A model of creative design using collabor ative
Inter active genetic algorithms

Amit Banerjee, Juan C. Quiroz and Sushil J. Louis
University of Nevada, Reno, USA

We propose a computational model for creative deb@gsed on collaborative in-
teractive genetic algorithms, and present an impleation for evolving creative
floorplans and widget layout/colors for individudl panels. We map our model
and its implementation to earlier models of creatilesign from literature. We
also address critical research issues with regpetie model and its implementa-
tion — issues relating to creative design spacesigd space exploration, design
representation, design evaluation (competitiongigte collaboration, and design
visualization (for interactivity). Results compagircollaborative evolution of
floorplans to non-collaborative evolution are afsesented, and pre-tests using
surveys indicate that floorplans developed viaatmikation are moreriginal than
those produced by individual non-collaborative etioh.

Introduction

Design is a fundamental, purposeful, pervasiveludiquitous activity and
can be defined as the process of creating newtgtasccharacterized by
new parameters, aimed at satisfying predefinednieahrequirements. It
consists of several phases, which differ in detish as the depth of de-
sign, kind of input data, design strategy, procedumethodology and re-
sults [1]. Usually the first stage of any designgass is the preliminary or
the conceptual design phase, followed by detaiksigth, evaluation and
iterative redesign [2]. Computers have been useéehsively for all these
stages of design except the creative conceptuardpbase. According to
Goldberg [3], this phase of design has been redaadeblack art locked
up in a time warp of platitudes, vague design pdoces and problem-
specific design rules
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Creative evolutionary computational systems havenbdefined by
Bentley and Corne, as evolutionary systems thaee#id human creativ-
ity or solve problems that only creative peopleldaolve [4]. Goldberg
presents an idealized framework for conceptualgteisi four components:
problem, designer, alternative designs and desigmpetition, and shows
how evolutionary techniques (specifically genetigoathms) can be
thought of as ‘a lower bound on the performanca afesigner that uses
recombinative and selective processes’ [3]. Rosenmaa explored evolu-
tionary models for non-routine design [5] and hasestigated the genera-
tion of creative house plans (later referred tdl@srplans in this paper)
using genetic algorithms [6]. Creation of floorgamas also been investi-
gated by Gero and Schnier as an evolving represamtaroblem that re-
structures the search space in [7], by co-evolutibdesign and solution-
spaces in [8], and using case-based reasoning byiba Garza and
Maher in [9].

Unlike detailed design where optimization critegi@ readily quantifi-
able, alternative design concepts during the preany design phase may
need to be subjectively evaluated, especially wieguirements include
aesthetic and other subjective criteria. It isidift, often impossible to
construct matrices and explicit functions that oamic the way designers
evaluate subjective criteria. Interactive Genetigodithms (IGAs) are ge-
netic algorithms whose fithess function is repladsd interactive user
evaluations. IGAs in particular and interactive letionary computation
(IEC) in general have been used in a wide rangappfications, ranging
from engineering to arts and social sciences, sigdeuser-centric optimi-
zation systems [10].

At the same time, collaborative systems have beerfdcus of studies
into creativity and computer supported cooperatigrk [11] since the
early 90s. There has been a paradigm shift frompcten-aided design
systems to computer supported collaborative desygtems [12]. It has
been argued that much of our intelligence and istigatesults from inter-
action and collaboration with other individuals 1@ this paper, we pro-
pose a computational model of the creative designgss using a collabo-
rative interactive human-centered approach to eaptn of design
spaces. We present a collaborative interactivetgealgorithm implemen-
tation for our model to evolve floorplans and witligg/out/style design, as
a user-interface development tool. We compare destgolved by a col-
laborative peer group, against those evolved iddaily by designers, and
find that the former designs consistently ratechigon the “originality”
scale, thereby lending credence to our computdtioodel.
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M otivation

The purpose of the research presented in this pgperbuild a collabora-
tive, interactive, genetic algorithm based desipl to test the hypothesis
that collaborative, interactive, evolutionary expliton of design space is a
viable computational model of creative design. Qfiethe distinctions
made between different types of creativity incligtelen’s [14] two types
of creativity: H-creativity andP-creativity. H-creativity or historic creativ-
ity occurs when the design falls outside the raofydesigns created by
anyone in the society, whereBscreativity or personal creativity occurs
when the design is novel to the designer (but matybe novel to the
world). S-creativity or situated creativity [15], a more eetly identified
type, occurs when the design contains ideas this m@ expected to be in
the design when the design was commenced. Thudeign may not be
novel in theP or theH sense but is novel in that particular design &idna
In the absence of cohesive collaboration, artistsreative people exhibit
P-creativity. We are interested in investigating #ueial aspects of crea-
tivity by facilitating and encouraging group intetian and cooperation,
which we hypothesize, will lead to individuBlcreativity and a groufs
creativity. Our model maps to a system of creatlesign through social
acts and social influence [13,16], where individdesigners interact with
an evolutionary system to guide tRecreative design process while at the
same time cooperating within themselves by introtdyoew state vari-
ables, thereby guiding ttcreative design process.

Our collaborative interactive evolutionary exploosatmodel also relates
to theblind variation and selection retentionodel based on the Darwin-
ian theory of creativity [17]. Thélind variation and selection retention
model of creativity states that the creative predescharacterized in the
first stage by production of a myriad of ideas éimoughts while lacking
the foresight in the production of variations, éelled by subjective selec-
tion and retention of the most meaningful ideas #waaights. Since 1960,
a body of research has been dedicated to furthémmgvolutionary model
of creativity [18]. This Darwinian framework for rdeling creativity has
found use in a connectionist approach to createngater-based model of
the creative process [19] and connects well with model. In the next
section we present the discussion on the proposetputational model
and issues related to its implementation.
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The Computational Model of Creativity

A computational approach to investigate design ep#éor solution spaces)
to support a human designer’s exploration is prtesem Woodbury and
Burrow [20]. A design space is defined as a netedrgtructure of related
descriptions of partial and intentional designsoemtered in an explora-
tion process. Woodbury and Burrow also claim tlediust reuse of paths
of exploration is of critical importance in desigpace exploration. We
continue this line of thought with a collaborat&pproach to the explora-
tion of a solution space using an interactive genalgorithm. The de-
signer-centric aspect due to the interactivity witle genetic algorithm
helps in assigning a utility to a particular sadatiin the space, while col-
laboration between various designers helps thetigealgorithm to diver-
sify and explore an extended search space. We lhggiae that the col-
laboration brings about concurrent exploration eéign subspaces, and
elements of the final design are a creative (uisiea) collection of indi-
vidual elements of various subspaces.
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Figure 1. Schematic showing implementation of the propossihloorative inter-
active evolutionary model for creative design

Figure 1 represents an implementation of our coatfmrtal model of
creative design. Each dotted box represents amgnnstance of the inter-
active design tool — each instance is guided bgsigder and searches a
particular subspace in accordance with designdeeces. The genetic
algorithm in each instance combines the desigrseitgective picks with a
computable fitness function to drive genetic sedhtbugh a design sub-
space. The user-interface to our design tool allbwesdesigner to zoom in
on a particular displayed design and pick aspddiseodesign for explora-
tion. In addition to guiding his or her own seatltough a subspace, each
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designer also can see a small subset of the odsgrebrs’ evolving de-

signs. The designer can then choose to expandr liisrasearch space or
move to another space by incorporating one or robithe peer-evolved

designs into his or her genetic population. Incoafing peer-evolved de-
signs tends to influence the subjective and ohjeatiility functions asso-

ciated with the genetic search. The proposed mamttits implementation

raise several research issues. We divide thesesigsto five broad catego-
ries.

Design Space Exploration

The most important research issue is the collalveratersus individual

exploration of the design space. Having investateth collaborative

and individual interactive genetic algorithms faolving floorplans and

widget layouts/styles for Ul, we have empiricaldance that the creative
content of the collaboratively evolved designs siuperior to those of the
individually evolved designs. We present evidenteuwr claim in the re-

sults section later in this paper.

Creative Design Spaces

According to Gero [21], creative designing can ladireed in computa-
tional terms as the activity that occurs when onmore new variables are
introduced into the design. This leads to the wmii$ibn between product
and process creativity — creative design procegsesesses based on ad-
dition and deletion of design variables) have tbteptial to aid in the de-
sign of creative artifacts, but as such they doguatrantee that the artifact
produced is creative by itself. In other words, ¢heative design process is
characterized by an extension or movement of thie Space of potential
design to new regions in the infinitely large stspace of all possible de-
signs. This is shown as a pictorial in Figure 2Yle

Collaboration provides an effective framework fatemding an exist-
ing state space or moving to a new state spacenjBgting peer-designs
into his or her genetic population, the designén iz way modifying his or
her own “effective” state space. This is shown a&slgmatic in Figure 2
(right) with designer 1 moving from his initial &a'S, to S, by collabo-
rating with two other designers, both of whom atsmverge to the crea-
tive space. This feature can be implemented in pragsible ways within
our collaborative interactive evolutionary expldvat framework: (1) dif-
ferent designers have different underlying repregem schemes to start
with, and the representation of the designer whiojecting peer-designs
is influenced drastically so that he or she can search a previously un-
known solution space; or (2) the underlying repnéston is the same
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across all users, but design parameters are sithiethed off or on and in-
jecting peer-designs will switch off (and on) aféiént set of design pa-
rameters, thereby extending or moving the stateespé solutions. This
can be implemented by an efficient masking schemibe representation.
In summary, collaboration in evolutionary search ttee potential to be a
creative designing process.
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Figure 2. Left: Creative designing involves changing stgieces of possible de-
signs with time [21]; Right: Collaborative creatigeploration

Fitness Function

Evaluation of alternative designs is central to ¢baceptual design proc-
ess. In addition to objective guidelines (whichalsuare derived from de-
sign requirements analysis), designers use themado expertise and
knowledge, preferences, emotions and biases toorgdbad designs from
the good ones. We incorporate evaluation basedubjedive biases by
letting the designer interact with the evolving plgpion at either every
generation of the evolution process or after evegenerationsr( > 1).
However, since not every design criterion is subje¢cwe are faced with
the problem of either combining the metrics obtdifitem the subjective
and objective evaluation criteria or treating theeparately. In the former
case, how does one create a weighted linear cotidnnaf such metrics,
and decide how to assign weights to signify re@atmportance of the dif-
ferent criteria? In the latter case, one mightdsepted to treat the criteria
separately by analyzing Pareto-optimal fronts iif)aproduced by the set
of criteria under consideration. We have invesédaboth approaches;
however, there is no conclusive evidence for orngr@gcrh being better
than the other, and hence remains an open resgaeskion.
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Representation

The issue of what constitutes a good represent&ioital to the efficacy
of any evolutionary search technique. Evolutionaptimization tech-
nigues, including genetic algorithms, require tthesigns (or solutions) be
encoded in a manner suitable for genetic operasoid) as crossover and
mutation, to work on. For the floorplanning problewe have used a bi-
nary tree with much initial success as the genotygpresentation that en-
code for the floorplans. We have also used thgyartand bit-string repre-
sentations to evolve widget layout/style.

In the next section, we present the collaboratiteractive genetic al-
gorithm implementation of our proposed model, whighcall IGAP — In-
teractive Genetic Algorithm Peer to Peer.

IGAP: Interactive Genetic Algorithm Peer to Peer

We present an implementation of our collaborativeet for creative de-
sign for evolving floorplans and widget layout/stydchemes. Although,
we have implemented them as two distinct modulesy tan be seam-
lessly put together as a coherent two-phase ussifase design tool. In
addition to being used as an archetype for Ul pkayelut, floorplanning is
of importance to Architecture and Civil Engineerifidhe implementation
is shown in Figure 3. We first present details e tGA framework and
discuss the collaborative framework later.

IGA Framework

IGAP is part of a GA/IGA framework we have built $apport evolution-
ary design of user interface elements. For a pmbkquiring interaction
with a user, the designer is required to implenthet fitness function -
which takes the user input and evaluates eachithdil’in the population
based on the user provided feedback, and a drafwimgtion - which

draws to the screen the subset of individuals ftben population to be
evaluated by the user.

Representation

For evolving floorplans we have used a binary te@esentation, coded
as a nested list. At every node of the tree, tharpaters specify how the
rectangular panel at that level is subdivided @gitbft/right or top/bottom)
and what percentage of panel area at that levebrigained in either the
left or the top subdivision. Figure 4 shows how thetangular panel is
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subdivided intaroomsandspacesA roomis represented by the list [0, 1]
and aspaceby [0, 0]. An arbitrary list [0, 0.75] represendsvision in
top/bottom configuration with top sub-panel conitain75% of the parent
panel. Another list [1, 0.80] represents divisionleft/right configuration
with left sub-panel containing 80% of the paremga

Accept User
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Fitness Evaluation

Crossover/Mutation

Display Population >
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Mew Population
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Figure 3. The collaborative interactive genetic algorithnplementation for crea-
tive designing

1. Divide panel TOP/BOTTOM
75% area in TOP

1
[ 1

LEFT/RIGHT 1.2 Divide bottom panel LEFT/RIGHT
LEFT 70% arex in LEFT
L
[
1.1.1. ROOM - Red 1.1.2. ROOM - Yellow 1.2.1. ROOM - Yellow 1.2.2, Divide ri

2.2.1. SPACE - White 1.2.2.3. ROOM - Brick

[[0,0.75], [1,0.80], [0,1], [0,1], [1,0.70], [0,1], [0,0.65], [0,0], [0,0]]

Figure 4. Binary tree representation of floorplans encoded aested list
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For widget layout and style design, we use twaetuosomes to specify
the user-interface panel. On the panel, the widgetslaid out on a grid
and different widgets are identified by a widgegritfication number (1
onwards, O for spaces on the panel grid). A satagleut and its encoding
are shown in Figure 5. This is an example of aeget representation. The
second chromosome encodes for various style clesistats, including
background and foreground color, vertical and tworial spacing between
widgets in the layout grid, and font type. All tifese attributes are en-
coded in a bit string — string of 0s and 1s. Fdorcee use the RGB repre-
sentation, where each color consists of three coews: red, green, and
blue. The RGB components vary from 0 (black) to @gbite).

Ilcnuts : T
1

Figure 5. Encoding of the widget layout: Widgets are ideetfby integer IDs
(>0) and empty cells in the grid are identifiedwits

Genetic Operators

The binary tree representation for floorplans neitat®s the need for a
specialized tree-crossover operator. The nestédsliparsed as a binary
tree and two such parent trees are crossed atmapadbosen nodes, such
that entire sub-trees following those nodes argpped. The tree represen-
tation is used in genetic programming (Koza 1991%) hence, our cross-
over operator maps to the crossover operator usgerietic programming.

The operator is shown schematically in Figure 6.

Depending on the probability of mutation, the miotatoperator works
on the two parameters of the nodes (or leavesgreéiftly. It performs a
binary swap on the first parameter thereby chantfiegsubdivision con-
figuration. Depending on the value of the secondpater, the operator
either performs a binary swap (if the value is&ith or 1), thereby chang-
ing aroomto aspaceand vice versa, or if the second parameter isah re
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number between 0 and 1, the operator replaces @nbther random real
number in the same interval, thereby altering timeedsions of th&éoom
(or thespacg.

The widget layout chromosome is an integer seqalesticoding, and in
order to preserve this permutation representatioa, use the Partial
Mapped Crossover (PMX) operator. PMX keeps cross@reen creating
individuals with duplicate genes, which would vielathe permutation
property. We also use swap mutation, which randopitks two alleles
from the chromosome and swaps them. For the wistgéts chromosome,
we use single point crossover and bit-flip mutatqerators.

Parent 1 Parent 2

B.11l ] B.12
|

T | Crossover point [ |

Al11 A112 B111 B112 B12.1 B.12.2

Crossover point
AL121 AL122

Child 1 Child 2
q 1
I I
I ]
B121 B.122

[TA1], [A11], [AL1 l],l[A 1121, [A1121], [A1L 2.2],| [A12]] [A.1], [A1.1], [A1.1.1],|(B.1.2], [B.1.2.1], [B.1.2.2][[A 1.2]]
[[B.1], [B.1.1], [B.1.1.1], [B.1.1.2]|[B.12], [B.1.2.1], [B.1.2.2] : [[B.1], [B.1.1], [B.1.1.1], [B.1.1.2],|[A 112, [A11.2.1], [A1.12.2]

Figure 6. Tree crossover operator

Fitness

There are times when it is difficult if not impdsi& to determine the fit-
ness function for a problem domain when using dumtary computation.
An IGA replaces the fitness evaluation with therud&As are useful
when there is no better fithess measure than teeirothe human mind.
IGAs have been applied to various domains, randing artistic and
highly creative applications to engineering [10].

A typical IGA session consists of a user evaluatngget of individuals
from the IGA population. The individuals of the pdgtion are then as-
signed a fitness value (or values), based on siiNgeand objective crite-
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ria of evaluation. In the floorplanning problem, separate objective crite-
ria from subjective criteria as, (1) the only meable objective in floor-
plans is their compliance with the Architect datsidglines [22]. The
guidelines for single-storey house plans relatenisimum room dimen-
sions and areas. Every individual floorplan is gestdl a fithess value
based on its compliance with the minimum dimensiod minimum area
guidelines. (2) The IGA lets the designer pick gipalar floorplan as be-
ing the “best”. This subjective pick (based on prefces) is translated
into his or her preference for the number of rootal built area (area
occupied byroomg, and room adjacencies. An individual plan is com-
pared with the “best” plan and assigned high fgnealues if the plan is
similar to the “best” plan in each of the threejsative criteria.

The objective component of fitness for evolving gétllayout and style
comes from Ul style guidelines. The main guideknerently incorporated
in the objective evaluation is the use of highlytcasting background and
foreground colors. The grid positioning of the watlgyin the layout auto-
matically enforces a widget alignment guidelineeTdbjective fitness is
the Euclidean distance between the color vectorhefforeground and
background colors. The subjective evaluation cesgifinding the simi-
larity between the currently evaluated individuathwthe user selected
best by using the longest common subsequence (MZ&Yind the length
of the LCS of the layout chromosome (lengthl) ahthe style chromo-
some (length2). We add these two lengths and wssuim as the subjec-
tive fitness score.

Genetic Algorithm

We use the Non-dominated Sorted multi-objective ghierAlgorithm, ab-
breviated as NSGA-II [23]. The NSGA-II creates fi®of non-dominated
individuals, where within a front none of the inidivals are any worse
than any other individual across all optimizatiaitecia. All individuals
within a front are said to have the same rank. Wecs parents by using
the crowded distance tournament operator. We pickindividuals to par-
ticipate in the tournament, and we select the idda with the higher
rank to be part of the mating pool. In case the imdividuals have the
same rank, and consequently belong to the samg tien the crowded
distance of both individuals is computed, and wectehe individual with
the highest crowded distance to be part of thengaipol. This translates
to the individual being in a less crowded regiorhef front and hence, the
crowded distance selection favors the most diverdeviduals within a
front.
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We implement both the floorplans design and widiggbut/style evolu-
tion with the NSGA-Il. For floorplans design weeus four-criterion
multi-objective minimization function. With the wget layout/style im-
plementation we keep the objective and subjectiiter@a separate and use
a two-criterion minimization function for NSGA-IWe have also used the
standard canonical GA where we combine the subpeind objective fit-
ness into a single weighted linear sum [24].

Visualization of Solution Space

We display a subset of nine individuals, from @éapopulation size, to be
evaluated by the designer. We chose nine becaa#ievits us to display a
visually appealing grid of 3x3 individuals, whicls@ does not overwhelm
the designer. What to display from the populatioibe evaluated by the
user is a critical step, since displaying useftdrimation to the user makes
for a productive session, while displaying a poobset can inhibit the
progress of the interactive evolutionary process.

Various methods of selecting a small subset frofarge population
have been previously explored [24-26]. In the wordsented in this paper
we select individuals from the fronts created by MSGA-Il. We pick
three individuals from the first front, three intluals from the second
front, and so on until we have obtained nine irdinals. If there are less
than three fronts, or if one of the fronts has thss three individuals, then
we obtain the next three individuals from the nieght in a round robin
fashion. We also enforce that all individuals ir ttiisplayed subset are
unigue, given that the population contains enougérdity, since display-
ing a small subset consisting of numerous repsatet useful to the user
and does not give the user a sense of the cutegstef the population.

By displaying a small subset and through fithed¢srpolation we can
reduce the amount of user interaction, and thenebsr;, fatigue. However,
if the case arises that the user does not likeddrijie individuals in the
displayed subset, then the user has the optiocrtsl slown the current
panel, and view the rest of the population, whiemains hidden from
view unless the user scrolls down. For users \iiitle patience or that fa-
tigue quickly (which is often the case), they cahexre to the use of the
displayed subset. For the adventurous users, whmalr intimidated by
viewing hundreds of individuals to find the indiva they like the best,
they can scroll to view every single individualtire population. The abil-
ity to view the entire population also proves uséfuusers who early in a
session explore the entire population, when treeeehigh degree of diver-
sity, and later on only use the subset after thrifation has been biased to
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custom-evolved individuals. A snapshot of the iatéive screen for non-
collaborative floorplanning is shown below in Figut.

online

@)@ @) @)@

Figure 7. The non-collaborative interactive interface fardiplanning

The user input consists of selecting the individbal user likes the best
from either the subset, or from one of the indigidufrom the rest of the
population (viewed by scrolling). We use the usdesed best to interpo-
late the fithess of every other individual in thepplation. On the top of
each individual displayed, we add a button withl#ieel "Best". By click-
ing on the "Best" button of a design displayedhe tiser, he or she pro-
vides input to the IGA regarding the fitness ciderCurrently, we only
support for only one individual to be selected s liest. Through the in-
terface we also support the ability to provide inpuery ' generation,
where the value of n stands for the number of gaitars skipped before
asking for user input, and which can be changethgwur session. We also
allow the user to go back to a previous generafighe population di-
verged into an undesired direction. The user atsarols the crossover
and mutation rates through the interface.

Collaborative Framewor k

The collaborative module is wrapped over the irtiva module and is
what binds the individual IGA sessions togethedldborative evolution is
implemented by networking with a peer to peer netwdVe treat each
user participating in evolution as a node, handinmpming requests from
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other nodes (peers) and requesting information fopeers. By using a peer
to peer network, control is decentralized and eamtie is free to chose
who to connect to and if necessary who to excludmfits set of peers.
Note that connections between peers must be diectio not support for
spidering connections, where node-A can connegbtte-C through node-
B. Since each node consists of a server to haedlgest from any peer,
each node can broadcast its signal to any peecdinaiects to it.

Collaborative | nterface

During collaborative evolution, a subset of peevlesd designs is dis-
played to the right of the user's population. Wheitlithe number of peer
individuals to nine, organized in a 3x3 grid, simito how we present the
user's own population, in order to be consisteat. rRore than one peer,
we cannot display all the individuals belonginglie subset of each peer,
since we only display nine. We do make sure thauser selected best in-
dividuals from each peer are displayed on the pegbset. We save the
user selected best from generation to generatiothwae always make it
part of the subset displayed the next time the &duires user input. The
reason for making sure that a peer can see thesekssted best from other
peers is that if a user selects an individual asbist, then it was because
the user found the selected individual to be thestmmterest-
ing/intriguing/creative and to be the best candidatbias the evolution of
his or her own population, as well as those of otlsers. We select the
rest of the individuals that make up the peers etubg taking a random
subset from a collective pool of all individualsittmake up peers’ subsets.
By selecting a random subset, we believe that owveany generations, all
of the participants will get approximately the saameount of their designs
displayed on the screens of collaborators.

The benefit of viewing the best individuals fromepeis limited, unless
the user is able to take promising individuals frpeers and mold them to
their liking. We support this by allowing the ugerinject individuals from
the subset of peers into the user's own populafibe. user can select an
individual from a peer to be added to the user's gene pool by clicking
on the “Add to Genome” button. The user can al$ecsa best individual
from the subset of individuals from peers, in whadse the user selected
best is automatically injected into the populatiand used for fitness in-
terpolation. We require the user to select a imgktidual, but it does not
have to be from the user's own population — the sskected best can
come from peers. The collaborative interface issshim Figure 8.
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Figure 8. The collaborative interactive interface for thediiplanning problem

Fitness Bias

We use fitness biasing to ensure that injectedviddals survive long
enough to leave a mark on the host population liyguthe concept of
bloodline. Injected individuals are considered &dfldl blood, while those
individuals already in the population are treatediraividuals withno
blood The bloodline consists of a number between b{aod) and 1 (full
blood), and this value is added as another criteriae maximized by the
NSGA-II with Pareto optimality. Thus injected indiwals will all be non-
dominated (in the topmost front) and will not di#¢ immediately. The in-
jected individuals replace the bottom 10% of theation [27]. When a
full-blooded individual crosses over with a no-tded individual, then the
offspring will inherit a bloodline value equal toveeighted sum of the
bloodline of the parents, where the weight valwegsethd on the percentage
of the genetic material inherited from each parent.

Computational Results

We present some preliminary results for the flamnping and widget lay-
out/style design problem. Floorplans were evolvedeld on a simulated
design brief that stated the problem as a minimedigstrained one. The
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brief was to design a floorplan for a two-bedroame-bathroom apart-
ment with the following constraints: (1) one of tberners of the living
area is also the north-west corner of the planti@)}wo bedrooms should
not have a common wall, and (3) at least one obtttrooms has a direct
access to the bathroom. The problem stated aboseselaed both indi-
vidually and collaboratively by the authors and tafotheir colleagues.
During the collaborative evolution, only nine reggatative designs were
made visible to every designer in the peer-groygr designer also had
access to a subset of nine evolving designs frenptipulations of the four
other peers. However, during individual evolutiohfloorplans for the
same problem, the designer had visual access tioealivolving designs in
his own population to ensure some sort of paritthevisualization space
vis-a-vis the collaborative evolution. In other wsy for a standard popula-
tion size of 100, the designer participating in tdoflaborative evolution
effort had visual access to 18 designs at a tintglewhe same designer
involved in the individual pursuit of evolution hatsual access to all 100
designs.

We also used a design template to aid us withitbefitness computa-
tion. For a population size of 100, the initial ptagion has 99 floorplans
that are created randomly and the design templatsticuted the 100
floorplan. The template serves as the assumed”“bmsthe first genera-
tion, and the randomly created floorplans are coptho the template and
assigned the three subjective fitness values discus section 4.1.3. All
floorplans are also evaluated based on their camgdé with the Architec-
tural data guidelines. Based on the four critettia, Pareto-optimal fronts
are calculated and three members selected at rafrdomithe first fronts
each are displayed to the designer. The desigeerititeracts with the in-
terface and brings the evolution to a stop whemthshe feels that there
are one (or morghterestingdesigns in the current population.

Solutions to the two-bedroom one-bathroom problescdbed earlier
were evolved over multiple runs both individuallydacollaboratively. In-
terestingly, we used as a design template a onexbedone-bathroom
plan, which goes on to show that the choice of tategs not an issue (the
template itself was lost in 5-6 generations). Whieeed satisfactory re-
sults (floorplans meeting all or most of the coaistis) in most cases
within 15-20 generations. In Figure 9 a set offkirplans the designers
considered interesting while individually evolvifigorplans is shown, and
in Figure 10 we show a set of six floorplans ttegt $ame designers con-
sidered interesting when they collaborated on tames problem. The
rooms are color coded as red (living area), yellbedrooms), green (eat-
ing areas — kitchen and/or dining rooms), firebiibkkthrooms) and white
(empty spaces in the plan).



Creative Design using Collaborative Interactive &gnAlgorithms 17

E5TT N

Figure 9. Six representative floorplans for the design peoblevolved non-
collaboratively

Figure 10. Six representative floorplans for the design probévolved collabora-
tively

The plans were evaluated for creative content basegracticality and
originality on a five-point scale [28]. We conduttthis as an initial pre-
test that would eventually help us devise a moiecgfe methodology for
design concept evaluation. We sought the participaif ten graduate stu-
dents, five from our lab and five outside of ous.lén addition to the two
viewpoints of practicality and originality, we alssked survey partici-
pants to rate how close a design comes in medimginimum design re-
quirements and the set of constraints. Based @ ithivas unanimously
felt that #5 (Figure 9) and # 9 (Figure 10) did et the north-west liv-
ing room constraint and hence, it was decided tat ¢dinem from the
evaluation. The results of the evaluation are prteskin Table 1.

The collaboratively designed floorplans were cdesity rated higher
on the originality scale, while the individually dim-collaborative) de-
signed floorplans were found to be more practibédny survey partici-
pants ranked #12 (Figure 10) as being the mosinattignd the least prac-
tical floorplan. Because of the limited size of tharvey population, it
would be premature to conclude that collaborativddyeloped floorplans
do not address resolution aspects as well as thegidoally developed
floorplans do. We also feel that a designer-centiegvpoint of creativity
should hold as much weight as peer-evaluation bagegracticality and
originality. Design #7 (Figure 10) came about wioae designer evolving
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designs with “two-bedrooms one-bathroom with nongaaireas” (similar

to #2) injected his population with a peer’s desigme who was evolving
plans with a kitchen area (similar to #3). Neitldessigner was likely to
come up with #7 on their own, which also happensctre highly on the
originality scale. In fact, all the collaborativetiesigned floorplans were
rated in the top-5 on the originality scale.

Table 1 Creativity evaluation of the ten representativsigie concepts

DESIGN # PRACTICALITY ORIGINALITY RANK

1 2.7 3.1 6
2 2.9 2.7 8
3 2.4 3.3 7
4 4.4 3.3 2
6 4.0 3.2 3
7 2.2 3.4 8
8 2.8 3.4 5
10 3.2 3.5 4
11 4.2 3.6 1
12 1.6 38 10

The Ul panel evolution shows promise, but furthgyegziments and data
analysis are required. Figure 11 (left) shows thWepanels evolved indi-
vidually and Figure 11 (right) shows three paneishwed collaboratively.
Although the preliminary results are inconclusmee, did find that collabo-
ratively evolved panels, showed overall visuallypegling softer color
tones, while individually evolved panels show ahhiegree of contrast
between background and foreground color (at tinme®onfortable combi-
nations).

Figure 11. Left: Three representative Ul panels evolved imially (notice the
high contrast between foreground widget colors badkground panel color);
Right: Three representative Ul panels evolved boltatively
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Conclusions

In this paper, we propose a collaborative model diative designing

based on interactive genetic algorithms. We implgmeur proposed

model to collaboratively evolve floorplans and wetldayout designs —

two applications that may have potential use ierattive development of
user-interfaces. We have addressed several isslamg to implementa-

tion and issues relating to genetic search, interaand collaboration. We

also compare results of collaborative evolutionhwsimilar results ob-

tained with individual (non-collaborative) evolutioby evaluating created
designs on a five-point scale for practicality andjinality. The pre-test

indicates that while individually created floorptawere rated highly for

practicality, the collaboratively generated flo@ms were considered more
original. Based on these preliminary findings, walidve that there is

enough empirical evidence to support our hypothibsis collaborative in-

teractive evolutionary search of design spacesdeed a viable computa-
tional model of creative design.
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