
Vulnerability Analysis of AR.Drone 2.0, an
Embedded Linux System

Ignacio Astaburuaga
Dept. of Computer Science & Engineering

University of Nevada, Reno
Reno, USA

Ignaciochg@nevada.unr.edu

Carolyn Hughes
Robert McQueen High School

Reno, USA
cjhughes@WashoeSchools.net

Amee Lombardi
Damonte Ranch High School

Reno, USA
ALombardi@WashoeSchools.net

Shamik Sengupta
Dept. of Computer Science & Engineering

University of Nevada, Reno
Reno, USA

ssengupta@unr.edu

Brian La Torre
Sparks High School

Sparks, USA
BALatorre@WashoeSchools.net

Abstract—The goal of this work was to identify and try to solve
some of the vulnerabilities present in the AR Drone 2.0 by Parrot.
The approach was to identify how the system worked, find and
analyze vulnerabilities and flaws in the system as a whole and in
the software, and find solutions to those problems. Analyzing the
results of some tests showed that the system has an open WiFi
network and the communication between the controller and the
drone are unencrypted. Analyzing the Linux operating system
that the drone uses, we see that “Pairing Mode” is the only
way the system protects itself from unauthorized control. This
is a feature that can be easily bypassed. Port scans reveal that
the system has all the ports for its services open and exposed.
This makes it susceptible to attacks like DoS and takeover. This
research also focuses on some of the software vulnerabilities, such
as Busybox that the drone runs. Lastly, this paper discuses some
of the possible methods that can be used to secure the drone.
These methods include securing the messages via SSH Tunnel,
closing unused ports, and re-implementing the software used by
the drone and the controller.

Index Terms—AR, drone, 2.0, Parrot, security, embedded,
Linux, Busybox, Vulnerabilities, CVE

I. INTRODUCTION

Commercial Unmanned Aircraft Systems (UAS), often re-
ferred to as drones, are set to grow from 110,000 in 2017 to
450,000 in 2022 [1]. As their number grows so do their uses;
for example, they can be used as bomb detection systems in the
military, as first responders carrying a defibrillator, as tools for
data collection in natural disasters such as wildfire mapping,
payload delivery, disaster management, and rescue operations,
as well as tools of surveillance by law enforcement [2]. In
event of malfunction, like a malicious hack, the drone could
be a safety hazard to the drone operator and any bystander,
which could potentially injure someone. In some cases the
drone carries a payload of some kind; for example, it could
be a payload that could save someone’s life or something
the drone has to deliver like a very expensive asset. If the
drone gets maliciously hacked, then it would not be able
to carry out its duty of delivering the important payload,

potentially causing hazard to an individual who needed help.
The purpose of this research is to investigate and demonstrate
the vulnerabilities present in the Parrot AR.Drone 2.0 so future
drone manufacturers can build safer drones that are not a threat
to public safety.

This document is a security analysis of the Parrot AR.Drone
2.0. It describes some of the possible attack vectors currently
present in this legacy embedded system and some of the ways
the system can be secured. This paper first discusses some
terminology and inner workings of the drone. Then it goes
into the steps taken to conduct this research and its results.
Finally the paper discusses vulnerability analysis and some
possible ways to secure the drone.

II. THEORY & DEFINITIONS

The Parrot AR.Drone 2.0, which will be referred to as
“drone” or “AR” in this paper, is an affordable and simple
to operate drone that runs on outdated software. The drone
runs a custom built Linux kernel, version 2.6, with multiple
custom scripts, programs and services.

Parrot has dropped all support, development, and documen-
tation for the AR 2.0, which made it difficult to conduct this
research.

A. How the Drone Operates and Functions

The AR drone is operated almost like any other drone. The
user controls the drone via a controller, which is a smartphone
or tablet that runs the FreeFlight application (Android or iOS),
rather than a dedicated hardware controller. The user connects
his smartphone or tablet to an access point (AP) hosted by the
drone and opens the FreeFlight application. At that point the
user can operate the drone like any other drone on the market.
The smartphone or tablet running the FreeFlight application
will be referred to as “client” or “controller” in this paper.

B. Program.elf

Installed on the drone there is a proprietary software de-
veloped by Parrot called program.elf. This software is what
interprets commands inside the drone. Once program.elf de-
termines the meaning of the command, it is executed. If the
command is hardware related, then it sends corresponding
signals to the hardware controllers.

C. Busybox

Busybox is a single binary program that contains tiny
versions of many UNIX utilities designed for small embedded
systems [3]. In this research, the Busybox version found in the
system was version 1.14.0, a lightweight custom build that
had some UNIX tools removed. One of the removed tools
is “passwd”, a tool used to change or add a password to a
user’s account, allowing users to authenticate which increases
security.

D. Pairing Mode

Pairing mode is a feature that restricts other controllers
from controlling the drone, but it does not restrict access
to its access point. It is the only security feature in the
drone. It operates in the following way: the user connects his
smartphone or tablet to the drone’s access point, opens the
application and enables the feature from within the settings.
In the background the drone software writes down the remote
controller’s MAC address into the configuration file and runs
“/bin/pairing setup.sh”. “/bin/pairing setup.sh” uses iptables
to block all traffic not coming from the MAC address of
the now paired remote control. Section IV-C discuses how
to circumvent the feature.

E. Communication

The controller and the drone interface with each other via
multiple video, control, and configuration ports. The controller
and the drone communicate using UDP packets; the drone
receives the packets which are then interpreted by program.elf.
Then program.elf communicates with the multiple motor con-
trollers via serial communication [4]. There are also auxiliary
ports for protocols like telnet and FTP, which are discussed
in later sections of this paper. A basic diagram of the drone-
controller interaction is shown in Fig. 1.

Fig. 1. This figure shows in a basic way how the drone communicates and
operates. Connections outside of the controller or the drone are wireless routes,
and connections inside are virtual routes.

AT* Commands, Communication Protocol:
The controller sends AT* commands to the drone, which

ultimately control the drone. These AT* commands were
originally detailed in the SDK provided by Parrot, but now
this information is only accessible via third parties [5] [6].

These commands are sent to the drone via UDP packets.
Program.elf only allows one control to be controlling the drone
at a time, but since it communicates via UDP packets, if
the pairing mode is disabled, the packets with the commands
can be sent from any device, even if it is not a device that
is running the FreeFlight application. If enabled, the paired
controller’s MAC address needs to be spoofed to be able to
control the drone if control used is not the paired one. The
commands have the following format:

AT*<command>=<sequence#>,<arg1>[,<arg2>]
Some of the most used commands are REF, PCMD, and
CONFIG. REF is used for takeoff, landing, and emergency
mode, PCMD is used for roll, pitch, and yaw, and CONFIG is
used to configure some settings in the drone. The sequence
number is a number that starts at one and is incremented
by one. Program.elf does not interpret commands that have
a smaller sequence number than previous commands. The
only exception to this rule is if the sequence number is
one, program.elf thinks the command is the start of a new
connection.

More detailed information on the commands, commands
not mentioned in this paper, and telemetry information can be
found in the developers guide [6]. There is a library created by
Felix Geisendorfer that supports the control, viewing of video
streams, and viewing the navigation data of the drone through
Node-js script [7].

III. PROCEDURE, VULNERABILITY DISCOVERY

A. Nmap Scan

An Nmap network scan was the first task done after con-
necting to the drone’s network. The scan gave important details
how the drone’s system works. The scan revealed that multiple
ports on the drone were open; results of the scan are shown
in Table I. These ports have many different purposes, most
of which are used by the FreeFlight application to control the
drone. Some of the other ports do not control the drone but aid
the controller in updating the drone. These ports include two
FTP server ports and a telnet port. Anyone connected to the
drone’s access point has access to these ports. In an attempt
to further understand how the drone-controller communication
worked, a packet capture was carried out next.

TABLE I
OPEN PORTS AND THEIR CORRESPONDING DESCRIPTION [8]

Port Description
21 TCP FTP: Serves videos and images recorded by drone
23 TCP Telnet

5551 TCP FTP: used for updates
5553 TCP Video frames for client recording
5554 UDP Navigation Data: telemetry
5555 TCP Video stream
5556 UDP Control interface: uses AT* commands to operate drone
5559 TCP Configuration port: uses AT* commands

B. Wireshark Sniffing

Further information was obtained from doing a promiscuous
packet capture, using Wireshark. The results of the packet
capture are further discussed in the results section IV-A and
in the communications section II-E. The next task done was
to explore the operating system.

C. System Exploration Via Telnet

To explore the system even further, telnet was used, as it
was shown in the Nmap scan as available with port 23 open.
Once inside the system, it was discovered that the system runs
Busybox for all of its UNIX commands and that scripts and
files shown in Fig. II are the files that govern the drone by
helping it initialize, configure, and later on control the system.
At this stage it was discovered that the only security feature
in the drone is the “Pairing Mode”. The next task done was
to explore some of the vulnerabilities present in the system.

D. Exploring Vulnerabilities on the Drone

Since there is only one security feature and the commu-
nication is in plain text, the research was focused on other
vulnerabilities. Even though at the time of doing this research,
there were 1,438 common vulnerabilities and exposures (CVE)
for Linux kernel version 2.6, they were not explored [9].
Instead, vulnerabilities for the services running in the drone
were explored. Busybox is the only program running in the
drone (with the exception of scripts and program.elf), so it
was researched next. Busybox 1.14.0 was found to have eight
CVEs affecting it. Two of these CVEs will be explained more
in detail in section IV-F. Exploit-DB and Metasploit were used
to search for exploits that affected Busybox, but none were
found. Metasploit had no exploits for the specific version, but
it did have some generic information-gathering modules to
scan the services. These modules were run against the drone’s
services and the results showed information already gathered,
like Busybox version, etc. The next goal was to secure the
drone.

Tools like Interactive Disassembler (IDA), Retargetable
Decompiler (retdec), Radare2, and Snowman were used to re-
verse engineer program.elf to look for possible vulnerabilities.
IDA and retdec did not work. Only Radare2 worked, but it
disassembled program.elf to about 418,800 lines of assembly
code making it difficult to reverse engineer. Later, Snowman
was used to decompile it to C code. It decompiled program.elf
to about 548,800 lines of code. At this point the idea of reverse
engineering program.elf was abandoned.

E. Securing the Drone

The next step was to secure the drone’s communication with
an easy to implement method. This is where the idea of using
an SSH tunnel was conceived, the results of which are further
discussed in section V-E.

IV. RESULTS & VULNERABILITY ANALYSIS

The drone has many vulnerabilities, one of them being that
all the ports are always open even when they should not be,
e.g. telnet and FTP. There is no encryption on any of the
messages that control the drone, including video feeds, teleme-
try, and configuration messages. There is one data validity
check; therefore, data can be tampered with or fake packets
can be crafted and sent. The only validity mechanism that
the communication has is command sequence number. This
sequence number is so program.elf knows when to discard
older messages. This ensures that older commands that were
delivered after newer ones are not interpreted or executed.
With this in mind, anyone can send UDP packets to the drone
and control it. The open access point contributes to the types
of attacks that can be done. Pairing mode is the only security
feature that prevents unauthorized control of the drone.

A. Communication & Packet Capture Results
The packet capture revealed that the communication from

controller to drone and vice versa are in plain text. Because
the communication is not encrypted or verified, the drone is
susceptible to attacks like packet injection. In the event that
a packet gets malformed or the sequence number is old, the
packet is disregarded by program.elf.

B. Takeover & Deauthentication Attack
This drone is able to recover from a deauthentication attack

after it has finished, but is unable to be operated while the
attack is being carried out. If an attacker targets the original
user’s controller with a deauthentication attack, the attacker
can connect his own controller and the drone will accept it as
a new connection. Connecting to the drone will not work if
pairing mode is enabled, since it drops all packets sent to the
drone if they are not from the paired controller, but it can be
circumvented. Commands can be sent directly to the drone and
processed by program.elf. This DoS attack can be carried out
using the command aireplay-ng from the Aircrack-ng suite.
An Attacker can easily perform a device scan and look in the
vendor section of the scanned MAC addresses for AR drones
and attack them using the above mentioned methodology.

C. Circumventing Pairing Mode
There is only one security feature, and it can easily be

bypassed in the event that the user enables it. The drone
uses iptables to drop packets from devices that are not the
paired controller. It can be bypassed by using Python library
Scapy. This library can inject and spoof packets; in this case
it can spoof the MAC address of the paired controller [10].
Packets can be spoofed to have the MAC address of the paired
controller, bypassing the pairing feature. This also allows the
attacker to craft a configuration packet that will tell the drone
to disable the feature, but is not necessary to disable the feature
to control the drone. The only two things that are necessary
for the spoofing to work is to spoof the MAC of the controller
and to either send a command with a sequence number higher
than the last one, or send the command with the sequence
number one.

TABLE II
FILES AND SCRIPTS WITHING THE DRONE

File Description
/bin/program.elf Main controlling software

/bin/check update.sh Checks for updates
/bin/init gpios.sh Initializes GPIOs to be able to communicate with hardware
/bin/mount usb.sh Mounts USB, mounts partition with the most available space

/bin/pairing setup.sh Setups paired mode (the only security feature)
/bin/parallel-stream.sh Setups camera streams

/bin/reset config.sh Resets configuration file, keeping total flight time
/bin/umount usb.sh Unmounts USBs
/bin/wifi setup.sh Setups wiFi device and creates an AP

/data/config.ini Configuration file for the drone, also contains information about the drone
/etc/inetd.conf Configurations file for services, FTP USB and update folder setup

/etc/udhcpd.conf DHCP server configuration file
/usr/sbin/loadAR6000.sh Configures WiFi card

D. Telnet

By connecting to the drones network and establishing a
telnet connection with the drone, a shell with root access can
be obtained. Looking in the /etc/passwd file shows that the root
account has no password. This gives anyone full access to all
the components of the drone. This includes access to binary,
script, and configurations files, allowing us to edit the system.
This also allows anyone to execute commands in the drone
like halt, reboot, and shutdown which will make the drone
completely stop its normal operation. If the drone is flying
then it will drop from the sky potentially damaging it. This
also allows access to execute other commands and scripts. A
tool-chain can be used to cross compile C programs for the
drone [11].

E. FTP

The drone hosts two FTP servers that are completely open.
The FTP servers allow anonymous access with full read
and write permissions. These two servers give access to the
update folder /update/ and the media folder /data/video/. USB
storage devices are automatically mounted to the media folder,
making accessible from the FTP server. The FTP servers were
originally intended to be used to upload new firmware to the
update folder and to download camera footage from the media
folder. The FTP server can be used to facilitate the transfer of
files to and from the drone.

The /etc/inetd.conf file can be edited via telnet to host the
entire filesystem and have full access to all the files via the
FTP server.

F. Common Vulnerabilities and Exposures

Since all programs and services are part of Busybox, the
only binary, program, and service (except for program.elf) that
is exploitable in the drone is Busybox. The Busybox version
running in the drone is version 1.14.0. By doing a search for
vulnerabilities, exposures and exploits (CVEs) the following
were found [12]: CVE-2017-16544 shell autocomplete escape
code execution; CVE-2011-5325 Up to Busybox 1.22, tar
implementation allows remote attackers to point to files outside
the current working directory via system link; CVE-2014-
9645 Slash character can bypass some restrictions on loading
kernel modules, Busybox <1.23.0, function add probe in

modutils/mosprobe.c; CVE-2016-2147 DHCP client DHCPC
in Busybox <1.25 allows a remote attacker to cause a denial
of service attack(crash) via malformed RFC1035-encoded
domain name, which triggers an out-of-bounds heap write;
CVE-2016-6301 The recv and process client pkt function in
networking/ntpd.c in Busybox allows remote attackers to cause
a denial of service (CPU and bandwidth consumption) via
a forged NTP packet, which triggers a communication loop;
CVE-2016-2148 Busybox <1.25 Heap based buffer over-
flow(DHCP client udhcpc), allows remote hacker to have un-
specified impact via vectors involving OPTIOM 6RD parsing;
CVE-2013-1813 util-linux/mdev.c in BusyBox before 1.21.0
uses 0777 permissions for parent directories when creating
nested directories under /dev/, which allows local users to
have unknown impact and attack vectors; CVE-2011-2716
The DHCP client (udhcpc) in BusyBox before 1.20.0 allows
remote DHCP servers to execute arbitrary commands via
shell metacharacters in the HOST NAME, DOMAIN NAME,
NIS DOMAIN, and TFTP SERVER NAME host name op-
tions.

Only CVE-2017-16544 and CVE-2011-5325 out of all eight
were explored further.

CVE-2017-16544 shell autocomplete escape code execution

Looking into CVE-2017-16544 shell autocomplete escape
code execution shows that Busybox running in the drone is
vulnerable. This vulnerability allows an attacker to execute
escape code placed as a name for a file. Ariel Zelivansky shows
the procedure to exploit this vulnerability, he uses C code to
generate the file that will trigger the vulnerability [13]. He
only explains in a simple manner how it can be applied to
the Busybox system, while this research focuses on how these
vulnerabilities apply to the drone.

The first step to be able to exploit this CVE is to create
the file that has scape codes in its name, this is done with
a C program that will not escape the scape codes. This step
is important since most programs sanitize the file name by
removing meaning from escape codes. A modified version of
Ariel’s code is shown in Fig. 2 and explained below.
The code does the following:

• File - not a command, text that gets printed. Later gets
cleared.

i n c l u d e < f c n t l . h>
i n c l u d e <s y s / s t a t . h>
i n t main (i n t argc , char * a rgv []) {

open (
“ f i l e \e [2 J \e [1 ; 1H\e [4 7 ; 5 ; 3 2 ; 1 5m
T h i s I s A N o r m a l F i l e \e [0m” ,
O RDWR | O CREAT, S IRUSR | S IRGRP |
S IROTH) ;

}
Fig. 2. This figure shows a modified version of C program created by Ariel
Zelivansky that creates a file with escape code in its name [13]. Note: there is
not space in the string, it was broken up into two lines because of formating.

• \e[2J - clears screen, anything that was printed before
will be pushed off the screen

• \e[1;1H - home-positioning cursor to 1,1. Moves cursor
top left.

• \e[47;5;32;15m - pretty print any following text,
until changed again

• ThisIsANormalFile - not a command, text that gets
printed

• \e[0m - restore the original print attributes/style
It is important to execute this in the target drone. The C
program has to be cross-compiled, this tutorial shows how
to compile for the drone [11].

After compiling the file, it can be uploaded to the drone
via FTP or USB. Then the binary can be executed to create
a file containing escape codes in the name. Now a user can
trigger trigger the execution of the escape code typing in a
command that expects a file as argument like cat, pressing the
tab key will show all available files which executes the code,
the output should look like this:

$ c a t <TAB>
ThisIsANormalFile
F i l eX
Fi l eY
$

The attacker can also omit any visible characters so that
the person who runs the code will not know that the attack
was carried out. Some systems support screen capture and
command executions via escape codes [14] but the AR.Drone
2.0 is not one of them since they are not implemented. This
vulnerability is also present present in the command ls, which
also executes the escape codes when printing file names.

CVE-2011-5325 Tar Implementation

This CVE is a bug in the implementation of tar program
for this version of Busybox. Whenever the program tar untars
a tar file that has a system link and a file that comes from
a folder with the same name of the system link is extracted,
the file from the folder gets extracted to wherever the system
link pointed. This allows a user to put files in places where
they shouldn’t extract to. This vulnerability is present even
when the -C flag that specifies a location. An attacker can

get a privileged user to extract the specially crafted tar file, it
can override files or even make new ones (e.g. a back door).
All other tar implementations complain that this file cannot be
untarred.

Denys Vlasenko shows in the documentation about the
vulnerability the procedure to replicate the vulnerability [15].
He shows the relevant code that can be used to exploit the
vulnerability. This research focuses on how to apply these
concepts into the drone and see if these vulnerabilities are
present in the drone.

The file that triggers the vulnerability can not be created in
the drone since Busybox does not have the append command
implemented, but it can be created in a Linux system and then
transferred into the Busybox system. This means that the drone
is vulnerable to this attack but it will require for the attacker
to have access to the drone and place the tar file in it, then a
user would have to extract it from within the drone to trigger
the vulnerability.

In most cases this vulnerability could be used to escalate
privileges by an unprivileged user. However this drone only
allows the user root which means that this vulnerability does
not make sense for this specific system.

V. PROCEDURE, SECURING THE DRONE

Securing the drone and its communication is an important
aspect of security, which is why it was researched next. Mul-
tiple ways of securing the drone were tested without success.
Only securing the communication via a WPA2 secured access
point worked. Cross-compiling played an important role in
updating some software.

A. Protecting from Pairing Mode Circumvention

The kernel can identify some types of packet spoofing
through a method called reverse path filtering and it can be
used by enabling hardware packet injection detection. In the
case of the drone, the reverse path filtering did not want to
stay enabled, so this approach of securing the drone was not
successful.

B. Closing Ports

The drone always has all of its services running with their
corresponding ports open, e.g. when the drone is flying the
FTP and telnets ports are open, susceptible to attacks. A partial
solution to securing the drone is to shutdown the services when
not in use. This can be achieved by either stopping the services
or by blocking the inbound ports. Iptables can be used to
drop all packets for services that are not in use, and when
in legitimate use allow packets.

Another potential solution would be to authenticate users
when the services are needed to be used, but in this case the
drone itself does not support the mechanism to authenticate
users since it does not possess the capability to change users’
passwords. This problem can be solved by updating Busybox
to a more complete version that has such tools.

C. Hosting a WPA2 Secure Access Point

Securing the drone by securing the access point was the first
idea explored. There are three possible ways to accomplish
hosting a WPA2 secure access point.

1) Drone Hosting the AP: In order to host a secure AP,
hostapd was cross compiled. Hostapd is an access point
daemon that supports WPA2. After cross-compiling hostapd,
it was tested, but it was not fully compatible with the hardware
present in the drone. In the search for possible ways to make
hostapd work, a thesis by Thomas Bertels was found. This
thesis confirms that upgrading the security on the access point
of the drone with hostapd can not be done due to compatibility
issues [16], even when installing it through Ubuntu [17].

Connecting the drone to a WPA2 WiFi: The drone can
connect to a open access point by reconfiguring the network
interface as a client with the command ifconfig and iwconfig
[18].

The drone can also be connected to a WPA2 access point
by adding wpa supplicant that Diego Araos compiled [19].
By using an access point with WPA2 the communication is
secured.

2) Third Party Hosting the AP: The drone can be connected
to a WPA2 secured access point that is not hosted by the drone
or the controller. The controller has to be connected to the
same access point. This method increases control range; the
only drawback is that the connection is dependent on a third
party to host the access point which at times it might not be
practical.

In order for this method to work, the drone has to always
be assigned IP address 192.168.1.1. This restriction happens
because the FreeFlight application only searches for the drone
under the IP 192.168.1.1, if it is not found there then it says
the drone can not be found.

3) Controller Hosting the AP: A better solution would be
to host the access point in the controller, via the hotspot feature
that most phones support. In theory this approach should work,
since all the controller is doing is sending UDP packets to the
drone. For the same reason explained before, the FreeFlight
application only looks for the drone in the IP 192.168.1.1 and
it does not find the drone. This is also due to the fact that
hotspots in mobile phones only support assigning IPs in the
range of 192.168.1.0/24, and IPs can not be statically assigned.

D. Updating Busybox

Updates allows the removal of all the CVEs described in
section IV-F, but it does not mean the system has none. The
newer version may have vulnerabilities. A custom build of
Busybox with removed commands is recommended in order to
eliminate some potential vulnerabilities (if any) of applications
or services that the drone do not use.

The update for Busybox is a simple process since all of the
tools in the system are just system links to the single Busybox
binary. The most recent version of Busybox was downloaded
since a binary was available for the drone’s architecture.
Busybox can simply be updated by renaming the outdated
Busybox binary, and renaming the new binary to what the old

one was named. It is important to note that Busybox is the
UNIX commands binaries in the system, so if it gets deleted
then the system will not be usable anymore. When renaming
the new version the rename command to move the new binary
has to be called via Busybox directly e.g. “./busybox.old mv
/pathA/busybox.new /bin/busybox”. After the update all the
commands are available, and systems links had to be created
respectively.

E. SSH Tunnel

Another way to secure the drone would be to send all traffic
through an SSH tunnel, while blocking outside access to other
ports. An SSH tunnel is a method to connect or map two
machines’ ports via a secure SSH connection, it allows to
map one machine’s port to the other machines local ports. An
SSH tunnel can be a regular tunnel like what is shown in or it
can be a reverse tunnel, where a client connects to the server
but the port mapping is done in the opposite direction, both
shown on Fig. 3. Dropbear, an SSH server and client with key
authentication support developed for POSIX based embedded
systems [20], was a perfect fit; it compiled and ran, but due to
compatibility issues with the outdated Linux system, it did not
allow any logins to be made. Other options where explored,
like installing other SSH server software. This presented the
problem that there is no other reliable SSH server designed
for embedded systems.

Fig. 3. This figure shows how (a) an SSH tunnel and (b) a reverse SSH
tunnel can be used to secure the communication between the drone and the
controller. If making a regulate SSH tunnel then an inbound Iptables rule
would have to be made to allow SSH traffic at the drone’s port. If using a
reverse tunnel then the drone can block all incomming traffic exept for a port
for drone management.

Installing Ubuntu 12.04: A simple solution to the problem
is to run Ubuntu 12.04 on the drone via a USB drive [17].
Allowing to install any program from the Ubuntu repository,
increasing the memory by adding more swap space, and run-
ning bigger programs not intended for an embedded system.
The creation of the Ubuntu USB had to be done in virtual
machine running Ubuntu 12.04 since using Ubuntu 17.10 was
too new and some of the components of the installation process
were deprecated.

After OpenSSH was successfully installed, an SSH connec-
tion could be made to the drone as well as SSH tunnels. There
are two ways the tunnel can be hosted.

The first way is using the drone to host the SSH server, this
way the controller connects and creates two regular tunnels,

one for the video port and one for the UDP control port. To
secure the drone, iptables has to block all ports except the
SSH port. With the regular SSH tunnel in place the FreeFlight
application has to connect to localhost:PORT, where PORT is
a port from Table I. The FreeFlight has to connect to a different
location that is not 192.169.1.1, therefore this approach fails.

The second way to setup the SSH tunnels is to have the
controller host the SSH server and then have the drone create
both SSH tunnels. In this case the drone can close all the ports
except the SSH port (it is not advised close the SSH since one
would lose access to the drone). This approach also does not
work because the FreeFlight does not allow the user to change
the destination, and because there is no application that can
host an SSH server that supports an SSH tunnel (at least on
Android).

Although a connection could be made, this method did not
work since the controller packets can not be easily routed
through the tunnel. In theory this approach can work as long
as the latency created by the tunnel is small and the client can
connect to a different IP.

The next idea was to install OpenVPN on the drone and
have it host a VPN. The controller would then connect to the
VPN and send all the traffic over the encrypted VPN tunnel.
This method did not work because the OpenVPN service did
not start due to compatibility issues with the outdated Linux
kernel.

VI. CONCLUSION & FUTURE WORK

The Parrot AR.Drone 2.0 is a legacy system that has
multiple vulnerabilities, making it a possible target for a wide
range of attacks. These include attacks like taking over the
drone, controlling the drone, and full control of its services
including full root access to its operating system. The best
way to update this legacy system is to update it via telnet
and FTP. It can be done by updating Busybox, implementing
a new version of program.elf and the controller application
that implements security features, and blocking ports when not
used. Some of these security features can include encrypting
the communication and having the controller and the drone
verify the sender and the integrity of the message. Having
something like a secure rolling code could help mitigate some
of the problems present with the system. Hugo re-implemented
program.elf and made a desktop program to interface with
it, which can be used as a foundation to implement some
encryption and data verification mechanisms [21]. Thomas
Bertels’ thesis goes into detail about methods of securing two
way communication for drones. He and his team cover pairing
protocols and encryption mechanisms for the drone [16].

Navigation data was not the focus of this research, but
it is also an important aspect of security since it can leak
information about the drone and the user. Shared library
injection to get navigation data and video feed directly from
the hardware without killing the program.elf [22] [23] and GPS
hacking are other ways that this system is also vulnerable.

ACKNOWLEDGMENT

This research is supported by NSF Award #1542465.

REFERENCES

[1] Faa.gov. “Fact Sheet Federal Aviation Administration (FAA) Forecast
Fiscal Years (FY) 2017-2038”. [Online] Available at: https://www.faa.gov/
news/fact sheets/news story.cfm?newsId=22594 [Accessed: 7-Sep-2018].

[2] Brown, J. “Drone Uses: The Awesome Benefits of Drone Technol-
ogy”. [online] My Drone Lab. Available at: http://mydronelab.com/blog/
drone-uses.html [Accessed: 7-Sep-2018].

[3] “BusyBox”, Busybox.net. [Online]. Available: https://busybox.net/about.
html. [Accessed: 10-Aug-2018].

[4] “AR Drone Motor Controller Tech Toy Hacks”, Blog.perquin.com,
2011. [Online]. Available: http://blog.perquin.com/blog/
ardrone-motor-controller/. [Accessed: 10-Aug-2018].

[5] “AR Drone 2/AT Commands - PaparazziUAV”, Wiki.paparazziuav.org,
2017. [Online]. Available: https://wiki.paparazziuav.org/wiki/AR Drone
2/AT Commands. [Accessed: 10-Aug-2018].

[6] “AR.Drone Developer Guide SDK 2.0”, Jpchanson.github.io. [Online].
Available: https://jpchanson.github.io/ARdrone/ParrotDevGuide.pdf. [Ac-
cessed: 10-Aug-2018].

[7] F. Geisendorfer, “felixge/node-ar-drone”, GitHub. [Online]. Available:
https://github.com/felixge/node-ar-drone. [Accessed: 10-Aug-2018].

[8] J. Pleban, R. Band and R. Creutzburg, “Hacking and securing the
AR.Drone 2.0 quadcopter - Investigations for improving the security
of a toy”, in Mobile Devices and Multimedia: Enabling Technologies,
Algorithms, and Applications, San Francisco (CA), 2014.

[9] “NVD - Results”, Nvd.nist.gov. [Online]. Available: https:
//nvd.nist.gov/vuln/search/results?adv search=true&cpe=cpe%3a%2fo%
3alinux%3alinux kernel%3a2.6.0&startIndex=0. [Accessed: 10-Aug-
2018].

[10] P. Biondi and S. Community, “Scapy”, Scapy.net. [Online]. Available:
https://scapy.net/. [Accessed: 10-Aug-2018].

[11] H. Nadeem, “How to Cross Compile C/C++ application for AR Drone
Hassan Nadeem”, Hassan Nadeem, 2015. [Online]. Available: https://
hassannadeem.com/blog/2015/04/28/how-to-cross-compile-for-ar-drone/.
[Accessed: 10-Aug-2018].

[12] “NVD - Results”, Nvd.nist.gov. [Online]. Available: https:
//nvd.nist.gov/vuln/search/results?adv search=true&cves=on&cpe
version=cpe%3a%2fa%3abusybox%3abusybox%3a1.4.0. [Accessed:
10-Aug-2018].

[13] A. Zelivansky, “Busybox Shell Vulnerability CVE-2017-16544 Twist-
lock Alerts”, Twistlock, 2017. [Online]. Available: https://www.twistlock.
com/2017/11/20/cve-2017-16544-busybox-autocompletion-vulnerability/.
[Accessed: 10- Aug- 2018].

[14] D. Lukan, “A Blast From the Past: Executing Code in Terminal
Emulators via Escape Sequences - Protean Security”, Protean
Security, 2014. [Online]. Available: https://www.proteansec.com/linux/
blast-past-executing-code-terminal-emulators-via-escape-sequences/.
[Accessed: 10-Aug-2018].

[15] D. Vlasenko, “busybox - BusyBox: The Swiss Army Knife of Embedded
Linux”, Git.busybox.net, 2011. [Online]. Available: https://git.busybox.
net/busybox/commit/?id=a116552869db5e7793ae10968eb3c962c69b3d8c.
[Accessed: 10-Aug-2018].

[16] T. Bertels, “Design of a pairing protocol for the AR.Drone 2.0”, KU
Leuven, Technology Campus De Nayer, 2016.

[17] “Ubuntu on AR.Drone 2.0 - drone-forum.com”, Drone-forum.com,
2013. [Online]. Available: https://www.drone-forum.com/forum/viewtopic.
php?t=7094#p71757. [Accessed: 10-Aug-2018].

[18] M. Monajjemi, “AutonomyLab/ardrone autonomy”, GitHub, 2013. [On-
line]. Available: https://github.com/AutonomyLab/ardrone autonomy/wiki/
Multiple-AR-Drones. [Accessed: 10-Aug-2018].

[19] D. Araos, “daraosn/ardrone-wpa2”, GitHub, 2013. [Online]. Available:
https://github.com/daraosn/ardrone-wpa2. [Accessed: 10-Aug-2018].

[20] “Dropbear SSH”, Matt.ucc.asn.au. [Online]. Available: https://matt.ucc.
asn.au/dropbear/dropbear.html. [Accessed: 10-Aug-2018].

[21] “AR Drone program.elf Replacement Tech Toy Hacks”,
Blog.perquin.com, 2011. [Online]. Available: http://blog.perquin.com/
blog/ar-drone-program-elf-replacement/. [Accessed: 10-Aug-2018].

[22] J. Rand, “AR.Pwn: Hacking the Parrot AR.Drone (Part 1)”,
Files.kipr.org. [Online]. Available: http://files.kipr.org/gcer/2013/
proceedings/Rand Hacking AR Drone 1.pdf. [Accessed: 10-Aug-2018].

[23] J. Rand, “AR.Pwn: Hacking the Parrot AR.Drone (Part 2)”,
Files.kipr.org. [Online]. Available: http://files.kipr.org/gcer/2013/
proceedings/Rand Hacking AR Drone 2.pdf. [Accessed: 10-Aug-2018].

