
University of Nevada, Reno

Interactively Evolving User Interfaces

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of Master of Science in
Computer Science

by

Juan C. Quiroz

Dr. Sergiu M. Dascalu / Thesis Co-Advisor

Dr. Sushil J. Louis / Thesis Co-Advisor

May, 2007

Copyright by Juan C. Quiroz 2007
All Rights Reserved

i

ABSTRACT

Interactively Evolving User Interfaces

by

Juan C. Quiroz

We attack the problem of user fatigue in using an interactive genetic algorithm to
evolve user interfaces in the XUL interface definition language. The genetic algorithm
combines a set of computable user interface design metrics with subjective user input
to guide the evolution of interfaces. User interface specifications are encoded as
individuals in a genetic algorithm’s population and their fitness is computed from a
weighted combination of user interface design guidelines and user input. We show
that we can reduce human fatigue in interactive genetic algorithms (the number of
choices needing to be made by the designer), by 1) only asking the user to pick
two user interfaces from among ten shown on the display and 2) by asking the user
to make the choice once every t generations. Our goal is to provide user interface
designers with a tool that can be used to explore innovation and creativity in the
design space of user interfaces and make it easier for end-users to further customize
their user interface without programming knowledge.

ii

Acknowledgments

I would like to thank my family, but especially Katie, for putting up with me and
keeping me sane through the countless hours of work.

I would like to thank my advisors, Dr. Louis and Dr. Dascalu, for giving me the
opportunity to work with them, for their guidance, for the work station I have made
my second home, and for the big fat check I get every month. I would also like to
thank Dr. Naik for agreeing to endure 70+ pages of ... uh ... good stuff!

Finally, I would like to thank my ECSL lab members - Chris, Ryan, Anil, Adam,
David, Nathan, and Mark, and I guess other random people that stray into the lab
every so often, such as Sebastian and John.

This material is based in part upon work supported by the Office of Naval Research
under contract number N00014-03-1-0104 and in part upon work supported by the
National Science Foundation under Grant No. 0447416.

iii

Contents

Abstract i
Acknowledgments ii
List of Figures v
List of Tables vii

1 Introduction 1
1.1 Structure of this Thesis . 4

2 Previous Work 6
2.1 Genetic Algorithms . 6
2.2 Interactive Genetic Algorithms . 9
2.3 User Interface Design . 12
2.4 Related Work . 14

2.4.1 Evolution of User Interfaces 14
2.4.2 User Fatigue in IGAs . 15

2.5 XUL User Interfaces . 16

3 User Interface Evolution 18
3.1 User Interface Representation . 18

3.1.1 Widget Layout . 20
3.1.2 Widget Color . 21

3.2 Fitness Evaluation . 22
3.2.1 Subjective Evaluation . 22
3.2.2 Objective Evaluation . 24
3.2.3 Parasitism . 26

3.3 Case Study: MoveTo Panel . 27
3.4 Summary . 28

4 User Interface Evolution Environment 29
4.1 Overview of Our Research Environment 30

4.1.1 User Interface Specification 31
4.2 Investing Time on Development Versus Research Experimentation . . 32

4.2.1 wxPython Integration . 32
4.2.2 Experiment Manager . 34
4.2.3 Data Manager . 37
4.2.4 Future Productivity Improvements 37

4.3 Transitioning from Research Tool to End-User Tool 40
4.4 Related Work . 42

iv

4.5 Summary . 43

5 User Interface Evolution with a Simulated User 45
5.1 Experimental Setup . 45
5.2 Results . 46

5.2.1 Subset Display Method . 47
5.2.2 The Power of t . 48
5.2.3 User Interfaces Generated . 51

5.3 Summary . 54

6 User Interface Evolution with Real Users 56
6.1 Experimental Setup . 56
6.2 Results . 57

6.2.1 User Experience . 64
6.2.2 User Interfaces Generated . 64

6.3 Summary . 65

7 Conclusions and Future Work 67

References 71

v

List of Figures

2.1 Canonical GA . 8
2.2 Single point crossover . 9
2.3 Bit flip mutation . 9
2.4 Interactive genetic algorithm . 11

3.1 UI encoding consists of two chromosomes. The widget characteristics
chromosome encodes the color of each widget in a bit format. The
widget layout chromosome encodes the position of the widgets in the
grid. Widgets are identified by integer IDs greater than 0 and empty
cells in the grid are identified with 0s. 19

3.2 MoveTo panel in Lagoon . 27

4.1 User interface evolution environment. 31
4.2 wxPython integration . 35
4.3 Experiment manager . 36
4.4 The data manager organizes data resulting from experiments into a tree

structure. Clicking on an experiment shows a plot of the experiment
results. 38

4.5 The run view of the data manager. 39

5.1 Tournament selection versus roulette wheel selection. The plot shows
the best individuals in the population. 47

5.2 Subset display method comparison. 49
5.3 Subset display method comparison on convergence to blue widgets. . 49
5.4 Effect of varying t on IGA performance. 50
5.5 Effect of varying t on convergence to blue UIs. 51
5.6 Degradation on the IGA performance (maximum) for high t values. . 52
5.7 Degradation on the IGA performance (average) when using high t values. 52
5.8 Degradation in the convergence (maximum) to blue UIs when using

high t values. 53
5.9 Degradation in the convergence (average) to blue UIs when using high

t values. 53
5.10 Displaying the best 10 individuals for user evaluation at generation 0. 54
5.11 Displaying the best 10 individuals for user evaluation at generation 200. 55

6.1 Fitness performance of user 2. The plot shows the best individuals in
the population. 58

vi

6.2 Fitness performance of user 2. The plot shows the best individuals in
the population. 59

6.3 Fitness performance of user 3. The plot shows the best individuals in
the population. 60

6.4 Fitness performance of user 1. The plot shows the average individuals
in the population. 60

6.5 Fitness performance of user 2. The plot shows the average individuals
in the population. 61

6.6 Fitness performance of user 3. The plot shows the average individuals
in the population. 61

6.7 Fitness performance of comparing to user selected worst and without
the comparison. 63

6.8 The best nine individuals in the initial population. 65
6.9 The best nine individuals at session end. 66

vii

List of Tables

4.1 Use Cases in End-User and Researcher Modes 44

1

Chapter 1

Introduction

User interface (UI) design is an expensive, complex, and time consuming process

largely driven by documented style guidelines and design principles. Many of these

guidelines and design principles are difficult to translate into code and good UI de-

sign is driven in large part by human aesthetics in their look and feel [1, 2, 3, 4].

Aesthetics are crucial to good user interface design because they can improve ac-

ceptability, learnability, comprehensibility, and productivity of users interacting with

the interface [5]. We believe that the right balance of usability design principles and

aesthetics is achieved through an iterative exploration of designs. The continuous

search for creativity in user interface design is also fueled by the fact that “very little

knowledge in design generalizes beyond specific case studies” [6]. Thus UI designers

tend to be guided both by objective measures gleaned from UI style guidelines and

design principles, and by subjective measures such as the “look” and “feel” of an

interface. A technique or tool that streamlines user interface design and maintenance

can revolutionize the industry and improve the end-user experience.

The central claim of this thesis is that

Interactive genetic algorithms can evolve user interface designs, combining

computable expert knowledge metrics and human aesthetics.

2

Interactive genetic algorithms (IGAs) differ from genetic algorithms (GAs) in that

objective fitness evaluation is replaced with user evaluation. As such, they can in-

corporate intuition, emotion, and domain knowledge from the user. Through human

subjective evaluation we can instill the UI designer’s sense of aesthetics into the evo-

lutionary process. While IGAs are a powerful tool, their reliance on user computation

presents the issue of user fatigue. GAs usually rely on the use of large population sizes

running for hundreds of generations to achieve satisfactory results [7]. Such computa-

tional dedication cannot be expected from the user due to psychological and physical

fatigue. Thus, how best to incorporate user input into the IGA process remains a

significant research challenge [8].

Our work differs in that we use both a computable fitness criterion and user

evaluation to compose a combined fitness. We encode user interfaces as individuals

in an IGA, and run over a number of generations to help explore the space of UI

designs. Periodically, the UI designer sees the phenotypes (the UIs) corresponding to

a small subset of the population and picks two - the best and worst looking interfaces.

Empirical observations tell us that we should not display more than nine or ten items

to be judged by a user but the composition of the subset displayed for user evaluation

creates rich dynamics that affect the convergence behavior of the population in the

genetic algorithm [9]. In this work we combat fatigue by asking the UI designer to

evaluate a small subset (e.g. nine) of the entire population (e.g. 100). Other methods

3

used for user evaluation are ranking of individuals or assigning a numeric value to the

individuals displayed for user evaluation [8]. Instead we effectively reduce user input

by asking the user to make two picks (best and worst), and through interpolation

assign a fitness to every other individual in the population. Not only does this reduce

the amount of clicks made by the user, but it also lessens the cognitive load on the

user. Furthermore, instead of asking for user input every GA generation, we only ask

for input every tth generation, where t > 1. This further reduces user fatigue. We also

explore how the frequency of user input, by asking user input every tth generation,

affects the IGA performance and user fatigue.

We address two issues that affect convergence behavior. First, should we show

the user the top n individuals in the population, a mixture of the n best and worst

individuals in the population, or display a random set of n individuals in the pop-

ulation? Second, how often do we need to ask the user for feedback? Our results

show that displaying the top n individuals results in faster convergence and better

interfaces. In addition, we show that asking for user input frequently leads to effective

user bias. On the other hand, less frequent user input reduces user fatigue. We show

that the effect of varying the degree of user input, and hence the user control over

the evolution, between a simulated user and three real users varies. With a simulated

user less frequent user feedback introduces noise and leads to suboptimal solutions.

With three real users, less frequent user input significantly reduced user fatigue than

4

when asking for user input every generation.

1.1 Structure of this Thesis

Chapter 2 covers previous work on user interface evolution and user fatigue in

interactive genetic algorithms (IGAs). We present background information on genetic

algorithms and explain how interactive genetic algorithms differ. The challenges of

UI design, design style guidelines, and our choice of XUL as the target language for

our user interfaces are also discussed.

Chapter 3 describes the process by which we were able to evolve user interfaces.

We illustrate how UIs are encoded as individuals in the population of an IGA, how we

conduct the fitness evaluation of individuals, and the advantages and disadvantages

of the representation used in our approach. We also explain in detail the integration

of objective and subjective criteria during fitness evaluation to guide the evolution of

UIs.

Chapter 4 describes the environment used to evolve user interfaces. We discuss

our experiences in the trade-off between investing time on a research environment to

improve productivity versus just conducting experiments.

Chapter 5 presents the first set of experiments conducted with a greedy simulated

user. We explore the most effective selection algorithm for UI evolution, who to

display from the population for user evaluation, and how varying the frequency of

user input affects the population dynamics.

5

Chapter 6 discusses experiments conducted with three real users. We explore how

users effectively bias UI evolution and how the frequency of asking for user input

every tth generation affects interactive evolution.

Chapter 7 summarizes the work presented and the main contributions of this

thesis. We also outline promising directions of future work.

6

Chapter 2

Previous Work

In this chapter we introduce the foundations for the work presented in this thesis.

We explore and explain how genetic algorithms and interactive genetic algorithms

work. The use of interactive genetic algorithms presents us with the problem of

user fatigue. We discuss how user fatigue arises and its effects on interactive genetic

algorithms, the importance and challenges of user interface design, and related work

on both evolutionary techniques for user interface design and on mitigating user

fatigue. Finally, we explain our choice of XUL as the target language for our evolved

user interfaces.

2.1 Genetic Algorithms

Genetic algorithms (GAs) are a search technique based on the Darwinian prin-

ciples of natural selection and survival of the fittest [10, 11]. A genetic algorithm

consists of a population of potential solutions to the problem to be solved. We de-

termine the fitness of individuals in the population based on how well each possible

solution solves the problem at hand. GA solutions are usually encoded as bit strings

(110001010), which are referred to as chromosomes.

The canonical GA process is shown in figure 2.1. The GA starts with the cre-

ation of a population of random individuals, that is, random potential solutions to

7

the problem to be solved. Then we evaluate the fitness of the randomly created indi-

viduals. Next parents are selected proportional to fitness. We crossover the selected

parents, with the offspring replacing the parents. After crossover, we introduce a

small probabilistic mutation to the offspring. The new population then repeats the

cycle of selection, crossover, and mutation, for a number of generations until some

terminating condition has been met.

Suppose that we are using a GA to solve the OneMax problem, where the goal is

to maximize the number of 1s in a bit string. We can assign fitness to an individual

directly proportional to the number of 1s in an individual’s chromosome. An indi-

vidual with a chromosome 001011 of length 6 would get a fitness of 3. During the

initialization step we would create a population of random chromosomes of length

6, with a maximum possible fitness of 6. We would then count the number of 1s in

each chromosome to figure out the fitness of each individual. Then parents with the

most 1s would be more likely chosen for crossover, due to their higher fitness. For

example, an individual with a chromosome 111110 would be more likely selected than

an individual with a chromosome 001000. The generational process would continue

until the population has converged to the optimal chromosome 111111.

Selection algorithms used to pick parents have been extensively studied as to their

effects on population dynamics [12, 13, 14]. Two widely used selection algorithms, and

of relevance to the work presented here, are roulette wheel selection and tournament

8

Figure 2.1 Canonical GA

selection. In roulette wheel selection, or fitness proportional selection, individuals are

assigned to a pie slice, whose size is proportional to the individual’s relative fitness

value. We then pick a random number to land in a point in the “roulette.” The

individual whose pie slice contains the random number is selected to be part of the

mating pool. Hence, higher fitness individuals will have bigger pie slices, increasing

their probability of being selected multiple times for crossover. Nevertheless, lower

fitness individuals have a small probabilistic chance of being selected to be part of

the mating pool. In contrast, tournament selection samples n individuals at ran-

dom from the population, where n is the tournament size. The individual in the

tournament with the highest fitness wins and gets selected to be part of the mating

pool. Larger tournament sizes increase convergence rate by killing off diversity in the

population [14].

Crossover combines the genetic material of two individuals. Single point crossover,

which is the method used in the canonical GA, is shown in figure 2.2.We choose

a random crossover point, we slice the chromosomes of the two parents along the

9

crossover point, and we glue the complementary slices of the parents to form the

offspring. Crossover reflects the principle of individuals passing their good traits onto

their offspring. By crossing over individuals with high fitness, we hope to get offspring

which achieve an even higher fitness by building on their parents’ genes.

Figure 2.2 Single point crossover

After parents have been crossed over, we introduce a small probability of mutation

to the offspring. Bit flip mutation, shown in figure 2.3, picks a random point in a

chromosome, and flips its value from 0 to 1 or from 1 to 0. Mutation is a source of

diversity in the gene pool of the population. While crossover shuffles the gene pool,

mutation modifies it by introducing new genes.

Figure 2.3 Bit flip mutation

2.2 Interactive Genetic Algorithms

Usually we can compute the fitness of individuals in a GA based on a math equa-

tion, some computation, or a model [7]. However, a user cannot be trivially modeled;

user preferences are relative and subject to change with time and context. Interactive

genetic algorithms (IGAs) incorporate user subjective evaluation by replacing the fit-

ness evaluation with the user, where the user provides the fitness to individuals in

10

the population by assigning a number on a subjective scale, ranking individuals, or

choosing the best individual from a displayed subset [7, 8]. Because of the nature of

IGAs, they have been used for a variety of applications which incorporate creative

human input, including editorial design, industrial design, image processing, database

retrieval, graphic art and computer graphics animation, control and robotics, among

others (see the work of Takagi for a survey on IGAs [8]). IGAs fuse the power of evo-

lutionary computation and human subjective evaluation by providing a mapping from

psychological space to parameter space [8]. By doing so, IGAs incorporate human

knowledge, emotion, intuition, and preference into GAs.

The IGA process is shown in figure 2.4. After the population has been initialized

randomly, we display a visual representation of each solution (each individual) to the

user. Improper visualization of the problem can penalize IGA performance, because

complex or ambiguous representations make it harder for the user to understand and

quantitatively compare the solutions presented [7]. If the user is satisfied with one of

the solutions displayed, then the process stops. Otherwise, we use user feedback to

assign fitness to individuals. Once fitnesses are assigned, we go through the standard

process of selection, crossover, and mutation. Finally, the new population is displayed

to the user for evaluation. In figure 2.4, nine individuals are presented to the user

for evaluation, where each individual represents a color. Alternatively, we could have

displayed to the user the color of each individual in the form of an RGB [15] vector,

11

such as (240, 10, 98), but rendering the color to the user, instead of the vector

representation, is a more effective and intuitive problem visualization.

Figure 2.4 Interactive genetic algorithm

Effective IGAs have to overcome several issues. GAs usually rely on large pop-

ulation sizes running for many generations, but asking a user to make hundreds or

thousands of choices may be a little unrealistic. A user would rapidly fatigue and/or

lose interest. Furthermore, the subjective nature of human input can lead to users

changing their goals through the IGA run, leading to noisy landscapes - which coupled

with user fatigue can lead to suboptimal solutions [7].

UI design, discussed more in detail in the next subsection, is a process which

combines objective and subjective heuristics. As such, an IGA is a suitable tool

which uses evolutionary techniques, coupled with human input to help guide the

evolution of the population.

12

2.3 User Interface Design

User interface design is a complex process critical to the success of a software

system; designing interactive systems that are easy to use, engaging, and accessible is

a challenging task. Consequently, the design of a user interface is a major and costly

part of any software project.

Graphical user interface development toolkits and libraries help user interface

designers to develop graphical user interfaces (GUIs) faster by providing basic widget

elements, such as menus, buttons, and textboxes. Because GUI toolkits and libraries

facilitate the design activities at too low a level, they may allow the designer to create

a bad or poor design quickly [16]. UI designers therefore also use style guidelines

and design principles to guide their designs and this hopefully leads to more usable

interfaces. In addition, such guidelines and design principles provide a means with

which to evaluate a generated design. Style guidelines not only define the look and

feel of a user interface, but they also address the organization of widgets, the use of

color, the use of font, the use of spacing and margins, among other properties. Some

prominent style guidelines are Apple’s Human Interface Guidelines, Microsoft’s User

Interface Guidelines, Sun’s Java Look and Feel Guidelines, and the GNOME Human

Interface Guidelines [1, 2, 3, 4]. The problem lies in that “interpreting the guidelines

unambiguously and applying generic principles to a particular design problem is itself

a major challenge” [16]. There is also the problem that guidelines are either too

13

specific or too vague, so they do not always apply to the problem at hand. For

example, an excerpt from Apple Human Interface Guidelines specifies: “use color to

enhance the visual impact of your widgets,” but no detail is given as to which color to

use for a given widget and context [1]. Therefore, user interface designers are forced

into making subjective decisions and evaluations to fill in the details that guidelines

omit.

We define usability as “the extent to which a computer system enables users, in a

given context of use, to achieve specified goals effectively and efficiently while promot-

ing feelings of satisfaction” [17]. We are interested in the development of aesthetically

pleasing UIs, because aesthetics can improve acceptability, learnability, comprehen-

sibility, and productivity of users interacting with the interface [5]. A study had

demonstrated that “designers are biased towards aesthetically pleasing interfaces, re-

gardless of efficiency” [17]. This presents a problem, because the right balance be-

tween aesthetics and efficiency in a UI design leads to the best end-user experience.

An aesthetically pleasing UI with an obscure menu organization can make it frustrat-

ing to the user to find and explore the utilities of the UI. Through our evolutionary

approach, we incorporate both expert knowledge and user bias, leading to the fusion

of guidelines of style and user preference, to make beautiful, efficient UIs.

14

2.4 Related Work

Our work addresses research challenges from two fields: the incorporation of user

input into IGAs, and the use of evolutionary techniques for UI design.

2.4.1 Evolution of User Interfaces

Oliver et al. and Monmarché et al. explored the evolution of the appearance

and layout of websites [18, 19]. The user evolves either the style or the layout of a

webpage; these two optimizations are separated in order to simplify the evaluation of

individuals. The user guides evolution by picking the individuals the user likes, then

replacing the rest of the individuals by mating and applying high mutation rates to

the user selected individuals. CSS parameters like font size, font color, font family,

link color, and text alignment were evolved in their experiments. We expand on this

work in two ways. First, our research incorporates expert knowledge (in the form

of style guidelines) in addition to incorporating the subjective evaluation by a user.

Second, they used a population size of 12 individuals in order to display and fit all

individuals on a screen. Instead we use large population sizes and display a small

subset for user evaluation, allowing us to sample the space of UIs more effectively.

Finally, we are interested in WIMP interfaces (window, icon, menu, pointing device)

instead of web interfaces. WIMP interfaces have a more interactive nature, in contrast

to web interfaces which tend to be content oriented [17].

15

2.4.2 User Fatigue in IGAs

Interactive genetic algorithms are a suitable tool for problems where “there is

no clear measure to give the evaluation of fitness other than the one in the human

mind” [20]. This applies to the evolution of UIs because users will be evolving UIs

based on a mental model. Takagi identifies reducing human fatigue in the use of IGAs

as the major remaining problem [8]. We show that users can guide the evolution of

user interfaces, and are able to evolve interfaces to their liking by only selecting the

best and worst individuals from a small subset of the entire population, instead of

having to evaluate or rank all individuals in the population.

Llorá et al. make the user pick the best solution from a small subset of the

population displayed [7]. The displayed subset is a tournament used to define partial

ordering of solutions; given that s1 and s2 are shown to the user, and the user

picks s1, then we assume that the fitness of s1 is greater than the fitness of s2 [7].

The partial ordering of solutions, from the winners and losers of the tournaments, is

used along with the dominance concepts of multi objective optimization to induce a

complete ordering of solutions, which is subsequently used to train a support vector

machine (SVM) to learn the user’s preferences [21, 7]. For an in-depth discussion and

applications of support vector machines see the work of Gunn, Burges, and Bennett

and Campbell [22, 23, 24].

In the work presented in this thesis we do not attempt to do any user modeling

16

with machine learning techniques. Instead, we use a simple interpolation based on

the user selection of the best and worst UIs to determine the fitness of every other

individual in the population. Thus we reduce the user input to two decisions every

generation. Furthermore, as in Kamalian’s, work we have the user evaluate a subset

of the population every tth generation, putting the user in a supervisory role and thus

reducing the amount of feedback needed from the user [25]. How to choose a good

value for t is addressed in chapters 5 and 6. The work presented by Kamalian et

al. also allows the user to give either a promote or demote reaction to individuals

displayed for user evaluation [25] . In addition, they use a validity constraint to de-

termine viable and meaningful designs to be displayed to the user. While individuals

matching the validity constraint can be numerous, we explore the effects of displaying

a small subset of the population for user evaluation and how the individuals selected

as part of the subset affect the IGA’s performance.

2.5 XUL User Interfaces

The target language used for the UIs being evolved is XUL, the XML User-

interface Language, a cross-platform markup language for user interfaces [26]. XUL is

a powerful and extensive language allowing the defining of widget appearance through

CSS style sheets and the use of JavaScript to implement widget behaviors [26]. XUL

was chosen as the target language because of its flexibility and the ease with which

widgets can be manipulated. XUL is also suitable for the manipulation necessary

17

to evolve the structure of UI layouts. The syntax and structure of XUL allow us to

create a wide range of applications, from a simple layout consisting of two buttons, to

a full fledged application consisting of a menubar, toolbar, and other common widget

elements. Lastly, as a subset of XML, we can use XML parsers and libraries to handle

the manipulation of our XUL UIs.

18

Chapter 3

User Interface Evolution

How do we encode user interfaces into a representation that can be used by the

IGA? How do we layout widgets in a panel? Should we evolve the x and y coordinates

of each widget, or do we evolve the position of widgets relative to their neighbors? We

address these questions and how we implemented the solution to these questions in

our IGA. We will discuss the representation used for our user interfaces, how widgets

are laid out on a panel, and the advantages and disadvantages of our implementation.

3.1 User Interface Representation

We encode the UI representation in two chromosomes (figure 3.1). One chromo-

some encodes widget layout organization, and the second chromosome encodes widget

characteristics (such as widget color). We organize the widgets on a 10 rows by 2

columns grid. In user interface design a sizer usually manages widgets, and a grid

sizer allows efficient widget organization in a layout. The grid layout also enforces

alignment of widgets, which is a style guideline in UI design. We avoided widget en-

coding as a bit string since standard genetic operators such as crossover or mutation

could potentially destroy the representation by introducing duplicate widgets. To

avoid this problem, we encode the widgets in an integer permutation string, of size

20 (10 rows by 2 columns), where each integer represents a unique identifier for each

19

widget and 0s represent empty cells filled with spaces. The integer string maps to the

2D grid representation in a row major fashion. We chose the 10x2 grid because this

results in UIs able to fit in the available space in our sample application: the Lagoon

UI for the MoveTo panel explained in more detail in section 3.3.

To preserve the integer representation of the layout chromosome, we use PMX,

partial mapped crossover [11]. PMX prevents duplicate widget insertion during

crossover. We use swap mutation, where we randomly pick two genes in the inte-

ger chromosome and swap their values. The integer permutation representation used

for the layout of the widgets also saves us from having to compute whether widgets

overlap, a computational save of l2 for each individual (widget layout chromosome

of length l) in the population (of size n), and a total save of l2n computation every

generation. Hence we can explore widget layouts by permuting widget identifiers.

Figure 3.1 UI encoding consists of two chromosomes. The widget characteristics chro-
mosome encodes the color of each widget in a bit format. The widget layout chromosome
encodes the position of the widgets in the grid. Widgets are identified by integer IDs greater
than 0 and empty cells in the grid are identified with 0s.

The second chromosome encodes widget characteristics (widget color) for each

20

individual. This chromosome is a standard bit string and we use standard one point

crossover and bit flip mutation on this part of an individual.

3.1.1 Widget Layout

We layout our widgets on a grid construct provided by XUL which allows us to

organize our widgets in rows and columns.

We have tried using other layout organizations, including absolute positioning and

positioning relative to other widgets. In absolute positioning we encoded the cardinal

coordinates of our widgets, where the coordinates specified where in the panel the

widgets were placed. While this was simple to implement, it resulted in widgets being

placed on top of each other. This added another level of complexity to be resolved

by the user by providing input into the system specifying that the UIs the user liked

the best were the UIs with widgets not stacked on top of each other, instead of

having the user concentrate on more useful characteristics, such as the actual widget

organizations and the look and feel. We may return to this representation in the

future.

Next we tried using relative positioning, where we encoded the relative positions

of widgets with respect to the previous widget in the chromosome. The four positions

allowed were left, right, up, and down. The first widget in the chromosome was placed

on the middle of the panel, with each subsequent widget being placed relative to its

predecessor in the chromosome. Without any bounds or overlap checking, we got

21

cases where the widgets in the UI would almost line up in a straight line, resulting in

elongated UIs that wasted screen space. Finally, the IGA still placed widgets on top

of each other, since a widget placed to the left of a widget with a neighboring widget

already on the left results in stacked widgets.

Although for the two previous representations we expect a GA to eventually un-

tangle the layout, the permutation representation seems to be a more effective and

elegant solution to the layout of the widgets.

3.1.2 Widget Color

We encode widget color on the widget characteristics chromosome. For the color

we use the RGB color model, where each color is a combination of various degrees of

red, green, and blue. The RGB components vary from 0 to 255 respectively. So red

is (255, 0, 0), green is (0, 255, 0), and blue is (0, 0, 255). Hence, we require 8 bits for

each of the three main color components, with a total of 24 bits to represent the color

of a single widget. This representation allows us to explore the 224 space of colors for

each widget.

The RGB model was chosen because of its support in CSS, which is how the char-

acteristics of widgets are specified in XUL, the target language for our UIs. We could

have used the HSV color model, but its gamut is the same as RGB, and experiments

have shown that there is no significant efficiency difference in the RGB and HSV color

models [15, 27, 28]. Therefore, we decided to stick to RGB, however we treat RGB

22

colors as vectors in a 3D color-space.

3.2 Fitness Evaluation

Our IGA’s fitness evaluation consists of two steps: (1) user input evaluation, and

(2) objective metric conformance checking. In the first step we have the user make

two selections, the UI the user likes the best and the UI the user likes the least.

We use these two selected UIs to evaluate the subjective fitness component of all

other individuals in the population through interpolation. In the second step the GA

looks through the UIs in the population and checks to see how well they adhere to

or violate coded guideline metrics. We then add the subjective and objective fitness

components in a linear weighted sum. For this experiment we used equal weights for

the subjective and objective fitness components.

3.2.1 Subjective Evaluation

We compute the similarity between two individuals in two steps. In the first

step, we calculate color similarity of the two UIs, in terms of the widgets and the

panel background. To determine color similarity, we calculate the euclidean distance

between two colors. We reward a small distance between the widget color in individual

i and the user selected best individual b. On the other hand, a large distance between

the widget color in individual i and the user selected worst individual w is rewarded.

Next, we compute widget layout similarity. Here we compute the hamming distance

23

between the permutation layout chromosomes of the two individuals. This fitness

is inversely proportional to the hamming distance between individual i and the user

selected best b and directly proportional to hamming distance between i and the user

selected worst. Finally, we scale the subjective component to make it comparable to

the objective component.

We compute similarity between the best individual b and individual i and between

the worst invididual w and individual i in the population as follows:

bs =
m∑

k=1

M − dist(eb,k, ei,k)

M
+ (MH − hamming(b, i))

ws =
n∑

k=1

dist(ew,k, ei,k)

M
+ hamming(w, i)

The term within the summation computes color similarity and the second line, the

layout similarity. bs is the subjective fitness component computed with reference to

the user-selected best individual while ws computes the subjective fitness component

with reference to the user-selected worst individual. In the formulas above, M is the

maximum distance between any two colors,
√

2552 × 3 = 441.68 and dist(eb,k, ei,k)

is the euclidean distance between the kth widget of the best individuals and the kth

widget of individual i. MH is the maximum hamming distance (l = 20). We finally

scale the subjective fitness to lie between 0 and 1000.

Lastly, we compute the subjective component as the sum of the color and lay-

out similarity of individual i compared to both the best individual b and the worst

24

individual w.

subjective = bs + ws

3.2.2 Objective Evaluation

We compute the objective fitness component by checking how well UI individuals

in the population adhere to and respect coded style guidelines. Our first coded

color style guideline checks whether a UI has a high contrast between background

panel color and widget foreground colors. Maintaining a low contrast between widget

colors is our second coded color style guideline. We prefer the high contrast between

background and widget colors to ensure legibility. The low contrast between widget

colors ensures that widgets have a similar shade of color, instead of having each widget

in a UI with an independent color. The use of the grid positioning to layout widgets

enforces their alignment, which is a style guideline too.

We iterate through the widgets of each UI layout and compute the euclidean

distance from each widget color to background panel color to check high contrast

between the background panel color and widget colors. We consider a large distance

between widget j and the panel background color as a high contrast value. We sum all

the euclidean distances, rewarding individuals that have a high euclidean sum. Next,

we compare each widget j in a UI layout to every other widget (an l2 computation)

in the layout, taking their euclidean distances and adding them up. Large euclidean

distance values between two widgets means that the widgets do not have a similar

25

shade of color. We do this to cluster the colors in 3D space into a center of gravity

which defines the color shade that all these colors should share in common. A large

sum of the euclidean distances means that all widgets have very different colors, and

hence they are spread out far from each other thereby violating our style guidelines.

We therefore assign a low reward to such an individual. A small sum of the euclidean

distances means that the widgets are clustered together and share a similar shade of

color. This individual fulfills our style guideline and we therefore assign a high reward.

We sum the rewards from the high contrast between widget colors and background

color and low contrast between widget colors. Finally, as with the subjective fitness,

we scale this objective value to also lie between 0 and 1000.

We compute how similar the color of widgets in a panel are as follows:

obj1 =
m−1∑

k=1

m∑

j=k+1

dist(ei,k, ei,j)

M

We compute the contrast of widgets to the background color with the formula:

obj2 =
m∑

k=1

M − dist(ei,k, window bgi)

M

Finally, we add the two objective computable metric values to obtain the objective

metric:

objective = obj1 + obj2

After we compute the subjective and objective fitness components, we take a linear

26

weighted sum of the two to determine the fitness of each individual:

fitness = w1 ∗ objective + w2 ∗ subjective

where w1 is the objective component weight, w2 is the subjective component weight,

objective is the fitness objective component and subjective is the subjective fitness

component. The weights w1 and w2 are complements of each other, with values

between 0 and 1. We used values of 0.5 and 0.5 for w1 and w2 respectively for the

experiments discussed in chapters 5 and 6.

3.2.3 Parasitism

We are evolving and trying to optimize the layout and the look of the widgets in

a panel. Consequently, we have multiple criteria that we are trying to optimize. This

has led to parasitic behavior on the evolution of UIs. The user picks the UI the user

likes the best and the UI the user likes the least. However, the user does not specify

these in terms of what exactly the selection is being made on. When the user picks

a UI as the best, this leads to the GA attributing a high fitness to both the look and

the layout of the widgets. For example, if the user picks a UI because of the vibrant

blue colors the widgets have, then a high fitness will be attributed to whatever layout

the widgets have.

In the current implementation we have not incorporated a means with which

to prevent the emergence of this parasitic behavior. This could be suppressed by

27

fixing either the layout or the look of the widgets, and evolving the other non fixed

parameter. Alternatively, the user could be asked to select the best UI based on

widget layout and the best UI based on widget look. However, this adds to the

number of selections that have to be made by the user, thus increasing user fatigue.

3.3 Case Study: MoveTo Panel

Users participating in our IGA sessions, to be discussed in chapters 5 and 6, guided

the evolution of the MoveTo interaction panel that controls combat ships in Lagoon,

a real-time 3D naval combat simulation game developed in our lab [29]. The MoveTo

panel (figure 3.2) consists of five text labels, a button, a drop-down menu, a slider,

and two textboxes, all written in XUL and loaded into the IGA. We chose the MoveTo

panel because it has a variety of widely used widgets, yet it is simple enough for our

initial experiments.

Figure 3.2 MoveTo panel in Lagoon

28

3.4 Summary

We have presented the encoding of our UIs using two chromosomes, one for the

widget characteristics and one for the layout of the widgets. We discussed how indi-

viduals are assigned a fitness by combining objective and subjective heuristics. The

user selection of the best and worst UI are used to interpolate the fitness of every

other individual in the population, where interpolation is done via similarity to the

user selected best and worst UIs. A shortcoming of our representation and user in-

teraction is the emergent parasitic behavior, which can be resolved at the expense of

increased user interaction.

29

Chapter 4

User Interface Evolution Environment

Our research software environment provides a front-end to the interactive genetic

algorithm. We allow the user to configure the IGA behavior through the GUI. Our

current environment provides limited functionality and does not address several us-

ability and efficiency issues. For example, we use XUL, a markup language for UIs,

as the target language for our UIs because of its flexibility and ease with which wid-

gets can be manipulated [26]. Due to the limited support of XUL rendering with

wxPython, our environment implementation language, we dump the IGA output to a

file every generation to be viewed by the user through a system capable of rendering

XUL. To visualize this file we then use the Mozilla web browser.

We present three modifications to the existing environment aimed at improving

research productivity: (1) integration of XUL output into the main wxPython win-

dow; (2) a manager for specifying experiment runs; and (3) a manager for the analysis

and visualization of data produced from the many experiment runs. We discuss how

such improvements to the environment empower the user and increase research pro-

ductivity by providing the user with an intuitive tool that reduces tedious tasks. We

also look into the effort needed to improve the research environment and assess its

worthiness versus alternatively spending this effort on actually conducting research

30

experiments using the existing (less developed) environment. In other words, we dis-

cuss two different approaches: the first is to invest some time and resources to better

prepare the research tools (and then conduct the experiments), the second is to focus

immediately on conducting the experiments and advancing research (by using less

elaborated, albeit operational research tools).

The long-term goal is to deploy our environment to user interface designers. How-

ever, the environment needs to be prepared for the context on which it will be used

for our intended audience. We foresee two audiences, researchers and end-users. The

current environment is tailored towards researchers. We discuss how we will go about

moving our environment from a “researcher’s tool” to an “end user’s tool,” focusing

on how we will conduct this transition.

We hope that the discussion presented in this chapter will help other researchers

customize their experiment environments and tools developed for the end-users and

thus strengthen the work of both the research and end-user communities.

4.1 Overview of Our Research Environment

The environment allows the user to configure the IGA parameters. As shown

in figure 4.1, settings that can be modified include the crossover rate, mutation rate,

population size, number of individuals to display, the objective and subjective weights

of the fitness linear sum, and the frequency of user input. The user can further

customize advanced options such as using roulette wheel or tournament selection for

31

the IGA, and if tournament selection is chosen, the ability to specify the tournament

size and the probability of choosing the winner of the tournament.

Figure 4.1 User interface evolution environment.

The IGA was implemented with Python and the GUI with wxPython. Python

was chosen because it enabled us to do agile programming through fast prototyping,

continuous refactoring, and iterative redesigns.

4.1.1 User Interface Specification

A user defines a UI to be evolved by writing the list of widgets to be evolved in

XUL format. XUL, as a subset of XML, is intuitive and straightforward. A button in

XUL is defined by “< button label = ‘I am the label for this button!′/ >.” The XUL

32

list is loaded into the environment through a file dialog, and evolution can begin.

Currently Python has limited support for XUL renderers. Consequently, we write

the evolution output to a XUL file, and view the file with the Mozilla web browser,

which uses the Gecko rendering engine to render XUL through the browser [26]. We

made the web browser refresh every few seconds, to keep the user from having to

refresh the web browser window every generation.

4.2 Investing Time on Development Versus Research Exper-
imentation

We have worked on improving the effectiveness of our research environment by im-

plementing three new features: (1) integrating the UI output into wxPython instead

of writing it to a XUL file; (2) adding an experiment manager to handle numerous

experiment runs and their organization; and (3) adding a data manager to navigate

and visualize the large amounts of data generated by running many experiments.

4.2.1 wxPython Integration

As implemented (in a simpler way) in the previous version of our research environ-

ment, the dumping of the visualization of individuals to a XUL file presents efficiency

and usability issues. First of all, both the Mozilla web browser and the environment

window must be started every time in order to be able to view the population status

and to provide relevant feedback to the IGA. Once Mozilla has been started, the user

must then open the XUL file to which the output was sent. Lastly, the user has

33

to constantly switch back and forth between the UI evolution environment itself (to

enter the user input of the best and worst UI displayed) and the Mozilla browser (to

see what the UIs at the current generation look like).

We propose a design solution to the aforementioned problem: to integrate in the

main wxPython window the rendering of individuals being evolved instead of writing

it to a XUL file. Alternatively, we could implement the entire GUI with XUL. The

advantage of the latter approach is the ability to make the system available online

and thus have users evolve GUIs through the web. However, the challenge in this is

the communication overhead between the XUL widgets and the python IGA backend,

which would require extensive processing. Therefore, we have opted for the former

solution.

The integration into wxPython, illustrated in figure 4.2, has several advantages.

First, the user does not have to keep switching back and forth between Mozilla and

the main environment interface. Second, the user selection becomes intuitive and

less error prone. A left double click on an individual selects it as the best UI design,

and a right double click on an individual selects it as the worst UI design. Another

advantage is that productivity improves through having the session run faster. With

the XUL output viewed on Mozilla, the user had to switch windows and refresh

the browser to see the latest subset for user evaluation. Instead, with wxPython

integration the update is almost instant, speeding up the IGA session. Overall, the

34

evolution of individuals and their visualization becomes straightforward.

4.2.2 Experiment Manager

The second improvement was to add a manager of experiment runs. The interface

of this experiment runs manager, shown in figure 4.3, allows the user to specify as

many experiments as are desired and their configurations. The processing is paral-

lelized, so that the user does not have to manually run the code in multiple machines.

Configurations for an experiment include all settings that would usually be set through

the main interface, as described previously in section 4.1. An experiment is added

by clicking on the “Add” button. Clicking the “Start” button begins running the

experiments, with a progress bar showing the status of each experiment as time goes

by.

For the experiments to be discussed in chapter 5, an experiment consisting of 30

runs was done for each of the main results presented, which amounted to a lot of time

setting up experiments in separate nodes in a cluster and tedious data management.

The experiment runs manager, developed to increase research productivity, abstracts

all that away, allowing the user to run as many experiments as necessary, with the

ability to customize almost every aspect of the IGA for each experiment, parallelize

the processing to have the experiments run as fast as possible, and automate the

organization of the vast amounts of data resulting for each experiment.

35

Figure 4.2 wxPython integration

36

Figure 4.3 Experiment manager

37

4.2.3 Data Manager

The third improvement we have integrated in our environment is closely related

to the experiment runs manager. The data manager allows the user to browse and

explore the data produced from the many runs of each experiment intuitively. Each

experiment and its corresponding runs are organized in a tree construct, with two

visualization modes.

First, clicking on an experiment expands its children (the experiment runs) and

displays an average plot of the results from the experiment. An example is shown in

figure 4.4. Second, clicking on one of the runs from an experiment displays the data

in a spreadsheet, as shown in figure 4.5.

Usually, a script is written to parse the data produced by the many IGA exper-

iments. The data then needs to be fed into a plotting program, such as xgraph or

gnuplot to view the results. The data manager takes care of retrieving and organizing

the data from each experiment, and allows the user to rapidly make sense of the vast

amounts of data through the plots. This third environment enhancement also saves

a significant amount of time and makes easier the work of the researcher.

4.2.4 Future Productivity Improvements

To further increase research productivity, we would like to incorporate in our

environment a more intuitive way to define a UI to be evolved. An option would

38

Figure 4.4 The data manager organizes data resulting from experiments into a tree
structure. Clicking on an experiment shows a plot of the experiment results.

39

Figure 4.5 The run view of the data manager.

40

be to have the user define a GUI in a development environment such as wxGlade

or NetBeans, and have the representation of it loaded into our environment to be

evolved. Another alternative is to have the user define the widgets to be evolved

inside the environment, by presenting the user with a list of basic widgets and have

the user simply drag and drop widgets into an empty panel. Once the panel was filled

with the user desired widgets, then it can be evolved.

We would also like to further abstract the UI specification by allowing the user to

specify the type of data that needs to be represented by the UI, and then have our

tool evolve both the type of widget used to represent the data and the organization

of the widgets.

Code generation of an interface design in the population is also necessary. When

a user is satisfied with a design, it would be desirable to generate the code for the

selected UI. The user also needs the ability to edit a UI design that is “good enough”

to the user’s preferences, such as moving widgets around, or picking a similar shade

of color to the existing color.

4.3 Transitioning from Research Tool to End-User Tool

We would like not only to further improve the productivity of the environment

but also to make it available to regular users (non-researchers). In order to conduct

user studies and to deploy the system for widespread use, we need to address some

usability issues. We foresee having two modes for the environment, an end-user mode

41

and a researcher mode. There are advanced features which a researcher could use,

such as the parameters and configuration of the genetic algorithm. However, the end-

user (which, in our tool’s case is a user interface designer) may not care or understand

about such configurations, hence they need to be abstracted.

The researcher mode would allow for configuration of both high level and low

level details, giving the researcher the complete control over how the IGA should

behave. On the other hand, it does not make sense to present the end-user, a user

interface designer, with a cluttered interface and configuration options that are bound

to confuse and affect the systems usability and engagement.

The UI designer should be presented with a minimalist interface, with an orga-

nization and representation that would be useful for users not familiar with IGAs.

This can be accomplished by reducing technical jargon and presenting the user with

leverage tools to achieve the desired goals, in this case the exploration of user in-

terface designs. For example, on the context of UI design, it does not make sense

to present the user with a slider for “crossover” and “mutation,” since it does not

correlate to the task at hand. A better approach would be to present the user with

sliders for “variety,” “creativity,” or the degree to which the system should “stick to

my choices!” On the other hand, when designing a tool for researchers we need not

shy away from presenting a plethora of configurations.

The end-user tool would basically contain a subset of the functionality presented

42

in the research tool. For example, allowing a user to change the degree of variety in

the UIs presented to the user can be done in the background through higher crossover

rates and an aggressive selection algorithm. For the advanced user, who wishes to

explore how the degree of variety affects the population dynamics, he or she can

switch to the advanced mode, and configure low and high level details of the IGA.

The sets of features available in researcher mode and, respectively, end-user mode are

summarized using use cases in Table 4.3. It can be seen that in our tool’s case, with

the exception of the “Extended help” feature, the end-user mode functionality is a

subset of the researcher mode functionality.

For users interested in the use of evolutionary techniques and with a weak pro-

gramming background, it can be intimidating diving through hundreds of lines of

code and customizing a GA to the problem at hand. Through our environment we

hope to provide an efficient and usable front-end to both an GAs and IGAs, for the

benefit of both the research and end-user communities.

4.4 Related Work

While unique in terms of specific research supported, our software environment

can, however, be considered illustrative for two significant challenges faced by sci-

entific researchers. First, how to balance the need for fast research results with the

need for better research tools that could improve research productivity in the long

run. Second, how to prepare the transition of a tool used for research to a tool acces-

43

sible by a general category of end users. Nevertheless, because we have started the

exploration of literature for reports on the above two topics and found only a few such

reports so far, it seems these challenges are yet to be addressed thoroughly [30, 31, 32].

4.5 Summary

We have presented the software environment used for research on evolving user

interface designs and described three improvements to the environment aimed at

increasing research productivity by automating tedious tasks that had to be conducted

previously by the user. Because our research productivity has been significantly

increased, we believe that in our environment’s case investing effort in developing

new features of the research software is beneficial in the long run.

In addition, we have presented a discussion on transitioning the research environ-

ment from a researcher’s tool to an end-user’s tool, and looked into how changes to

the current environment could bridge the gap between these two types of tools.

We believe that the two challenges addressed in this chapter, increasing research

efficiency via additional tool development and preparing a research tool for transition

to an end-user tool, are highly important to researchers and deserve thorough inves-

tigation. We believe there is a huge potential for numerous beneficial research and

development projects in tackling these challenges.

44

Table 4.1 Use Cases in End-User and Researcher Modes

Use Case End-User Mode Researcher Mode

1 Define user interface x x

2 Load user interface definition x

3 Customize high level IGA details x x

4 Customize low level IGA details x

5 Start IGA x x

6 Stop IGA x x

7 Open IGA state x x

8 Save IGA state x x

9 Save IGA state x x

10 Select best and worst UI x x

11 Undo evolution step x x

12 Redo evolution step x x

13 Edit evolved UI x x

14 Run batch mode x

15 Extended help x

45

Chapter 5

User Interface Evolution with a Simulated User

Who from the IGA population do we display for user evaluation? How does our

selection of who we display to the user affect the population dynamics and IGA

performance? Should we ask for user input every generation? Can we instead ask

for user input every 2 generations in order to reduce user fatigue? How does less

user input affect the IGA performance? We address these questions by conducting

experiments using a simulated user. The simulated user gave us the leverage to

conduct the first set of experiments and to test our approach with a hypothetical

tireless user. The next chapter will discuss our evolutionary approach with real users.

5.1 Experimental Setup

We conducted two experiments; the first to investigate which individuals to display

for user evaluation and the second to investigate how often we need to ask for user

input. All results reported below are averages from 30 independent runs of the IGA.

Instead of using real people we used a simulated human with a preference for the

color blue. The simulated human gave us the leverage to have a tireless user do our

preliminary tests and experiments. Given a set of UIs displayed for user evaluation,

we used a greedy approach to simulate user picking, and the UI with the most blue

widgets was chosen as the best, and the UI with the least blue widgets was chosen as

46

the worst.

We chose to test three methods for selecting our n = 10 individuals that make

up the subset displayed for user evaluation. The first method displayed the best n

individuals in the population. The second method displayed both the best n/2 and

the worst n/2 individuals in the population. The last method randomly selected n

individuals in the population to be displayed for user evaluation.

For the experiments conducted we used a population size of 100 and we displayed

10 individuals for user evaluation. We compare two selection methods, roulette wheel

selection and probabilistic tournament selection. For tournament selection we used

a tournament size of 4, with 90% probability of choosing the best individual in the

tournament. Four individuals from the population are randomly sampled to form a

tournament for parent selection. We used 80% crossover rate and 1% mutation rate.

To test how the frequency of user input affects IGA performance we conducted ex-

periments asking for user input every tth generation. We used t values of 1, 5, 10, 20, 40,

and 80. We keep a reference to the user selected best and worst UIs, so that we can

do our interpolation technique even when we use values of t greater than 1.

5.2 Results

As expected, we found that using tournament selection with a tournament size of

4 outperformed roulette wheel selection (see figure 5.1). The figure shows the best

individuals in the population. Tournament selection’s stronger selection pressure

47

leads to much quicker convergence to better values.

 780

 800

 820

 840

 860

 880

 900

 920

 940

 0 50 100 150 200

F
it

n
e
s
s

Generations

Tournament
Roulette

Figure 5.1 Tournament selection versus roulette wheel selection. The plot shows the
best individuals in the population.

5.2.1 Subset Display Method

We compared three methods of selecting individuals to be displayed to the user.

The three methods are displaying the best n individuals, displaying n random indi-

viduals, and displaying the best n/2 and the worst n/2 individuals in the population.

Displaying the best individuals in the population gives the user the opportunity to

view individuals that show the greatest potential by both meeting the objective and

subjective heuristics most effectively. Displaying random individuals gives the user

an unbiased insight into the current state of the population; it can allow the user to

see the degree to which the population is converging (by the number of individuals

that are similar), but it suffers because it can present bad UI designs to the user.

48

Lastly, displaying both best and worst individuals allows the user to see what the

population is converging to and where it is coming from.

We ran the IGA with each of the three display methods using tournament se-

lection and plotted the fitness of the best individuals in the population as shown in

figure 5.2. We can see that displaying the best individuals in the population for user

evaluation results in the best IGA performance when compared to displaying random

individuals and displaying both the best and the worst individuals in the population.

Figure 5.3 also shows that our (simulated) user is able to bias IGA performance effec-

tively by displaying the best individuals in the population for subjective evaluation.

Remember, the simulated user preferred blue widgets. Displaying the best and worst

individuals in the population results in individuals with blue widgets, but which vi-

olate the style guideline metrics that we are trying to enforce through the objective

evaluation.

5.2.2 The Power of t

We varied the value of t to explore the effects of user input every tth generation

on IGA performance. That is, the user was only asked to make a choice once every

t generations and we used that choice for the next t generations to interpolate indi-

viduals’ fitness. Figure 5.4 compares convergence behavior for t = 1, 5, 10, and 20,

where we have plotted the average fitness over 30 runs of the best individuals in the

population. We were encouraged to see that varying t, for small values of t, has little

49

 780

 800

 820

 840

 860

 880

 900

 920

 940

 0 50 100 150 200

F
it

n
e
s
s

Generations

Best
Random

Best and Worst

Figure 5.2 Subset display method comparison.

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200

B
lu

e
n

e
s
s

Generations

Best
Random

Best and Worst

Figure 5.3 Subset display method comparison on convergence to blue widgets.

50

 780

 800

 820

 840

 860

 880

 900

 920

 940

 960

 0 50 100 150 200

F
it

n
e
s
s

Generations

t=1
t=5

t=10
t=20

Figure 5.4 Effect of varying t on IGA performance.

effect on the IGA’s convergence behavior. Next, to look at the effect of changing t on

the subjective fitness, we plotted the convergence to blue widgets in figure 5.5 (again

this is average of the best individuals). Note that even a small change in t results

in a drop in convergence to blue UIs as shown in the figure. With less frequent user

input we get increasingly noisy subjective fitness evaluation.

We increased the value of t to 20, 40, and 80 generations to assess the effect

on IGA performance. Figure 5.6 shows the fitness plot of the best individuals in

the population. We can see the step-like increase of fitness corresponding to the

generation when our user makes a selection. Figure 5.7 shows the fitness plot of

the average individuals in the population. The sharp decrease in fitness in early

generations corresponds to the generation in which the user makes the second picking,

since the first user picking is done upon population initialization. We then see a slow

51

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 50 100 150 200

B
lu

e
n

e
s
s

Generations

t=1
t=5

t=10
t=20

Figure 5.5 Effect of varying t on convergence to blue UIs.

increase in fitness.

We also plotted the convergence to blue UIs, which was the user assumed prefer-

ence. Figure 5.8 shows the “blueness” of the best individuals in the population. From

the figure we see that increasing values of t leads to decreasingly blue UIs. Thus, as

expected, less user input results in a less effective subjective bias on the popula-

tion. Finally, figure 5.9 shows the average blueness of individuals in the population

indicating that the average performance correlates well with best performance.

5.2.3 User Interfaces Generated

Figures 5.10 and 5.11 show a subset consisting of the 10 best individuals in the

population at generations 0 and 200, respectively. In generation 0, widgets start with

random positions and random colors. In generation 200, the UIs shown all have blue

widgets, which was the user assumed preference. The UIs at generation 200 both

52

 780

 800

 820

 840

 860

 880

 900

 920

 940

 960

 0 50 100 150 200

F
it

n
e
s
s

Generations

t=1
t=10
t=20
t=40
t=80

Figure 5.6 Degradation on the IGA performance (maximum) for high t values.

 550

 600

 650

 700

 750

 800

 0 50 100 150 200

F
it

n
e
s
s

Generations

t=1
t=10
t=20
t=40
t=80

Figure 5.7 Degradation on the IGA performance (average) when using high t values.

53

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 50 100 150 200

B
lu

e
n

e
s
s

Generations

t=1
t=10
t=20
t=40
t=80

Figure 5.8 Degradation in the convergence (maximum) to blue UIs when using high t

values.

-600

-400

-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200

B
lu

e
n

e
s
s

Generations

t=1
t=10
t=20
t=40
t=80

Figure 5.9 Degradation in the convergence (average) to blue UIs when using high t

values.

54

Figure 5.10 Displaying the best 10 individuals for user evaluation at generation 0.

respect the metrics enforced on the objective evaluation: 1) Widgets should all have

a similar shade of color, and 2) There should be a high contrast between foreground

and background colors.

5.3 Summary

The results presented in this chapter were published in [33, 34]. We have explored

methods by which to reduce user fatigue in IGAs by 1) displaying a subset from the

population that yields the best IGA performance, 2) asking the user to select the

best and worst UIs from the subset displayed for user evaluation, and 3) assessing

the effects of limiting user input by having the user pick every t generations.

We first compared selection methods in order to find the one that yielded the best

55

Figure 5.11 Displaying the best 10 individuals for user evaluation at generation 200.

IGA performance. We found tournament selection’s high selective pressure to yield

better and more robust IGA results. Next we compared three subset display methods,

where each method resulted in a different composition of the subset displayed for

user evaluation. Our results indicate that displaying the best individuals for user

evaluation results in better and faster convergence of the population, when compared

to displaying a random subset and a subset consisting of the best and the worst

individuals in the population. We also found that we can get reasonable convergence

to well laid out blue (our preferred color) interfaces for small values of t. High values

of t can reduce human fatigue considerably, but at the cost of increased noise in the

subjective fitness landscape.

56

Chapter 6

User Interface Evolution with Real Users

We have assessed how the use of a simulated user affects IGA performance. While

the simulated user allowed us to extensively test the IGA and to conduct the first

set of experiments, the simulated user is far from an accurate model of a user. The

simulated user always chooses the UI with the most blue widgets as the best and the

least blue widgets as the worst. A user is likely to change his/her mind often, and

since there is no way to enforce consistency from the user responses, the selection

of who is the best can be anything from a good color combination to a good widget

layout. In this chapter we discuss the experiments conducted with actual users, and

how both our interpolation technique and asking for user input every tth generation

effectively reduces user fatigue.

6.1 Experimental Setup

Three users participated in five IGA sessions, each session lasting 30 generations.

For these five sessions, we asked the user to make a selection every t generations,

with t values of 1, 3, 5, 10, and 15, allowing the user to bias the evolution of the

UIs 30, 10, 6, 3, and 2 times respectively. We instructed the users to choose the UI

they liked the best and the UI they liked the least, based on whatever criteria they

desired. We keep a reference to the user selected best and worst UIs, so that we can

57

do our interpolation technique even when we use values of t greater than 1.

Our IGA’s parameter settings for the experiments conducted with real users are

as follows: (1) population size of 100, (2) 9 individuals displayed for user evaluation,

and (3) probabilistic tournament selection with a tournament size of 4, 90 percent

probability of choosing the tournament best individual (otherwise we choose a ran-

dom individual from the tournament losers). For the experiments conducted with the

simulated user, discussed in chapter 5, we displayed 10 individuals for user evalua-

tion. Here we display 9 individuals because this allows us to aesthetically display 3

individuals per row, instead of having two rows of 4 individuals with a third row with

only two individuals.

6.2 Results

We plotted the fitness convergence for our three study subjects: user1, user2, and

user3. Figure 6.1 shows user1’s session fitness convergence of the best individuals in

the population for t = 1, 3, 5, 10, and 15. We can see step like increases for t = 1 and

t = 3 as the user varies their selection of the UI they like the best. Sharp increases

in fitness reflect the user choosing an individual that also conforms to the objective

metrics. Note that in our IGA, the population will constantly evolve towards UIs that

reflect the objective design metrics, hence the fitness increases over time. Through

the generations the user sees individuals that increasingly reflect conformance to the

objective metrics, yet which resemble individuals the user liked. The fitness increase

58

shows the successful fusion of computable objective metrics and user subjective input

guiding the evolution of the UIs. Lastly, notice that for a value of t = 3 user1 is

able to achieve a higher fitness than with t = 1. We did not expect this behavior

since our previous results with a simulated user showed that giving the simulated

user complete control over the UI evolution by allowing them to participate in every

generation resulted in the highest fitness performance. Also, we noticed that the

maximum fitness for values of t = 5, 10, and 15 remain constant. We attribute this

behavior to user1 not changing their selection of the best UI during the entire session.

With low values of t a user has more opportunities to change the selection of the best

UIs, (30 chances with t = 1 and 10 chances with t = 3).

 760

 780

 800

 820

 840

 860

 880

 900

 920

 0 5 10 15 20 25 30

F
it

n
e

s
s

Generations

User 1 - Max Fitness

t=1
t=3
t=5

t=10
t=15

Figure 6.1 Fitness performance of user 2. The plot shows the best individuals in the
population.

Figure 6.2 shows user2’s session fitness convergence of the best individuals for the

59

same values of t. We see that for user2, t = 10 achieved the highest fitness, and for

t = 15 user2 did not change their selection of the best UI during the entire session.

User2 was also able to successfully bias the evolution of the UIs by fusing objective

and subjective criteria.

 760

 780

 800

 820

 840

 860

 880

 900

 920

 0 5 10 15 20 25 30

F
it

n
e

s
s

Generations

User 2 - Max Fitness

t=1
t=3
t=5

t=10
t=15

Figure 6.2 Fitness performance of user 2. The plot shows the best individuals in the
population.

Figure 6.3 shows the fitness plot for user3. User3 presents interesting results, since

his/her varied selections of the best UI helped in finding high fitness values for all t.

Notice that for all three users using a value of t = 1 did not result in the highest fitness

convergence. Figures 6.4, 6.5, and 6.6 show the fitness plot of the population average

for the three users. The steep drops in average fitness performance correspond to the

time steps where the user makes a selection of the best and worst UIs. These average

fitness performance results are similar to our previous results with a simulated user.

60

 760

 780

 800

 820

 840

 860

 880

 900

 920

 0 5 10 15 20 25 30

F
it

n
e

s
s

Generations

User 3 - Max Fitness

t=1
t=3
t=5

t=10
t=15

Figure 6.3 Fitness performance of user 3. The plot shows the best individuals in the
population.

 550

 600

 650

 700

 750

 0 5 10 15 20 25 30

F
it

n
e

s
s

Generations

User 1 - Avg Fitness

t=1
t=3
t=5

t=10
t=15

Figure 6.4 Fitness performance of user 1. The plot shows the average individuals in
the population.

61

 550

 600

 650

 700

 750

 0 5 10 15 20 25 30

F
it

n
e

s
s

Generations

User 2 - Avg Fitness

t=1
t=3
t=5

t=10
t=15

Figure 6.5 Fitness performance of user 2. The plot shows the average individuals in
the population.

 550

 600

 650

 700

 750

 0 5 10 15 20 25 30

F
it

n
e

s
s

Generations

User 3 - Avg Fitness

t=1
t=3
t=5

t=10
t=15

Figure 6.6 Fitness performance of user 3. The plot shows the average individuals in
the population.

62

Why do we see a drop in average fitness performance associated with the time

steps on which the user provides input? Initially we expected to see a drop in average

performance associated with the user changing the selection of the best and worst

UIs. However, we can see a drop in performance even when the user does not change

his/her selection of the best UI through the entire session as was seen with user1

(Figure 6.1) and user2 (Figure 6.2). Why do we see a constant best individual with

high values of t and not with low values of t? We conducted an experiment to test two

hypothesis: (1) the drop in average performance associated with user input is due to

the user changing the selection of the worst UI while the best UI remains constant,

and (2) the constant best individual results in a flat maximum fitness and is common

with high values of t because of the reduced user intervention.

The drop in fitness performance associated with user input can be a result of

a user changing the least-preferred UI while not changing the best-preferred UI. We

conducted another session run with a user, where the user was instructed to pick a UI

as the best at the beginning of the session and to continually pick that UI throughout

the rest of the run. We had the user do this on two sessions, where in one of the

sessions we turned off the comparison to the user selected worst UI. Finally, we used

t = 3 - asking for user input every 3 generations, since none of the users picked the

same UI as the best for t = 1 and t = 3. Thus, we wanted to confirm the conjecture

that such behavior was less common with low values of t since the user has more

63

opportunities to change his/her selection.

Figure 6.7 shows these results. The plot shows the fitness convergence of the best

 400

 450

 500

 550

 600

 650

 700

 750

 800

 850

 0 5 10 15 20 25 30

F
it

n
e

s
s

Generations

Max: No Worst Comp
Avg: No Worst Comp

Max: Worst Comp
Avg: Worst Comp

Figure 6.7 Fitness performance of comparing to user selected worst and without the
comparison.

and average individuals in the population with and without comparison to the UI

the user liked the least. We can see that having the user pick the same individual

as the best UI at every time step results in a constant maximum fitness as we saw

in Figures 6.1 and 6.2 for user1 and user2. Notice that comparing individuals in

the population to the UI the user likes the least results in steep drops in fitness

performance associated with the time step (every 3 generations) in which the user

makes a selection. We also see from the plot that removing the comparison to the

user selected worst individual results in a monotonic increase in fitness performance.

This supports our hypothesis that the comparison to the UI the user likes the least

64

accounts for the sharp fitness drops, even when the user selected best UI remains

constant. It also supports the conjecture that with low values of t the user has more

opportunities to change the selection of the best UI.

6.2.1 User Experience

Doing all 5 IGA runs (for values of t = 1, 3, 5, 10, and 15) took about 30 minutes

to complete, with the session using a value of t = 1 (user input every generation for

a maximum of 30 generations), taking over half the time (20 minutes) to complete.

We found that using a value of t = 1 results in slow changes from generation to

generation, forcing the user to pay more attention to detail and making the session

more strenuous. One of the users commented that using high values of t usually

converged to likable UI colors, without having to spend a lot of time making a selection

every generation. Even though 30 generations is not a big number, having to make

a selection every generation still results in user fatigue. Higher values of t seem to

significantly reduce user fatigue and lessen the time spent on each session.

6.2.2 User Interfaces Generated

Figures 6.8 and 6.9 show a subset consisting of the 9 best individuals in the

population at generations 0 and 30 respectively for user3. The figures were taken

during the session using t = 15. In generation 0, widgets start with random positions

and random colors. In generation 30, we can see the best UIs which reflect both the

65

Figure 6.8 The best nine individuals in the initial population.

user3’s preferences and which best follow coded guideline metrics.

6.3 Summary

We investigated three methods to reduce user fatigue in IGAs by 1) displaying a

subset of the best nine individuals from the population, 2) asking the user to select

the best and worst UIs from the subset displayed for user evaluation, and 3) assessing

the effects of limiting user input by having the user pick every t generations.

We had three users evolve UIs with our tool to explore how often to ask for user

input. High values of t can reduce human fatigue and reduce the time spent by the

user on a session. Through our interpolation technique we were able to reduce the

number of selections to two every generation. We conducted an additional experiment

to test the hypothesis that our comparison to the user selected worst results in steep

66

Figure 6.9 The best nine individuals at session end.

drops in average fitness performance on the time steps where the user provides input.

Sessions conducted with the comparison to the user selected worst turned off show

a smooth, monotonic, increasing average fitness. On the other hand, turning on the

comparison to the user selected worst results in steady increases coupled with sharp

drops in average fitness when the user provides feedback. Picking the same the UI

through the entire session results in a constant maximum fitness, yet it is the user’s

changing selection of the worst UI that leads to the sharp drops in average fitness

performance. In the future we would like to explore whether asking for the selection

of both the best and the worst is necessary, and to conduct experiments with users

picking only the best UI or only the worst UI from a small subset displayed for

evaluation.

67

Chapter 7

Conclusions and Future Work

We presented an IGA that combines both computable metrics, taken from style

guidelines, and human subjective input to guide the evolution of UIs. The design

process is driven by both formalized style guidelines and by a human sense of aes-

thetics, making our approach a suitable and promising application that can change

the way UIs are designed and maintained.

Within this context, we investigated three methods to reduce user fatigue in IGAs

by 1) displaying a subset of the best nine individuals from the population, 2) asking

the user to select the best and worst UIs from the subset displayed for user evaluation,

and 3) assessing the effects of limiting user input by having the user pick every t

generations.

We first compared selection methods in order to find the one that yielded the best

IGA performance. We found tournament selection’s high selective pressure to yield

better and more robust IGA results. Next we compared three subset display methods,

where each method resulted in a different composition of the subset displayed for

user evaluation. Our results indicate that displaying the best individuals for user

evaluation results in better and faster convergence of the population, when compared

to displaying a random subset and a subset consisting of the best and the worst

68

individuals in the population. We also found that we can get reasonable convergence

to well laid out blue (our preferred color) interfaces for small values of t. High values

of t can reduce human fatigue considerably, but at the cost of increased noise in the

subjective fitness landscape. Through our interpolation technique we were able to

reduce the number of selections to two every generation.

We had three users evolve UIs with our tool to assess how the IGA behavior

differed from the simulated user and to explore how often to ask for user input. We

found that high values of t can reduce human fatigue and reduce the time spent by

the user on a session, while lower values of t increase the mental demand on the user

due to the greater need to pay attention to detail.

We believe that the work presented in this paper lays a good foundation for future

research and development. We would like to conduct further experiments by varying

the value of t over the course of a single run, exploring how asking for user input often

early in an IGA session (when there is a high degree of diversity in the population),

and asking for less user input in later generations (when the population approaches

convergence) affects performance. Further, we would like to expand widget encoding

to support coupling between widgets and high level spatial relationships with other

widgets and the parent panel.

We plan to incorporate more heuristics from the various style guidelines into the

objective evaluation component. Further user studies need to be conducted, with

69

a larger sample, to evaluate the utility of the tool and the effectiveness with which

users can guide and bias the evolution of UIs. Finally, we intend to investigate using

the longest common subsequence metric as our similarity measure for the layout

chromosome.

Last, we plan to further explore representations and genetic operators that can

yield higher fitness individuals in less generations and with higher confidence intervals.

A representation which yields smooth gradients during crossover and mutation is also

needed. A color model that better correlates to how we define similarity among colors

can help.

In terms of future work for our research environment, we intend to initiate a

quantitative assessment of the increase in productivity brought by the improvements

integrated in our environment (we will collect long term data for this purpose). We

also intend to develop an application programming interface (API) and generalize

our IGA tool such that it could be used by the AI research community as a front-

end to genetic algorithms. Lastly, we would like to elaborate a set of guidelines for

researchers to be followed when preparing and distributing tools that can be used by

the end-user community.

The long-term goal of this evolutionary approach to UI design is to streamline

and help reduce the complexity associated with the generation and the fine-tuning of

UIs. We believe that the research reported here shows the viability of an interactive

70

evolutionary approach to UI design.

“So it goes.” - Kurt Vonnegut, Jr.

71

References

1. Apple: Apple human interface design guidelines: Introduction to apple human
interface guidelines (2006)

2. Microsoft Corporation: Windows xp - guidelines for applications (2006)

3. Sun Microsystems: Java look and feel design guidelines (2001)

4. GNOME: Gnome human interface guidelines 2.0 (2004)

5. Ngo, D.C.L., Teo, L.S., Byrne, J.G.: Modelling interface aesthetics. Inf. Sci.
152 (2003) 25–46

6. Thimbleby, H.: User interface design with matrix algebra. ACM Trans. Comput.-
Hum. Interact. 11 (2004) 181–236

7. Llorà, X., Sastry, K., Goldberg, D.E., Gupta, A., Lakshmi, L.: Combating user
fatigue in igas: partial ordering, support vector machines, and synthetic fitness.
In: GECCO ’05: Proceedings of the 2005 conference on Genetic and evolutionary
computation, New York, NY, USA, ACM Press (2005) 1363–1370

8. Takagi, H.: Interactive evolutionary computation: Fusion of the capabilities of
EC optimization and human evaluation. Proceedings of the IEEE 89 (2001)
1275–1296 Invited Paper.

9. Preece, J., Rogers, Y., Sharp, H.: Interaction Design: Beyond Human Computer
Interaction. Wiley (2002)

10. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michi-
gan Press (1975)

11. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley (1989)

12. Goldberg, D., Deb, K.: A comparative analysis of selection schemes used in
genetic algorithms. 1 (1991) 69–93

13. Blickle, T., Thiele, L.: A comparison of selection schemes used in genetic algo-
rithms. Technical Report 11, Gloriastrasse 35, 8092 Zurich, Switzerland (1995)

14. Sokolov, A., Whitley, D.: Unbiased tournament selection. In: GECCO ’05:
Proceedings of the 2005 conference on Genetic and evolutionary computation,
New York, NY, USA, ACM Press (2005) 1131–1138

72

15. Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F.: Computer graphics: prin-
ciples and practice (2nd ed.). Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (1990)

16. Kim, W.C., Foley, J.D.: Providing high-level control and expert assistance in
the user interface presentation design. In: CHI ’93: Proceedings of the SIGCHI
conference on Human factors in computing systems, New York, NY, USA, ACM
Press (1993) 430–437

17. Ivory, M.Y., Hearst, M.A.: The state of the art in automating usability evalua-
tion of user interfaces. ACM Computing Surveys 33 (2001) 470–516

18. Oliver, A., Monmarché, N., Venturini, G.: Interactive design of web sites with
a genetic algorithm. In: Proceedings of the IADIS International Conference
WWW/Internet, Lisbon, Portugal (2002) 355–362

19. Monmarché, N., Nocent, G., Slimane, M., Venturini, G., Santini, P.: Imagine:
a tool for generating html style sheets with an interactive genetic algorithm
based on genes frequencies. In: Proceedings of the International Conference on
Systems, Man, and Cybernetics, IEEE Computer Society (1999) 640–645

20. Cho, S.B.: Towards creative evolutionary systems with interactive genetic algo-
rithm. Applied Intelligence 16 (2002) 129–138

21. Deb, K., Kalyanmoy, D.: Multi-Objective Optimization Using Evolutionary
Algorithms. John Wiley & Sons, Inc., New York, NY, USA (2001)

22. Gunn, S.: Support vector machines for classification and regression (1998)

23. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition.
Data Min. Knowl. Discov. 2 (1998) 121–167

24. Bennett, K.P., Campbell, C.: Support vector machines: hype or hallelujah?
SIGKDD Explor. Newsl. 2 (2000) 1–13

25. Kamalian, R., Zhang, Y., Takagi, H., Agogino, A.: Reduced human fatigue inter-
active evolutionary computation for micromachine design. In: Proceedings of the
2005 International Conference on Machine Learning and Cybernetics. Volume 9.,
IEEE Computer Society (2005) 5666–5671

26. XULPlanet: Xulplanet.com (2006)

73

27. Douglas, S.A., Kirkpatrick, A.E.: Model and representation: the effect of visual
feedback on human performance in a color picker interface. ACM Trans. Graph.
18 (1999) 96–127

28. Wu, Y., Takatsuka, M.: Three dimensional colour pickers. In: APVis ’05: pro-
ceedings of the 2005 Asia-Pacific symposium on Information visualisation, Dar-
linghurst, Australia, Australia, Australian Computer Society, Inc. (2005) 107–
114

29. ECSL: Lagoon (2006)

30. Ryan, C., Tewey, B., Newman, S., Turner, T., Jaeger, R.J.: Estimating research
productivity and quality in assistive technology: a bibliometric analysis spanning
four decades. IEEE Transactions on [see also IEEE Trans. on Rehabilitation
Engineering] Neural Systems and Rehabilitation Engineering 12 (2004) 422–429

31. Using information technology to leverage research productivity. In: Engineer-
ing and Technology Management, 1996. IEMC 96. Proceedings., International
Conference on, Vancouver, BC (1996)

32. Yao, J.T., Yao, Y.Y.: Web-based information retrieval support systems: building
research tools for scientists in the new information age. In: Web Intelligence,
2003. WI 2003. Proceedings. IEEE/WIC International Conference on. (2003)
570–573

33. Quiroz, J.C., Dascalu, S.M., Louis, S.J.: Human guided evolution of xul user
interfaces. In: CHI ’07: CHI ’07 extended abstracts on Human factors in com-
puting systems, New York, NY, USA, ACM Press (2007)

34. Quiroz, J.C., Louis, S.J., Dascalu, S.M.: Interactive evolution of xul user in-
terfaces. In: GECCO ’07: Proceedings of the 2007 conference on Genetic and
evolutionary computation, New York, NY, USA, ACM Press (2007)

