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Abstract

A multisensor based on tin and tin–titanium oxides has been utilised to detect pollutant gases (NO2, CO, toluene and octane). The
sensitive layers are deposited by r.f. reactive sputtering. Some tin oxide sensors are doped with Pt. Measurements are carried out with
single gases and gas mixtures (two and three gases) in dry air at 250◦C.

An exhaustive analysis of several networks and feature extraction and selection is done to discriminate among four different pollutant
gases. First the sensor responses are analysed with principal component analysis (PCA). The results are not good enough for mixtures.
Then several pre-processing techniques and several artificial neural networks (ANN) are studied. Two models of neuronal networks are
used: probabilistic neural network (PNN) and multilayer perceptrons (MLP). A selection of the sensors and of pre-processing techniques
was made with a genetic algorithm (GA).
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Atmospheric pollution may be defined as the presence in
the atmosphere of harming substances to the man or the en-
vironment. Those pollutant can be the result of man-made
activities or natural process. Typical atmospheric pollutants
from man-made activities include nitrogen oxides, carbon
monoxide, sulfur dioxide and hydrocarbons. All these pollu-
tants are called primary pollutants because they are released
directly into the atmosphere[1].

The control and monitoring of pollutants for ambient air
quality is at the present limited by the techniques currently
approved by the existing standards. Those techniques need
the use of costly analytical equipment. Continuous monitor-
ing of pollutant in air is expensive, so high-density networks
of measurements are usually impracticable.

A potentially more cost-effective way of performing
such measurements is using metal-oxide gas-sensor arrays.
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Sensor array systems use the global information formed by
the responses of all sensors to discriminate among gases. The
signals of the multisensor can be evaluated by techniques
of principal component analysis (PCA) and artificial neural
networks (ANN) with a selection of the possible features
through a genetic algorithm that facilitates the classification
task[2].

Four gases have been selected as pollutant gases: NO2,
CO, toluene and octane. CO and NO2 are two of the main
toxic gases resulting in the polluting processes in the cities.
Toluene and octane are volatile organic compounds (VOCs).
VOCs are important polluting agents because they can: (1)
react with nitrogen oxides in the presence of sunlight to form
ozone and photochemical smog; and (2) be toxic to humans,
animals or vegetation.

In this work, mixtures of selected gases have been de-
tected and a feature extraction followed by an analysis of the
several artificial neural networks have been used for their
discrimination. The impact of the different features are de-
scribed. The performance and training speed of a back prop-
agation neural network and a radial basis neural network has
been compared. Also a genetic algorithm has been applied
to select the features.
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2. Experimental

The multisensor consisted of eight sensing elements
deposited by r.f. reactive sputtering from SnO2 and TiO2
targets. Four tin oxide sensors were doped with different
amounts of Pt. The deposition conditions, dopants and ther-
mal treatment were described in previous works[3]. The
characteristics of each sensor are listed inTable 1, doping
levels are expressed as sputtering times (seconds).

The multisensor device was placed in a stainless steel test
chamber and it was characterised by dc electrical measure-
ments.

A 200 ml/s flow of dry air was used to achieve a line base.
Then an automatic system controlled via PC switched the
flow of gas with pollutants for 10 min. Afterwards dry air was
fluxed until achieving a base line stable again. The resistance
of the sensors is recorded during all the experiment every
60 s.

Measurements were carried out with single gases and gas
mixtures (two and three gases) in dry air at 250◦C.

The concentrations go from 50 to 200 ppm for reduc-
ing gases and from 0.5 to 2 ppm for NO2. Every experi-
ment is repeated three times. The number of experiments
carried out for binary and ternary mixtures are 72 and 96
respectively.

3. Data analysis

Feature extraction methods, pattern recognition algo-
rithms and the genetic algorithm were implemented using
Matlab [4].

Fig. 1. PCA plot for single gases.

Table 1
Multisensor distribution

Sensor Semiconductor material

S1 SnO2 (300 nm)
S2 SnO2 (400 nm)
S3 SnO2 (150 nm)–Pt (8 s)–SnO2 (150 nm)
S4 SnO2 (150 nm)–Pt (16 s)–SnO2 (150 nm)
S5 SnO2 (200 nm)–Pt (8 s)–SnO2 (200 nm)
S6 SnO2 (200 nm)–Pt (16 s)–SnO2 (200 nm)
S7 SnO2 (300 nm)–TiO2 (150 nm)
S8 SnO2 (400 nm)–TiO2 (150 nm)

3.1. Principal component analysis

Principal component analysis is a linear method to reduce
the dimensionality of the data. Once this analysis is done
we can plot all data in only two axes.

The PCA results for individual gases are shown inFig. 1.
As can be observed the cluster for NO2 is well separated
from the rest. Nevertheless, for reductor gases (CO, toluene
and octane) the separation is not so good and in some cases
they are overlapped.

For binary and ternary mixtures the PCA plot shows a
great overlapping among the measurements with and without
NO2 (Fig. 2). The overlapping becomes worse if we plot the
other gases.

3.2. Feature extraction

In many cases the sensor response can also be improved
considering the transient states (drift, abrupt changes). These
states can be a very important part of the sensor signal



124 M. Aleixandre et al. / Sensors and Actuators B 103 (2004) 122–128

Fig. 2. PCA plot of mixtures with and without NO2.

and the analysis techniques should analyse them. Different
feature extractions can be considered to obtain more infor-
mation and to facilitate therefore the separation and iden-
tification of compounds. These coefficients were selected
because they were significantly different for the analysed
gases.

In Fig. 3 is shown the sensor signal during a detection
cycle. The measurement procedure is carried out in three
steps. In each one of these a constant flow (200 ml/m) is
supplied to the multisensor. The first step determines the
sensor baseline. The second step is the detection process
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Fig. 3. Variation of the sensor resistance during a typical detection process.

(10 min). In the last step, the recovery process re-establishes
the baseline (30 min).

Fig. 4shows the response of sensor S3 to different ternary
mixtures (M1 and M2). The concentrations of each mixture
are shown inTable 2. The M1 mixture is formed by nitrogen
dioxide, toluene and octane. On the other hand, the mix-
ture M2 is formed by carbon monoxide, toluene and octane
(reducing gases). The sensor response is specific for each
concentration and for each gas. Each sensor has a different
rate of desorption and adsorption that is conditioned by the
reactions on the sensing surface.
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Fig. 4. Dynamic response to different mixtures of sensor S3.

A number of different features of the data were used to
train the networks. Maximum response was measured when
the flow of pollutant gas is switched off/turn off (10 min).
Responses at 5, 10 and 15 min correspond to the middle of
the duration of the pollutant gas flow (5 min, data at point
A of Fig. 3), the final state of the sensor when the pollutant
gas is turned off (10 min, data at point B ofFig. 3), and
the response at 5 min of the desorption phase (15 min, data
at point C ofFig. 3). Other extraction was made with the
response curve made every minute during 20 min starting
when pollutant gas flow is switched on. The last one was the
wavelet expansion of the response curve. To do this analysis
a Bior 2.2 wavelet was used because the difference between
the original signal and the signal reconstructed with that
wavelet was very low[5].

In all cases the responses have been normalised so their
mean was 0 and their standard deviation was 1.

3.3. Neuronal networks

Two kind of neural networks were utilised to classify the
different gases, a multilayer perceptron (ANN) and a prob-
abilistic neural network (PNN).

Table 2
Mixture concentration

NO2

(ppm)
CO
(ppm)

Toluene
(ppm)

Octane
(ppm)

M1
(a) Mixture 0.5 150 150 0
(b) Mixture 2 50 50 0

M2
(a) Mixture 0 150 150 150
(b) Mixture 0 150 50 50

The neural networks were trained with different sets of
features. The performance was evaluated with leave-one-out
cross validation and the results are shown inTables 4–6
whose parameters are defined inTable 3:

• The letters (A, B, C and D) represent the numbers of
occurrences that satisfy the row and column specifications.

• Accuracy as the percentage of correct predictions.
• Sensitivity as the percentage correct predictions when the

gas is present.
• Specificity as the percentage of correct predictions when

the gas is not present.

The multilayer perceptron used presents the following
characteristics:

• Each gas has an independent network.
• Each of them have a hidden layer of five neurons.
• The output layer is composed by only one neuron.
• The neural network is trained with a back propagation

algorithm.

The structure of the ANN is described in detail elsewhere
[6]. Results of the classification are shown inTable 4, the

Table 3
Parameter to evaluate the network

Predicted

Gas present Gas not present

Real
Gas present A (true-positive) C (false-negative)
Gas not present B (false-positive) D (true-negative)

Accuracy= A + D/(A + B + C + D); Sensitivity= A/(A + C); Speci-
ficity = D/(D + B).
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Table 4
Radial basis neural network results

NO2 CO Toluene Octane

Responses at 10 min
Accuracy (%) 79 83 87 85
Sensitivity (%) 81 82 82 85
Specificity (%) 78 84 91 85

Responses at 5, 10 and 15 min
Accuracy (%) 95 89 99 94
Sensitivity (%) 95 86 100 93
Specificity (%) 96 91 98 94

All points
Accuracy (%) 88 73 92 79
Sensitivity (%) 90 74 93 80
Specificity (%) 86 71 90 78

Wavelet
Accuracy (%) 86 74 90 75
Sensitivity (%) 92 75 95 73
Specificity (%) 80 74 83 76

best results were obtained with the response to 5, 10 and
15 min.

The probabilistic neural network has the following char-
acteristics:

• Each gas also has an independent network.
• The transfer function of the hidden layer is a radial basis

one.
• The output layer has two competitive neurons, one for the

presence of gas and another for its absence.
• The weights of this network are calculated directly from

the training set so its training times are much shorter than
the training times of the former neural network[7].

In theFig. 5a schematic diagram of one layer of the PNN
network is shown. The new data is presented to the network.
Then the distance with each data computed, multiplied by a
bias is passed to the transfer function. Then all the amounts
from the same class are added together and the class with
the highest value is the winner. In this case the classes are
the presence or absence of a gas in the mixture. Each gas
have one of this layer. The results of the PNN are shown
in Table 5. Also for this type of network the best results
are obtained with the answer to 5, 10 and 15 min. Although
the differences among the different features are smaller than
obtained with the MLP networks.

The network performance trained only with the response
at 10 min are the worst. As we add more features to the
training set the performance improves. However there is a
limit, too many features not only requires more calculation
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Fig. 5. Schematic diagram of one layer of the PNN network.

Table 5
Back propagation neural network results

NO2 CO Toluene Octane

Responses at 10 min
Accuracy (%) 92 87 96 86
Sensitivity (%) 93 90 97 87
Specificity (%) 91 84 95 86

Responses at 5, 10 and 15 min
Accuracy (%) 96 91 97 95
Sensitivity (%) 96 91 97 95
Specificity (%) 96 91 96 94

Wavelet
Accuracy (%) 92 88 96 90
Sensitivity (%) 96 91 96 93
Specificity (%) 95 86 96 88

time and space memory but also the performance does not
improves. This is due to the fact that the network has to
generalise a much more complex dependance and sometimes
get stuck in a local minima.

The back propagation with the data of the measurements
made every minute during 20 min was not trained due to the
long training times and memory needed.

3.4. Genetic algorithm

The best feature set of the multisensor measurements had
24 components. In order to reduce this large number a ge-
netic algorithm was implemented[7].

Genetic algorithm (GA) is a computer technique that imi-
tates the evolutionary process of the living organisms. While
evolving, living things acquire not only inherent parental
traits in the process of evolution, but are also influenced by
changes in the environment. Then, through many genera-
tions, gene information makes many changes and adapt to
the environment[8].

The GA has been used extensively as a method of search
in optimization problems[9]. In this work the GA is used
to search the best subset of features with the following con-
siderations:

• Each individual is composed by six combinations of a
sensor and a method of feature extraction done above
whose characteristics have been commented previously
(Section 3.2). The initial population is large enough to
have twice each combination of sensor and feature.

• The evolution of the individuals is done by one-point-
crossover with a rate of 90%. Also mutation of the geno-
type is allowed with a mutation rate of 5%.
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Fig. 6. Scheme of algorithm diagram.

• The five best individuals of the population pass without
changes to the following generation. Also in each gen-
eration, the five worse individuals are eliminated and re-
placed by new individuals composed by the combination
of the sensor and the feature not present in the genetic
population. This is in order to ensure that in each combi-
nation a sensor and a feature are present in the evolution
of the next generation.

As the fitness function of the genetic algorithm we train
a PNN and evaluate his performance with a 30-fold-cross
validation. The details of this network have already been
commented inSection 3.3.

When the algorithms reach 50 generations the gene con-
figuration is very stable and do not change. So the algorithm
is terminated at 50 generations.Fig. 6 shows the algorithm
diagram.

The combination of sensors and features selected by the
genetic algorithm is applied to the PNN and MLP networks.
The results are inTable 6, they are very similar to those of
the latter networks, but the feature space has been reduced
to only six factors. The GA selects four different sensors
(S2, S3, S4 and S6). Also the features selected are different,

Table 6
Back propagation neural network results (with GA)

NO2 CO Toluene Octane

Radial basis
Accuracy (%) 95 91 96 93
Sensitivity (%) 93 91 97 94
Specificity (%) 96 91 95 92

Back propagation
Accuracy (%) 92 95 96 96
Sensitivity (%) 93 94 96 96
Specificity (%) 90 96 96 96

two are from the adsorption process (at 5 min), one from the
final state (at 10 min), one from the desorption (at 15 min)
and two from the wavelets coefficients.

The performance of both networks (seeTable 6) shows
that the networks do not lose classification power with the
reduction of the factor space.

4. Conclusions

PCA allows a good discrimination between NO2 and the
reductor gases (CO, toluene and octane). For reductor gases
the separation is not so good and in some cases they are
overlapped.

The pre-processing techniques and artificial neural net-
works are necessary to detect and classify the gases in the
mixtures. We use different networks and feature extraction
to discriminate among pollutant gases.

The best performance was achieved with the responses at
5, 10 and 15 min in both networks. We can conclude that it is
better to carry out a feature extraction based on the properties
of the signal than a general method of feature extraction.

The overall performance of the back propagation neural
network is better than the performance of the radial basis.
But the training times are much longer. When the optimal
selection of features is used to train the network the perfor-
mance difference between both networks is reduced.

The genetic algorithm was used to reduce the features to
only six. The performance of this six features is similar to
the performances of the others feature selections, so the fea-
ture space has been reduced without loss of discrimination
power.

Also the good result obtained with the classification make
us think about quantification of the gases in the mixtures. But
the networks trained up to date keep a lot of quantification
errors. Probably only a semi-quantitative network could give
a good performance. This semi-quantitative analysis will be
very useful to several applications as alarms or pollutant
level detectors. Next work will address this line.
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