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Abstract

In this paper, we describe a new approach for es-

timating 3D pose of a human face from a monocular

image. We assume that the shape of a face can be

approximated by an ellipse and the ratio of the ma-

jor to minor axis of the ellipse is given. We �rst

detect a face ellipse and then estimate the face pose.

Compared with the existing feature-based approaches

for face pose estimation, our approach is more ro-

bust since an ellipse can be more reliably detected

and embodies more compact information about 3D

pose. Experimental study using a large number of

synthetic and real images demonstrates that the ap-

proach is accurate and robust.

1 Introduction

Face pose determination represents an important

research area in human computer interaction (HIC).

There are many approaches of face pose estimation

have been reported. Most of them model a face with

certain facial features. In [4], six facial feature points

including pupils, nostrils and lip corners are used

to model a face. In [5], �ve feature points contain-

ing four eye corners and the tip of noise are used

to model a face. Gee [1] proposed a facial model

based on the ratios of lengths between some facial

features. These feature-based approaches face a ma-

jor challenge in detecting the required facial features

under varying illuminations and di�erent head ori-

entations.

In this paper, we propose a novel model-based ap-

proach for estimating the 3D pose of a human face

from a monocular image. Our approach models the

shape of a face with an ellipse. The use of an ellipse

has the following advantages: First, human face can

be rather accurately modeled with an ellipse. Sec-

ond, ellipses can be preserved under projective trans-

formations. Third, ellipses contain compact global

information of the face, they are expected to be more

robust to noise than facial feature points. Fourth,

the 2D/3D correspondences can be established much

more easily.

In [3], a technique is introduced to reconstruct

a 3D conic and its pose from two images obtained

from di�erent views. To overcome the problem that

a single ellipse image is not su�cient to recover 3D

face pose, we assume that the ratio of the major to

minor axis of the 3D face ellipse is given and that

the face pose rotation movement is limited to two

angles: tilt (around vertical axis) and slant (around

horizontal axis). Both assumptions are reasonable.

The ratio between major and minor of axes of a face

ellipse can be obtained from the face image without

any slant and tilt. The rotation around the Z axis

(optical axis) is rare for many applications in HCI.

2 Mathematical Model

Let [X Y Z]T represent the coordinates in the

object frame, (u v)T be the coordinates in the im-

age frame, [Xc Yc Zc]
T be the coordinates in the

camera frame, and [c r]T be the coordinates in the

row-column frame(see Fig 1).

2.1 Projection equation of points

Between row-column frame and object frame, we

have
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where � is a scalar factor, W is the camera intrinsic

matrix, M is camera extrinsic matrix, and We have
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Figure 1. Camera perspective projection

model

M = [r1 r2 T], and
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sx ; sy is scale factor (pixels/mm) in image u, v axis,

f is the camera focal length, u0 ; v0 is the coordi-

nates of the principle point.

2.2 Projection equation of ellipses

Let Q be a 3�3 matrix representing the 3D ellipse

in object frame, A be a 3 � 3 matrix for the image

ellipse, we have
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Substituting (1) to (2), we have

0
@ X

Y

1

1
A

T

MTWTAWM

0
@ X

Y

1

1
A = 0 (4)

From (3) and (4), and denote WTAW = B, this

yields

Q = �MTBM (5)

Let the length of major and minor axis of the 3D

ellipse be a and b respectively, the equation 5 can be

rewritten
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Note that B is known for a calibrated camera.

In equation (6), there are six constraints, however,

there are nine unknowns: three rotation angles,

three translation variables, ellipse major axis length

a, minor axis length b, and scale factor �. To solve

these unknowns, additional information is necessary.

2.3 Face pose characterization

We will characterize the 3D face pose by a rota-

tion matrix R and a translation vector T.

2.3.1 The rotation matrix R

We assume there is no rotation around the optical

axis of the camera, thus, face orientation can be

characterized by two angles: slant and tilt. R can

be obtained by rotating the object frame around Y

axis by 180 degree, around X by � degree, and �-

nally around Y axis again by � degree. Thus, R can

be expressed as follows,

R =

0
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2.3.2 The constraint equations

Let c = a2=b2, from the �rst 2 � 2 sub-matrix in

equation (6), two equations are obtained
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where r1 and r2 are the �rst and second column of

R.

We can solve for slant and tilt from equation 8.

Moreover, from equation (6), we have�
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where T = (tx ty tz)
T , tx

tz
,
ty

tz
can be solved by the

above two constraints.

3 Experimental Results

The proposed algorithm has been tested exten-

sively using synthetic ellipse data, actual ellipse

data, and human face image data.



3.1 Experiment results with syn-
thetic ellipse data

It is di�cult to obtain the ground truth of the ro-

tation angle of a face. To evaluate our algorithm, we

used about 1,153 arti�cial images of a computer gen-

erated ellipse viewed from every possible direction.

Some experimental results are shown in Fig.4.

To study the sensitivity of the algorithm to image

noise, the imaged ellipse locations were corrupted by

zero-mean Gaussian noise with standard deviations

0.5, 1.0, 1.5, 2.0 pixels respectively. Fig.2 shows the

estimation errors for slant and tilt respectively .
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Figure 2. Slant and tilt estimation error

for synthetic ellipses

As we can see from Fig2, without Gaussian noise,

the maximum estimation error is less than 0.5�.

When noise is increased to 2 pixels, the maximum es-

timation error is about 2�, which demonstrates that

the algorithm is fairly robust to noise.

Fig.3 shows the estimation errors of ellipse pose in

every possible directions. When slant or tilt is close

to �80� or �80�, the head pose is a near-pro�le pose

or a deeply face-up-down pose, estimation error con-

siderably increases with the noise level. This is due

to the fact that the ratio is extremely small and any

perturbation with the image can lead to a signi�cant

increase with the estimated orientations.

3.2 Actual ellipse data

We drew a model ellipse on a planar board. We

then obtain images of the model ellipse while it was
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Figure 3. Pose estimation error for syn-

thetic ellipses

rotated around the X and Y axes respectively. These

images are shown in Fig.5. The estimated results

with the proposed algorithms are consistent with

perceived orientations.

3.3 Human face image data

We captured image sequences of a male with dif-

ferent slants and tilts. An ellipse detection [2] is

then performed on each face image to detect face.

The detected ellipse is used to estimate the pose of

the human face. These results are shown in Fig.6.

Through visual inspection, we can conclude the esti-

mated face poses are in good agreement with actual

face orientations.

4 Conclusions

In this paper, we describe a new approach for es-

timating 3D pose of a human face from a monocular

image. The algorithm achieves good experimental

results. From synthetic data, without noise, the es-

timation errors are less than 0:5�, even if Gaussian

noise with standard deviation 2.0 pixels is added, the

estimate error is only 2:5�. For actual ellipse data

and real human face data, the estimated pose re-

sults are in good agreement with their perceived ori-

entations. The experimental results demonstrated

the proposed facial model is reasonable and that the

proposed approach is reliable and stable.
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Figure 4. Pose estimation from simulated ellipse. The line in the ellipse represents the

estimated ellipse normal. The angle below each image is the estimated slant and tilt.
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Figure 5. The estimation of 3D poses of an actual ellipse with consecutive slant rota-

tion(above) and tilt rotation (below). The angle is the estimated slant and tilt.
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Figure 6. The estimation of 3D face pose with consecutive slant rotations (above) and

consecutive tilt rotations (below). The angle is the estimated slant and tilt.
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