variation in
selection, bias in mutation, etc. [1]. Coding regions within
a genome code for genes and are less divergent within
populations. Genes represent characteristics of an organism
and have a stronger selection process. Studies have shown
that the length of the coding sequence is directly proportional
to higher GC content [11]. Thus showing a strong correlation
between GC content and gene properties. GC content is
generally higher as organisms go higher in the taxonomy
and becomes low as we go down the taxonomic groups. This
property of GC content can be a useful feature to obtain a
broad classification of sequences. The pre-assembly binning
of Acid Mine Drainage data was performed by binning the
fragments by their GC Content [20].

Another signature that has been used frequently for anal-
ysis of genome sequences are oligonucleotide frequencies.
Nucleotide frequencies are a measure of occurrence of words
of fixed sizes in the genomic sequence. The entire genome
is scanned to determine the frequencies of each word. The
reverse complement of the strand can be scanned n addition
to the forward strand.

Studies have shown that oligonucleotide composition
within a genome contains bias. These oligonucleotide usage
patterns are known to be species-specific [8]. Phyloge-
netically related groups of sequences may show similar
nucleotide frequencies either because of convergence or
because they were inherited from a common ancestor [5]. For
example a study conducted on E-coli revealed a non random
utilization of codon pairs [6]. Some of the most frequent
codon pairs found were: CTGGCG, CTGGCC, CTGGCA,
CTGGAC, AACCCG, CTGGAA. This study and others
reveal that there is a non random over representation and
under representation of certain codon pairs within a species.
Nucleotide frequencies are generally taken from a group of
two, three, four, five, or six nucleotides. These are known
as di-, tri-(codon), tetra-, penta-, hexa- (dicodon) nucleotide
frequencies respectively. Frequencies of larger word size such
as penta, dicodon frequencies are considered more reliable
as they are robust to insertions and deletions. Obtaining



frequencies of larger groups of nucleotides depends on the
size of data set. If we were to calculate dicodon frequencies
there are a total of 4096 dicodons, a small sample of genomic
sequence may not be able to cover the 4096 dicodons.
The same sample can easily include all 256 tri nucleotide
frequencies. Most commonly used frequencies are tri- and
tetra-nucleotides.

Nucleotide frequencies have been extensively used for
grouping genomes or for differentiation of genomes. Eval-
uation of frequencies for separation of fragments based on
taxonomy was performed by Teeling et al [19]. In this paper
Teeling et al showed that GC content is not sufficient for
separating fragments. Tetra nucleotide frequencies showed
better differentiation. Fragments of size 40kb were used for
the analysis. TETRA, a web based application uses tetra
nucleotide frequencies for genome separation [18]. Another
grouping based on tetra nucleotide frequencies resembles the
phylogenetic grouping of the representative organisms [14].
In another approach differentiation of bacterial genomes was
performed using statistical approaches to perform structural
analysis of nucleotide sequences [16].

C. Clustering

Clustering of fragments may be viewed as a more struc-
tured form of fragment thinning before alignment com-
parisons are made. Clustering is a process of grouping
objects into like groups based on some measure of simi-
larity. Clustering or classification can be achieved by several
techniques such as K-means, Bayesian networks and artificial
neural networks. A divide-and-conquer strategy for sequence
assembly is described in [13]. A K-means clustering scheme
was applied to fragments based on their Average Mutual
Information (AMI) measures.

K-means is an unsupervised learning algorithm to group
objects into categories. It has been widely used in pat-
tern recognition problems. The simplest K-means algorithm
places N objects into K classes by using the minimum
distance from the center of K to each object. In the simple
K-means approach, K is fixed a priori. Clustering problems
generally derive some kind of similarity between groups of
objects. K-means clustering is a simple and fast approach
to achieve a grouping for data. A well-known approach to
fuzzy classification is the fuzzy C-means algorithm [25].
An improvement of K-means using the fuzzy logic theory
was presented [3], in which the concept of fuzziness was
used to improve the original K-means algorithm. A K-means
algorithm starts with a large number of seeds (initial samples)
for the potential clusters. It uses a set of unlabeled feature
vectors and classifies them into K classes, where K is given
by the user. From the set of feature vectors K of them
are randomly selected as initial seeds. Remaining samples
are then assigned to a cluster based on their distance from
the seed. The feature vectors are assigned to the closest
seeds depending on their distance from it. The centroid
is recomputed for each cluster and the data points are
reassigned. The algorithm runs until it converges or until
the desired number of clusters is obtained.

Due to its simple method of using feature vectors as seeds
and the arithmetic mean as the center for the clusters, the K-
means algorithm suffers from drawbacks. An improvement to
this approach was to start with a huge random population of
seeds [22]. This method has been shown to find better seeds,
since the initial seeds are more than K and are distributed
in the data set. Even though this was an improvement on
the simple K-means, it was limited in its ability to find
better centers, since the mean does not always represent the
center of a given data. A modified K-means was developed
that uses a weighted fuzzy average instead of the mean to
get new cluster centers. Using a fuzzy weighted average
instead of a simple mean improved K-means and also leads
to convergence [3]. In this paper, a modification of the fuzzy
K-means algorithm with fuzzy weighted averages is used for
fragment clustering.

III. AN OVERVIEW OF THE ALGORITHM

The first step to classification is the identification of
the DNA signatures. After the signatures are extracted the
feature vector is initialized. The k means algorithm is run to
create initial classes. The DNA signatures extracted using the
Markov chains are used as feature set for a modified fuzzy
k-means algorithm. The fragment classification divides entire
data sets into smaller categories.

The operations carried will be described in the following
subsections. In Subsections III-A and III-B we describe the
method to obtain the nucleotide frequencies and the modified
k-means approach for classification in Subsection III-C.

A. GC Content

GC content can be expressed as the percentage of C and
G present in the fragment. It is calculated as follows

C+dG
A+C+G+T

GC content of two genomes from Acid Mine Drainage
(AMD) environmental sample is illustrated in Figure 1. The
histogram of GC content is taken over a window size of 700
nucleotides (nt). The classes shown belong to archea and
bacteria groups, indicating that the two groups do not have
close features. The histograms obtained for the two classes
of AMD sample indicate that there is small region of overlap
between these datasets. But most of the fragments have non-
overlapping GC content.

Figure 2 shows that the GC content of the two e-
coli genomes. The two plasmids sequences belong to the
Escherichia coli Proteobacteria obtained from NCBI [10].
The first sample is Escherichia coli plasmid pCoo, RefSeq:
NC_007635. This complete sequence contains 98,396 base
pairs. The second sequence is Escherichia coli plasmid,
RefSeq: NC_008460, 120,730 base pairs. In both Figure 1
and Figure 2 the histogram of the genomes have overlap one
another. The histogram for two Ecoli strains has a larger
overlap region indicating that these two sequence groups
are closer in phylogeny. These strains belong to the bacteria
group and are close in phylogeny and thus their GC content

x 100 N



is similar. This indicates that sequences belonging to similar
subtypes have close GC content values.

GC Content can prove to be a good parameter to separate
fragments. Even though, GC content can separate fragments
certain factors need to be considered when using GC content.
Fragment size is a factor that needs to be considered, local
biases from fragments of smaller size can influence the GC
Content value. GC content is known to be more influential in
coding regions. Shotgun fragments of metagenomes do not
contain information that reveals directly whether certain frag-
ment contains coding regions or the percentage of fragment
region that can code for a gene.
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Fig. 1. Histogram of Acid Mine Drainage classes: AMD LG2 refers to
Leptospirillum sp. Group II environmental sequence of length:960,150 nt.
AMD Gl is Ferroplasma sp. Type Il environmental sequence of length:
1,317,076 nt.
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Fig. 2. Histogram of Ecoli strains: Ecoli 1 corresponds to Escherichia coli
plasmid pCoo, RefSeq: NC_007635. Ecoli 2 corresponds to Escherichia coli
plasmid, RefSeq: NC_008460.

B. Nucleotide frequencies using Markov Chain Model

Markovian models have been used in several fields such
as statistics, physics, queuing theory etc. Hidden Markov

models are used in pattern recognition to represent unknown
probabilities. Markov chain predictors have been used to
predict coding regions thus find genes. They have been used
for both prokaryotic and eukaryotic genomes. The simplest
chain is the zeroth order Markov chain which can be esti-
mated from the frequencies of individual nucleotides A, C,
G, T. The approach used to estimate Oth order Markov chain
rules is shown below. Consider the sequence GGATCCC the
nucleotide frequency is given by:

P(GGATCC) = p(G)p(G)p(A)p(T)p(C)p(C) ()

Higher order oligonucleotides can also be determined us-
ing zero-order Markov method. It was shown that zero-order
Markov method yields greater inter-species distinction [14].
Zero-order Markov method removes biases only from mono
nucleotide frequencies thus includes all other oligonucleotide
frequencies. Given the dinucleotide frequencies the tri nu-
cleotide frequencies can be estimated by the product of
the constituting overlapping dinucleotide frequencies being
divided by overlapping single nucleotide frequencies.

p(GG)p(GA)p(AT)p(TC)p(CC)
p(G)p(A)p(T)p(C)

Higher order Markov chains can also be constructed using
only the previous state frequencies. Maximal order Markov
chain removes biases from all the previous states and is
dependent on only the past state. In our approach we use
tri-nucleotide frequencies and tetra-nucleotide frequencies.
These can be calculate using a maximal-order Markov chain.
Expected values are directly calculated from the observed
values as shown in equation 4. In equation 4 and equation 5,
O refers to the observed values and E is the expected value.

P(GGATCC) =

3
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C. Fuzzy K-means Clustering

Clustering for a meta-genome assembly problem has a two
fold purpose, the first to divide the space for performance
improvement. The second purpose of clustering is to group
fragments into classes such that each class has fragments
from one group. The K-means algorithm uses a set of
unlabeled feature vectors and classifies them into k classes.
From the set of feature vectors k of them are randomly
selected as initial seeds. The feature vectors are assigned to
the closest seed. The mean of features belonging to a class
is taken as the new center.

The approach used in this paper is described as follows.
Given N sequences, such that S={C} ¢where C ={A, C,
G, T}. We randomly select “K” sequences as the initial
seeds, where K is less than the number of sequences N. The
nucleotide frequencies and GC Content for all sequences are



calculated using the above equations. These frequencies form
the p features to be used in classification.

The sequence is assigned to the class which has the highest
fuzzy similarity. The fuzzy similarity is calculated as given
below. Let x1, ..., xp be a set of P real numbers. The number
of iteration is given as r. The weighted fuzzy average (WFA)
is given by

pr= Y w, v =0,1,2,... (6)
p=1,P

Here x is the parameter or feature and p the number of
features. Given i=0,...,N and j=0.,... .k, the distance d ; ; for
each cluster can be calculated as follows:

dij = max(pu}), for all j=0,....k @)

An initial mean is taken and a Gaussian is centered over the

mean and weight w,, is obtained for x p. Feature vectors are
assigned to each seed. Empty or small classes are eliminated.
Classes that are close to each other are merged to form
one class. Cluster centers are replaced with weighted fuzzy
averages and feature vectors are reassigned. This process is
repeated until convergence.

IV. CLUSTERING VIA FEATURE EXTRACTION

This section shows the results obtained and describes the
genomes used to test the approach.

A. Artificial Shotgun Sequence Testing

To assess the performance of fuzzy clustering on genomic
sequences, two genomes that are significantly different are
used for the first test case. Fragments are generated from
genome belonging to plants and a virus genome sample.
These fragments are mixed with each other. The classifier
first extracts the GC content and the nucleotide frequencies
and classifies the fragments into categories. The classifier is
run until compact classes are generated. These ‘k’ classes are
greater than or equal to the actual number of genomes classes
used. Fragments of average size 750 base pairs (between 500-
900) are used in this test case. Table I shows the results
obtained after classifying these two samples. In Tables I
and II, GC refers to clustering with GC content, T, refers
to tri nucleotide and T'R, tetra nucleotide frequencies using
zero order Markov chains. T'R,, refers to tetra nucleotide
frequencies using maximal order Markov chain, 7T, is
the tri nucleotide frequencies using maximal order Markov
chain. Combinations of different signatures are shown by
hyphenating individual frequencies. A value of NA represents
that the signatures could not separate the fragments into
groups and all the data was placed in one class.

B. Acid-Mine Drainage Metagenome

Acid-Mine Drainage Metagenome (AMD) was obtained
from Richmond Mine at Iron Mountain, CA. Acid mine
drainage environmental genome was shown to contain 5
genomes. We use shotgun sequences of two genomes of
AMD, namely Leptospirillum sp. Group II (Lepto) envi-
ronmental sequence and Ferroplasma sp. Type II(Ferrop.

# Fragments classified incorrectly
Sequence Genome 1 Genome 2 Total %
GC 39 1 0.08
T. NA NA NA
TR, NA NA NA
GO -T,—-TR. 18 32 0.1
Tm 7 0 0.02
TRm 15 0 0.03
Tm-TRm 11 3 0.028
GC — Ty —TRn 5 1 0.012
TABLE I

SEPARATING 500 FRAGMENTS BELONGING TO TWO ORGANISMS USING
DIFFERENT SIGNATURES

Type II) environmental sequence. These sets are 960,150 and
1,317,076 nucleotide base pairs respectively. The first group
belongs to the bacterial genus Leptospirillum; the second one
is an archea from the genus ferroplasma. These genomes
are almost complete and are available at NCBI. Shotgun
sequences of average size 700 base pairs (sizes between
500-900) were created from these genomes. These shotgun
fragments are randomly combined with each other to cre-
ate a environmental genome sample of AMD metagenome.
Figure 3 depicts the classification results on AMD data. A
smaller set of 3000 sequences was used for the display.
Figure 3 indicates that combination of GC content and GC
skew were able to separate the two classes. There are few
cases where fragments were marked incorrectly.

Classification of AMD G1 and AMD LG2

AMD G1
+AMD LG2

@
+
.

-

2.
+

P S

0 02 04 06 08 1 12
GC Content

Fig. 3.  Classification using GC Content for 3000 Shotgun Sequence
Fragments obtained from AMD G1 and AMD LG2

The results of classification using the modified k-means
approach using DNA signatures is given in Table IL.It com-
pares the classification results for the two AMD genomes.
Fragments with average length of 700 base pairs are used.
Classification was performed using different combinations of
signatures and the results are displayed in Table II. The final
classification resulted in two groups one with fragments from
Lepto and another with Ferrop. Type II fragments respec-
tively. The results indicate that frequencies obtained using



maximal order Markov chain created the better classification
than zero order. Combination of different signatures also
resulted in lesser misclassifications.

# Fragments classified incorrectly
Sequence Lepto. Ferrop. Type II Total %
GC 500 27 0.026
T. NA NA NA
TR. NA NA NA
GC-T, -TR, 640 27 0.033
T 147 16 0.0081
TRm 170 6 0.0088
Tm- TRm 127 10 0.0068
GC —Tin —TRm 129 11 0.007
TABLE II

SEPARATING 20K FRAGMENTS FROM AMD INTO TWO CLASSES USING
DIFFERENT SIGNATURES

V. CONCLUSIONS AND FUTURE WORK
A. Conclusions

The paper proposes a fuzzy clustering algorithm to classify
shotgun genome fragments into taxonomical classes using
combination of DNA signatures. In this paper we proposed
few DNA signatures as feature set for genome classifica-
tion. Results were obtained for an artificial set that was
constructed using two different genomes. We classified this
set using different signatures, and combination of signa-
tures. Our approach could successfully classify sequences of
lengths smaller than 1000 base pairs. We also tested AMD
metagenome and classified it into two groups. The results
obtained indicated that maximal order Markov chains were
the best separators and obtained the best classification. Zero
order Markov chain could not classify the data. This could
be due to the fact the zero-order chain does not remove
dependencies from previous frequencies.

B. Future Work

The results indicate that we were able group shotgun
sequences by their frequencies and GC Content. We would
like to add higher level frequencies such as penta nucleotide,
dicodons, etc. We would like to perform analysis of DNA
signatures to find the best discriminatory oligonucleotide
pairs. This will enable selection of features that suit the data
set rather than using all available frequencies. Improvement
to this technique would be to measure the clustering validity
and determine the number of classes. We would also like to
build a taxonomical pyramid using frequencies that indicates
the level in taxonomy that can be classified using DNA
signatures.
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