
Co-Evolving Influence Map Tree Based Strategy Game Players

Chris Miles, Juan Quiroz, Ryan Leigh, Sushil J. Louis
Evolutionary Computing Systems Lab

Dept. of Computer Science and Engineering
University of Nevada, Reno

miles, quiroz, leigh, sushil@cse.unr.edu

Abstract— We investigate the use of genetic algorithms to
evolve AI players for real-time strategy games. To overcome
the knowledge acquisition bottleneck found in using traditional
expert systems, scripts, or decision trees we evolve players
through co-evolution. Our game players are implemented as
resource allocation systems. Influence map trees are used to
analyze the game-state and determine promising places to attack,
defend, etc. These spatial objectives are chained to non-spatial
objectives (train units, build buildings, gather resources) in a
dependency graph. Players are encoded within the individuals
of a genetic algorithm and co-evolved against each other, with
results showing the production of strategies that are innovative,
robust, and capable of defeating a suite of hand-coded opponents.

Keywords: Co-Evolution, Game AI, Computer Game, Real-
Time Strategy Games.

Fig. 1. TASpring

I. INTRODUCTION

While AI research has in the past been interested in
games like checkers and chess, modern computer games are
very different and have not received much attention from
researchers [1], [2], [3], [4], [5]. These games are situated in
a virtual world, involve both long-term and reactive planning,
and provide an immersive, fun experience. At the same time,
we can pose many training, planning, and scientific problems
as games where player decisions determine the final solution.

Developers of computer players (game AI) for these games
tend to utilize finite state machines, rule-based scripting
systems, or other such knowledge intensive approaches. To
develop truly competitive opponents these computer players
often cheat, changing the nature of the game in their favor, in
order to defeat their human opponents [6]. These approaches
work well - at least until a human player learns their habits
and weaknesses - but require significant player and developer
resources to create and tune to play competently. Development
of game AI therefore suffers from the knowledge acquisition
bottleneck well known to AI researchers.

By using evolutionary techniques to create game players
we aim to overcome these bottlenecks and produce superior
players. Computer Real Time Strategy (RTS) games are of
particular interest to us. These are games such as Starcraft,
Dawn of War, TASpring (Figure 1), Company of Heroes,
or Age of Empires [7], [8], [9], [10], [11]. In these games,
players are given buildings, troops, and money. They play by
allocating these resources: money is spent producing units and
constructing buildings, and units are given various tasks to
carry out. Units carry out these orders automatically, and the
game is resolved by destroying other players’ assets.

”A good game is a series of interesting decisions.
The decisions must be both frequent and meaning-
ful.” - Sid Meier

All games are fundamentally about making decisions and
exercising skills. RTS games concentrate player involvement
around making high level, long term strategic decisions. While
varying greatly in content and style, RTS games are unified as
a genre by a set of common foundational decisions. Most of
these decisions can be categorized as either resource allocation
problems: how much money to invest on improving my
economy, what kind of troops to field, or what technological
enhancements to research; or as spatial reasoning problems:
which parts of the world should I try to control, how should
I assault this defensive installation, or how do I outmaneuver
my opponent in this battle. By developing systems capable
of making these decisions, which are both challenging and
relevant, we develop systems capable of tackling important
real world problems.

RTS games have, by design, a non-linear search space
of potential strategies, with players making interesting and
complex decisions - many of which have difficult to predict
consequences later in the game. We aim to explore this non-



linear search space of game-playing strategies by using genetic
algorithms. Previous work has used genetic algorithms to
make allocation decisions within RTS games, and has evolved
influence map trees to make tactical spatial reasoning decisions
within computer games [12], [13], [14]. In this paper we
extend our influence map tree based system to play a complete
RTS game, pulling back from the purely tactical level to look
at more strategic decisions, while greatly complexifying the
allocation decisions the player must make.

A. Game Player - IMAI Overview

Our game players, (which we call the influence map based
artificial intelligence, or IMAI), play the game by casting it as
a resource allocation problem. Solutions or allocations to this
problem can be readily mapped into game-playing actions.
Inside this generic architecture a variety of subsystems are
at work, dealing with the many aspects of playing such a
game. The spatial decision making system looks at the game
world and determines promising locations to carry out various
tasks - build a base here, attack your enemy’s resources over
there, cover your weak side over there. Spatial and non-spatial
objectives are then chained into a dependency graph. For
example, to capture points you must first train units, and to
train units you must first build buildings. Expected benefit
propagates from goal objectives to more immediate objectives,
allowing the AI to judge the utility of these prerequisite
objectives. Once resources have been identified and objectives
have been defined, an allocation system does the bipartite
mapping between the two: deciding that this group of units
is in a good position to assault that enemy headquarters,
while more money needs to be devoted to the construction
of defenses around that bottleneck. Combined into a game
player, these systems are capable of carrying out robust and
coordinated strategies.

Designed to do more than just playing the game effectively,
the IMAI uses generic systems for both spatial reasoning and
allocation. This allows for effective evolution and co-evolution
as each player can be encoded and decoded from a bit-string,
the contents of which can lead that player to use a wide range
of competent strategies. We represent possible game playing
strategies within the individuals of a genetic algorithm’s pop-
ulation. The game theoretic meaning for strategy is used here
- a system which can choose an action in response to any
situation [15]. We then play players against one another, using
a fitness function which evaluates their in-game performance.
This co-evolutionary search leads to increasingly competent
players engaged in a constant game of one-upsmanship with
one another in order to develop more robust strategies.

II. IMAI

IMAI players are capable of implementing a range of
competent strategies within the context of RTS games. The
IMAI works on the abstract level by casting the play of the
game as a resource allocation problem. IMAI players run in a
continuous loop while the game is being played as shown in
Figure 2. Each iteration through the loop has 3 major phases:

Fig. 2. IMAI Main Loop

resource identification, objective creation, and allocation. The
processing is distributed, with a small amount of processing
done each game tick. This keeps the game-player from being
instantly responsive - an advantage not shared by its human
opponent, and it helps avoid overburdening the CPU. In the
resource identification phase the system analyzes the current
game-state, determining which resources are available for the
player to allocate. Most of this is trivial, such as fetching the
amount of money the player has available, and listing the units
and buildings not already occupied with some other task. In
the objective creation phase several systems go to work, trying
to determine possible goals for the player to work towards.
The most complex category of objectives are spatial objectives
- analyzing the world to determine where the player should
attack, defend, build up, etc. The spatial reasoning system uses
influence map trees (IMTrees) to determine these objectives
- explained in detail in Section III. Non-spatial objectives
include training units, constructing buildings, and determining
the importance of gathering resources. Objectives are chained
together in a dependency graph, propagating the expected
benefit assigned to an objective to its prerequisites. If the AI
wants to attack an enemy base it first has to build warships,
to build warships it has to construct manufacturing facilities
capable of producing them while expanding its economy to
be able to afford them. Once the available resources have
been determined and the desired objectives have been created,
the allocator determines a good allocation of resources to
objectives. This allocation can be trivially converted into
commands used to play the game. In the next few sections
we will discuss each section of the AI in more detail.

A. Identifying Resources

A resource is something that can be utilized to help achieve
some objective; on the most abstract level the IMAI plays by
allocating resources to objectives. The IMAI divides resources
into four categories, three of which are easily identified: unit
groups, which are collections of entities that can perform spa-
tial tasks; builders, which are entities capable of constructing
other entities (buildings and units); and generic resources,
which are things like money, power, or wood which are
necessary for realization of many objectives. The final category
of resources considered are build points: areas on the map on
which buildings can be constructed. To identify these locations
we use a hand-coded simplification of the IMTree system used
to do spatial reasoning in Section III.



B. Creating Objectives

An objective is a task which the player considers beneficial
to accomplish. Each objective has two key methods, first it
can determine the expected benefit for allocating any set of
resources to it, second it can determine its own feasibility
based on any set of resources allocated to it. We could reduce
this to a single function with infeasible tasks returning zero
benefit, but having two functions allows for more efficient
allocation. The IMAI considers three categories of objectives:
spatial objectives, which are points in the game world to attack,
defend, or move units to; construction objectives, which are
units or buildings the IMAI wants constructed; and resource
gathering objectives, which are general priorities given to
increasing the player’s income. Each spatial objective is a
(rawBenefit, task, location) tuple combined with a collection
of enemy forces expected to provide resistance and meta-
data specifying what types of units should be allocated [13].
RawBenefit is a value assigned to the spatial objective
when it is created, specifying how much benefit is expected
from accomplishing this objective. For spatial objectives,
benefit = rawBenefit ∗ matching(units, metadata) ∗

ratioOfStrength(units, resistance) and feasibility =
ratioOfStrength(units, resistance) > threshold. The ra-
tioOfStrength function takes two groups of units and based
on the type, condition, armaments, and armor level present
on each unit in both groups calculates a single real number
representing the expected outcome. The creation of spatial
objectives is done by the spatial reasoning system, and is
detailed in Section III. Construction objectives contain the
unit they would like to construct, and the benefit expected
from constructing it. They are feasible if appropriate builder
units or build points have been allocated, and if adequate
money has been allocated. Each resource gathering objective
contains the name of the resource it represents, and a single
real number representing the priority associated with gather-
ing that resource. Resource gathering objectives are used as
placeholders in the objective chaining system; resources are
not directly allocated to them.

C. Objective Chaining

Once the various objectives have been created, they are
formed into a dependency graph, an example of which is in
Figure 3. Only spatial objectives have self determined benefit.
The benefit associated with training a unit is determined by
calculating the expected benefit from having such a unit. For
example, at the beginning of the game the spatial reasoning
system usually produces many objectives related to capturing
the neutral resource points near the player’s town. Spatial
objectives are chained to unit training objectives, passing on
benefit proportional to how well those units match the objec-
tive. In Figure 3 the capture point objectives are passing a large
amount of benefit onto the ”train scout”, as that is the best unit
to accomplish this objective. In general, the chaining system
propagates benefit from objectives to their prerequisites. The
ultimate result is a collection of objectives, from places on
the map to attack and defend, to construction and training

orders. Each objective has an associated benefit, determined
both from its own individual benefit and its relationship to the
other objectives.

Fig. 3. Objective Chaining

D. Allocation Of Resources To Objectives

In previous work the allocation of resources to objectives
was handled with a genetic algorithm [12], [13]. In this work
we replace this system with a greedy allocator, primarily
to reduce the computational burden required by frequently
rerunning a genetic algorithm in the game. The allocator uses
a simple greedy loop: find which resources are necessary
to accomplish which objectives; take the resource, objective
pair which has the highest benefit/cost ratio; repeat. From
there mapping the resource to objective allocation to in-game
commands is trivial.

III. SPATIAL REASONING

The most complex part of the IMAI, and the core of this
research, the spatial reasoning system analyzes the game-state
in order to produce a set of spatial objectives for the IMAI to
carry out. The spatial reasoning system must provide a general
representation of spatial reasoning, enough so to contain the
wide variety of spatial strategies used by RTS game-players.
To do this we use influence map trees (IMTrees), which are
an extension to classical influence maps.

A. Influence Maps

An influence map (IM) is a grid placed over the world, with
values assigned to each square by a problem specific function
(IMFunction). Once calculated, each influence map relates
some spatial feature or concept determined by the IMFunction.
Influence maps evolved out of work done on spatial reasoning
within the game of Go and have been used sporadically since
then in various games such as Age of Empires [11], [16]. In
an RTS game the IMFunction might be a summation of the
natural resources present in that square, the distance to the
closest enemy, or the number of friendly units in the vicinity.
The motivation behind influence maps is that each IM is easy
to compute and understand, and that they combine together in
intuitive ways to perform complex spatial reasoning. Figure 4
is a visualization of an influence map, with the IMFunction
being the number of triangles within some radius. If each
triangle was a resource location, and the radius of the circle



was the effective resource gathering distance, this IM could
be used to find optimal resource gathering locations for any
situation. Traditionally influence maps were carefully hand-
coded and used to solve particular problems. A small set of
IMs are created and then combined in a weighted sum to
produce the desired IM. In our resource gathering example,
we could add an IM where the IMFunction = inverse distance
to friendly buildings, on top of the existing nearResource
IM. Summing them together produces an IM containing good
resource gathering locations near existing structures, leading
to effective player expansion.

Fig. 4. An Influence Map

B. Influence Map Trees

We contain IMs within a tree structure instead of the
traditional weighted list [16]. The goal being to have a more
general structure that can be effectively evolved. Each tree
represents a complete decision making strategy, and can be
encoded as part of an individual in a genetic algorithm. Leaf
nodes in the tree are regular IMs, using basic functions to
generate their values based on the game-state. Branch nodes
perform operations on their children’s values in order to create
their own values. These operations include simple arithmetic
operators: combining their children’s values in a weighted sum
or multiplication to form new values. These nodes can also
perform processing on the values of a single child, smoothing
or normalizing their values. Many game AI developers use
specialized post-processing methods to manipulate and cus-
tomize their influence maps. For example, Age of Empires
uses multi-pass smoothing on influence maps to determine
locations on which to construct buildings - almost identical to
how our build locations are determined. By allowing nodes in
our tree to perform such processing methods, a single IMTree

can concisely represent the variety of influence map based
game-playing strategies hand-coded within many other game
AI systems.

Each IMAI possesses several IMTrees, with each tree repre-
senting some category of spatial reasoning - places to attack, or
places to defend. To create objectives from the game-state the
IMAI does a post-order walk on its IMTrees, letting each node
calculate its values. Then, an objective zoner analyzes the root
IMs, producing a list of spatial objectives. It creates a spatial
objective at each local optima in the IM, with rawBenefit equal
to the value of the IM; this is explained in more detail in [12],
[13]. By encoding and evoling IMTrees we create a technique
similar to that of GP, but in a spatial domain.

IV. THE GAME - LAGOON

We developed Lagoon, a Real-Time 3D naval combat sim-
ulation game, as a platform for this research. Figure 5 is a
screen-shot from a game between two evolved IMAI players.
In this example, the blue player, who is coming from the top
right, has pushed a heavy destroyer through his opponent’s
line and has flanked around to the left side of the screen.
His opponent, the red player, is trying to hold that line with
smaller boats while his capital ships pull back to engage the
blue destroyer. Lagoon follows standard RTS paradigms for
most of its game-play. It differs in its naval setting and in
its relatively complex physics model. Like most RTS games,
Lagoon uses a hierarchical AI system to distribute the work.
At the top level each side has an IMAI, which makes broad
sweeping orders that are passed down to the lower level AIs. In
the middle level squad level AI managers coordinate groups
of boats while subdividing major tasks (attack-move across
the map) into smaller more manageable ones. At the lowest
level behaviors carry out immediate tasks, maneuvering around
boats to avoid fire, avoiding land, and staying in formation; all
within the complexities and constraints of the physics model.

Lagoon has game-play similar to most other RTS games:
players gather resources, train units, build buildings, and
then send out their units to conquer the world. Lagoon has
two types of resources: oil, which is gathered by capturing
resource points; and power, which is generated by constructing
power generators. Resource points are captured by stationing
units within their vicinity for a few seconds. Captured points
continuously produce income for their owner, allowing them to
construct more units and buildings. The competition to capture
and defend points is the driving factor behind the game-play,
forcing players to compromise between expanding out and
building up.

Lagoon has a variety of units, from small, quick assault
boats to frigates, cruisers, and destroyers. Players must care-
fully balance the types of units they construct - taking ad-
vantage of their opponent’s weaknesses while covering their
own. Much of the strategy in playing an RTS game comes
in finding the proper balance between the many simultaneous
tasks being carried out: attacking enemy units and buildings,
capturing and defending resource points, and building up to
get more powerful units.



Fig. 5. Lagoon

A. The Mission

For this research we are evolving players to play 1 on 1
games on a single map. Figure 6 is an overhead shot of the map
we are playing. The map is symmetric, with players starting
in opposing corners, and resource points overlaid with white
circles.

Fig. 6. Mission

V. CO-EVOLUTION

Instead of hand-coding our AIs we use co-evolution to
evolve them. This allows the production of truly innovative
strategies, eliminates the need for expert knowledge, and leads
to ultimately superior players. To carry out this co-evolution
we are using a parallelized, queue based, steady state genetic
algorithm, the details of which are beyond the scope of this
paper. In short, we maintain a population of IMAI players,

continuously playing them against one another to determine
which ones are superior. Occasionally we replace poorly
performing players with offspring from better performing
players using standard genetic operators of roulette-wheel
selection, one point crossover, and bitwise mutation. Crossover
takes place with 75% probability, and the bitwise mutation
probability was chosen to give on average 2 bit mutations
per child. Individual matches between two IMAI players are
resolved by playing the full game, and fitness is determined
by playing the game and analyzing the results.

A. Encoding

The GA packs all the parameters for each IM in the IMTree
into a bit-string, with fixed point binary integer encoding for
the enumerations and fixed point binary fraction encoding for
the real valued parameters and coefficients. The GA does
not directly have control over the rest of the IMAI system,
but we have found that by tweaking various aspects of the
spatial reasoning system it can achieve an amazing variety
of effects - biasing it to build up the tech tree to powerful
units immediately, or just amassing a horde of the cheapest
boats and then flooding their opponent. At this phase we were
not evolving the structure of the tree, purely the parameters
and coefficients for each IM. The influence maps use the same
basic structure as our hand-coded players, however a very wide
range of behavior has been observed in the players strategies.

B. Evaluation and Fitness

To evaluate each individual we play them against an oppo-
nent and examine the results of the match. Whichever player
gathers the most resources within ten minutes is considered the
winner. Note: this is not the amount of resources saved up, but
the total amount of income that was gathered without regard
for how it was used. It was empirically noted that the ultimate
winner was usually the player that gathers more resources,
and that the ultimate result could be estimated fairly accurately
after ten minutes. We use fitness sharing to adjust each player’s
fitness, so that the amount of fitness a player gains by defeating
an opponent is inversely proportional to how many other
players have defeated that opponent. By defeating a player
no one else can beat, a player can have a high fitness, even
if it looses all other games. Fitness sharing encourages and
protects diversity within members of the population.

C. Hand-Coded Opponents

We develop three hand-coded opponents against which to
test our AIs. Each plays a different, but effective strategy. The
first player plays a solid rushing strategy, constructing a basic
manufacturing building and then training large numbers of the
basic combat ship. It attacks in force early in the game, trying
to destroy the enemy’s base while the enemy is unprepared.
The second player plays a solid defensive strategy, expanding
out quickly early in the game, and then concentrating most
of its units on defending its points. It quickly builds up to
powerful units, attacking when an overwhelming force is avail-
able. The third player plays a more balanced game, capturing



points continuously while trying to assault the opponent’s base
and points. It will aggressively pursue its advantage if it gets
momentum, pushing back its opponent’s lines until it reaches
their town. In testing between the three hand-coded players,
the balanced player was the most effective, as the two other
hand-coded players’ strategies are less flexible. If the rusher
fails in its initial rush, its economy is left in a weakened state,
making the player vulnerable to enemy attacks. The defender
on the other hand does not expand aggressively in the late
game, which helps preserve its units, but generally costs it
the win at the 10 minute point. Matches between aggressor
and defender usually resulted in stalemates, with both sides
massing large armies they are unwilling to commit to action.

VI. RESULTS

We create a population of 25 random individuals, which
are tested against each other and evolved as described in
Section V. After every 25 evaluations, 5 players are sampled
at random from the population to play against each of the
hand-coded opponents. The IMAI players are not rewarded or
punished for winning or losing against the hand-coded players,
it is purely used as a benchmark to see how the population
is evolving over time. We graph the total score our evolved
players receive against the static AIs in Figure 7.

Fig. 7. Scores received by Co-Evolved players against Hand-Coded AIs

We see a solid improvement in scores throughout the course
of co-evolution - evidence that our co-evolutionary arms race
is producing increasingly better players. The players score the
best against the aggressive opponent, which is reasonable be-
cause the attacker generally sacrifices expansion and capturing
points in order to attack its enemy’s town. So long as the IMAI
players keep their town well defended, they should be able to
capture most of the map and score unnaturally high.

The score is an approximation for how well they are playing,
whether they are actually winning those games is another
matter. Taking a win as a score of 1.0 and a loss as a score of
0.0, we calculate averages and graph as before in Figure 8.

Fig. 8. Winning Scores against Static Opponents

The IMAI players very quickly became superior to the hand-
coded players, within the first few generations of evolution.
Analysis shows that most IMAI players play very similarly to
the balanced player, only with superior coefficients controlling
how they balanced their allocations. They generally attack their
opponent’s economy as well, as opposed to the balanced AI
which tends to target manufacturing facilities. An example is
shown in Figure 6 where an evolved player is flanking its
opponent’s line to push in and disrupt its points. We created a
large set of random strategies and then saw how they played,
noting that the large majority of non-lethal players (at least
somewhat competent) used strategies similar to the balanced
AI. Even in a few generations of evolutions players have
advanced to the point where they are better then our best
hand-coded players. Against the defensive player the IMAI has
some initial issues, because it is a strategy under-represented
in a random population. The defensive strategy is the weakest
of the three and as the IMAI players develop more robust
strategies they start to soundly beat it. Against the attacking
strategy the IMAI has initial problems, as with the defensive
strategy all out rushes are under-represented in a random popu-
lation. Unlike the defensive strategy however, rushes are very
effective against unprepared opponents. While the attacking
strategy was beaten by both of the other hand-coded strategies,
it was initially the most effective against the IMAI players.
Later in co-evolution the players become exposed to evolved
rush-like strategies, and they develop counter strategies for
beating them. We see continuous improvement in the scores
players receive, with their probability of victory increasing



more slightly. This is across all three types of opponents,
showing that the evolved IMAI players are robust enough to
work against a variety of opponents.

Under further analysis we discovered why the scores con-
tinue to improve but the overall win rate is relatively stagnant.
The most obvious and remediable problem is that we are
randomly sampling individuals in the population to test against
static opponents, by taking individuals with above average
fitness we could likely get significantly higher performance.
Virtually all games played go the ten minutes until one player
has gathered more resources. It is just too short a period
of time to overwhelm your opponent and destroy their base.
We found that the IMAI evolved players would concentrate
their spending very heavily on improving their economy,
building an excess of power generators, and occasionally
headquarters in order to improve their resource income. They
would then slowly lose resource points to their opponent, who
had allocated money to training troops, in order to buy time
until the ten minutes was up. Then, even though they were
really losing the game they’d be declared the winner.

We also noted that while over the long term the win/loss
ratio was a slow increase, over shorter periods of time the
population cycled through a variety of strategies. We see
these cycling behaviors, players that use small boats are better
against the attacker and defender, while players that use large
boats are better against our balanced player. Graphing wins
averaged over shorter periods of time shows this cycling effect
- Figure 9. IMAI players tend to cycle through the types
of units they prefer during evolution. In the beginning most
players use small units, and players that use larger boats
are more effective and start to dominate the population. This
continues until most players concentrate hard on the largest
boats. However, the largest boats can be overwhelmed with
a large number of the smaller boats, so the cycle eventually
circles back around to smaller boats. Fitness sharing protects
the various species, but the population size is too small and
the number of evaluations appears to be too low to reach
equilibrium. Since the hand-coded players are static, during
times when the IMAI players use the appropriate counter
units they win a large percentage of the games. Conversely,
during times when they use the wrong units they lose a
large percentage of the games. Future testing will increase
the population size, which should remedy this problem.

VII. CONCLUSIONS AND FUTURE WORK

Co-evolution produced IMAI players who where signif-
icantly superior to our hand-coded players. These players
played strong, robust strategies that were effective against a
variety of opponents. Most co-evolved players used strategies
similar to that of the balanced AI, simultaneously attacking
and defending across a contiguous front. Unlike the balanced
player however, the IMAI players were capable of attacking
various points on the front in order to take advantage of
opponent weaknesses, gradually cornering the opponent and
then pushing in with heavy units. Against humans the IMAI
was very effective, soundly beating everyone we could talk

Fig. 9. Winning Scores against Static Opponents - Less Averaging

into playing it. Future work would include testing just how
effective they are against human opponents, and test a number
of human opponents against a variety of opponents from
various stages in the evolution.

The IMAI architecture is highly general. By virtue of de-
sign, new game-playing functionality can be efficiently added
and modified. The system should be adaptable to other RTS
games, as well as to a range of real world problems.

In previous research the IMTree spatial reasoning system
was shown to be highly general as well, with strategies learned
on one map being effective across a wide range of situations.
Future work would show that this continues to be true, by
testing players evolved on a single map against those evolved
on multiple maps.

There still a few common aspects of RTS games our IMAI
does not know how to handle. One is research, which players
perform in order to enable units or upgrade their abilities. This
should be an easy addition to the objective chaining system.
Second is walls, which will be an odd fit in the naval setting
but are an important part of many RTS games. Third is special
unit abilities or heroes, where units can occasionally perform
powerful abilities. This is generally more of a tactical than a
strategic decision, but it could have an impact. Implementing
all of these within our game, and extending the IMAI to deal
with them would show generality to virtually all RTS games.
We also disabled the IMAI players from determining their own
building locations as they would frequently construct buildings
in their opponent’s town - which while a legitimate strategy
in many RTS games, it became an overpowering strategy in
Lagoon.

The major avenue for future work is to do comparative
studies between the effectiveness of our AI and other AIs.



Some games such as TASpring or Empire Earth allow for the
integration of new AI systems. It would be very interesting
to see how evolved IMAI players stack up against industry
quality AI opponents.

Fig. 10. IMAI Main Loop

VIII. ACKNOWLEDGMENTS

This material is based upon work supported by the Office
of Naval Research under contract number N00014-05-0709.

REFERENCES

[1] P. J. Angeline and J. B. Pollack, “Competitive environments evolve better
solutions for complex tasks,” in Proceedings of the 5th International
Conference on Genetic Algorithms (GA-93), 1993, pp. 264–270.
[Online]. Available: citeseer.ist.psu.edu/angeline93competitive.html

[2] D. B. Fogel, Blondie24: Playing at the Edge of AI. Morgan Kauffman,
2001.

[3] A. L. Samuel, “Some studies in machine learning using the game of
checkers,” IBM Journal of Research and Development, vol. 3, pp. 210–
229, 1959.

[4] J. B. Pollack, A. D. Blair, and M. Land, “Coevolution of a backgammon
player,” in Artificial Life V: Proc. of the Fifth Int. Workshop on
the Synthesis and Simulation of Living Systems, C. G. Langton and
K. Shimohara, Eds. Cambridge, MA: The MIT Press, 1997, pp. 92–98.

[5] G. Tesauro, “Temporal difference learning and td-gammon,” Communi-
cations of the ACM, vol. 38, no. 3, 1995.

[6] J. E. Laird and M. van Lent, “Human-level ai’s killer
application: Interactive computer games,” 2000. [Online]. Available:
http://ai.eecs.umich.edu/people/laird/papers/AAAI-00.pdf

[7] Blizzard, “Starcraft,” 1998, www.blizzard.com/starcraft. [Online].
Available: www.blizzard.com/starcraft

[8] R. E. Inc., “Dawn of war,” 2005, http://www.dawnofwargame.com.
[9] “Taspring,” 2006, http://taspring.clan-sy.com/.

[10] R. E. Inc., “Company of heroes,” 2006,
http://www.companyofheroesgame.com/.

[11] E. Studios, “Age of empires 3,” 2005, www.ageofempires3.com.
[Online]. Available: www.ageofempires3.com

[12] C. Miles and S. J. Louis, “Co-evolving real-time strategy game playing
influence map trees with genetic algorithms,” in Proceedings of the
International Congress on Evolutionary Computation, Portland, Oregon.
IEEE Press, 2006, p. Pages: to appear.

[13] ——, “Towards the co-evolution of influence map tree based strategy
game players,” in Proceedings of the 2006 IEEE Symposium on Compu-
tational Intelligence in Games. IEEE Press, 2006, p. Pages: to appear.

[14] S. J. Louis, C. Miles, N. Cole, and J. McDonnell, “Learning to play
like a human: Case injected genetic algorithms for strategic computer
gaming,” in Proceedings of the second Workshop on Military and
Security Applications of Evolutionary Computation, 2005, pp. 6–12.

[15] R. Gibbons, Game Theory for Applied Economists. Princeton University
Press, 1992.

[16] A. L. Zobrist, “A model of visual organization for the game of go,” in
AFIPS Conf. Proc., 1969, pp. 34, 103–112.


