
Written By Yair Moshe, 2002

MATLAB code compilation

One of the best ways to earn some substantial performance increase of MATLAB
code is to compile it using the MATLAB Complier. This is especially beneficial when
the M-files contain some non-interpreter-friendly-statements such as “for” or “while”
loops. MATLAB Compiler is a part of the MATLAB product. It takes M-files as
input and generates C or C++ source code as output. One can also use MATLAB
Compiler to generate C source code for building MEX-files. MEX (MATLAB
Executable) files are dynamically linked subroutines produced from C source code
that, when compiled, can be run from within MATLAB in the same way as M-files or
built-in functions. MEX files interface pre-existing C code with MATLAB without
rewriting the code in MATLAB.

MATLAB Compiler supports almost all the capabilities of MATLAB. However, there
are some limitations that you should be aware of. For example, MATLAB Compiler
cannot compile:

• Script M-files (non functions M-files).
• M-files that dynamically name variables to be loaded or saved.

For a complete list of limitations, please consult the MATLAB Compiler
documentation.

To compile your code, please follow the steps below:

1.
Verify that MATLAB Compiler is installed on your system (it should be) by typing
mcc on the MATLAB prompt. If it’s not installed, install it.

2.
Verify that you have an ANSI C or C++ compiler installed on your system (for
example, Microsoft Visual Studio 6). Note that MATLAB includes an ANSI C
compiler (Lcc) that is suitable for use with the MATLAB Compiler.

3.
MATLAB Compiler uses the mex utility to generate MEX-files from C source code.
On systems where there is exactly one C or C++ compiler available to you, the mex
utility automatically configures itself for the appropriate compiler. So, for many users,
to create a MEX-file, you can simply enter:

mex filename.c

On systems where there is more than one C or C++ compiler, the mex utility lets you
select which of the compilers you want to use. Once you choose your C or C++
compiler, this compiler becomes your default compiler and you no longer have to
select one when you compile MEX-files. For example, if your system has both the
Lcc and Microsoft Visual C/C++ compilers, when you enter for the first time:

Written By Yair Moshe, 2002

mex filename.c

you are asked to select which compiler to use:

mex has detected the following compilers on your machine:

[1] : Lcc C version 2.4 in C:\MATLABR12\sys\lcc
[2] : Microsoft Visual C/C++ version 6.0 in C:\Program Files\Microsoft Visual
Studio\VC98\Bin

[0] : None

Please select a compiler. This compiler will become the default:

Select the desired compiler by entering its number. You are then asked to verify the
information.

4.
It’s now time to verify that your system can create MEX-files from C source code.
The <matlab directory>\extern\examples\mex directory contains C source code for
the example yprime.c. To verify that your system can create MEX-files, enter at the
MATLAB prompt

cd([matlabroot '\extern\examples\mex'])
mex yprime.c

This should create the yprime.dll MEX-file. MEX-files created on Windows
95/98/2000 or NT always have the extension DLL. You can now call yprime as if it
were an M-function. For example:

yprime(1,1:4)

=> ans =
 2.0000 8.9685 4.0000 -1.0947

Note that included in MATLAB is an add-in for Visual Studio that lets you work
easily within the Microsoft Visual C/C++ environment to create and debug MEX-
files.

5.
The last thing to verify is that MATLAB Compiler is correctly installed. For example,
type the following at the MATLAB prompt:

mcc -x invhilb

Written By Yair Moshe, 2002

After a short delay, this command should complete and display the MATLAB prompt.
Next, at the MATLAB prompt, type:

which invhilb

The which command should indicate that invhilb is now a MEX-file; the mex
command should have created the file invhilb.dll. Finally, use invhilb.dll; for example,
type at the MATLAB prompt:

invhilb(10)

6.
If anything went wrong during the above process, please contact the lab application
engineer or one of the lab assistants. If everything went correctly, you are now ready
to compile your M-files.

Good Luck!

