
Random Forest Twitter Bot Classifier
James Schnebly

Computer Science and Engineering
University of Nevada, Reno

Reno, Nevada 89557
Email: jschnebly@nevada.unr.edu

Shamik Sengupta
Computer Science and Engineering

University of Nevada, Reno
Reno, Nevada 89557

Email:ssengupta@unr.edu

Abstract—As social media usage continues to grow, so does the
number of automated bot accounts that either spread malicious
content or generate fraudulent popularity for political and social
figures. Twitter, one of the more popular social media sites, has
been plagued by bot armies and needs to find a way to rid itself
of these infestations. Studies have shown that currently there are
no accurate ways to detect Twitter bot accounts regularly. Using
datasets from IIT (Institute of Informatics and Telematics), a
feature set is created that allows a classifier to be both accurate
and generalized. This feature set includes accessible features from
the Twitter API as well as derivative ratio features that give a
different perspective of the account. We then decide upon the
Random Forest machine learning algorithm because of its ability
to prevent most overfitting as well as create a generalized model
that can be deployed for accurate use directly after training.
In this paper, we propose a set of attributes for a Random
Forest classifier that results in high accuracy (90.25%) and
generalizability. To prove our derived feature set outperforms
basic feature sets and grants valuable insight, we test our derived
features against the most important of the basic features. Our
derived ratio features outperform these basic account features.

Index Terms—Twitter bot, machine learning, classifier, Ran-
dom Forest, Scikit-learn.

I. INTRODUCTION

Social media usage is growing faster than ever in today’s
world, according to PEW Research Center, 73% of U.S.
adults use YouTube, 68% use Facebook and 35% use Insta-
gram. Shortly behind these social media “staples”, Twitter has
quickly risen to the point at which one in every four U.S.
adults uses its platform [1]. Twitter launched in 2006 and has
not stopped growing since it went public. On average, around
6,000 tweets are posted every second of the day, adding up to
roughly 360,000 tweets per minute [2].

With the huge growth of social media, it is not a stretch to
see why many businesses spend time creating and maintaining
various social media accounts. Digital marketing has allowed
companies to harness the power of social media which, in
turn, brings more customers to their businesses. Another
key component of these corporate social media accounts is
customer relations. When customers have a problem with a
product or service they often go to social media to post about
it. These customer relation accounts can seek out any posts
about issues and attempt to resolve the matter through refund
or product replacement.

A growing issue with Twitter is the amount of fake or
“bot” accounts either sharing malicious content or being

used to enhance the metaphorical reach of genuine accounts.
These Twitter bots are easily programmed due to the Twitter
API (Application Programming Interface) and can be created
within seconds. This means that just about anybody can create
bots to form the illusion of popularity around hot topics or
political figures. To make matters worse, Twitter does not use
a “captcha” when users are creating an account, therefore it
is very simple to have an automated service pump out tons
of bots that are then run through the open Twitter API [4]. A
captcha is a program used to verify that a human, rather than
a computer, is entering data on an online form [5].

Twitter bots have the ability to alter trending topics by the
sheer volume of tweets they can produce. They can make false
stories appear to have more views by promoting or tweeting
about a certain topic along with the associated hashtag. These
bots also spell disaster for corporations and their social media
presence. One person with a massive army of bot accounts
could have the bots all tweet negative sentiment about a
company’s product or service and tag the company in the
tweet. Now anyone searching this product, service or company
will be fed false information due to the shear volume of tweets
sent out by the attacking bots.

Now more than ever we need a way to get rid of existing
bots to protect people from being fed false information. In this
paper, we present a simple yet effective classifier model that
has the ability to detect existing Twitter bot accounts using
only data that is easily attainable through the Twitter API as
well as attributes that are ratios of the previously mentioned
data. Our contributions in this paper are:

• A generalized machine learning model that can detect
existing Twitter bot accounts with 90.25% accuracy

• A feature set that allows for high accuracy that includes
both basic and derivative attributes

We start by obtaining data and importing it into two MySQL
databases. Then, we preprocess the data by querying the
MySQL databases and begin our feature selection and feature
creation processes. The preprocessing python program outputs
CSV (Comma-Separated Values) files which hold the input
data and labels that are to be fed into our machine learning
model. Lastly, we feed the CSVs into our python program that
trains and tests a Random Forest classifier. This workflow can
be seen in Figure 1.

The remainder of this paper is organized as follows: Sec-
tion II will dive into the process and methodology of building



Fig. 1: Workflow of creating the Random Forest model 3.0

and training the classifier, Section III will cover the results
and the testing of the previously mentioned classifier and
Section IV will review and conclude the paper.

II. METHODOLOGY

A. Data Gathering

To train a Twitter bot classifier, we first need access to
Twitter account data for both genuine accounts and bot ac-
counts. Additionally, we also need access to as many tweets
per account as possible. This task proves to be tricky as there
are limitations to the free Twitter API [6]. Furthermore, there
is no way to label an account as genuine or bot if we are just
querying the API for data. Two datasets from the MIB (My
Information Bubble) project [7] [8] hosted at IIT in Italy are
used for our research purposes.

The first dataset was gathered in 2015 and contains verified
human accounts as well as known bot accounts used to falsely
inflate the number of followers for a genuine account. The
second dataset was gathered in 2017 with new known bot
accounts and verified genuine accounts.

The two datasets contain basic account information such
as, but not limited to: number of followers, number of tweets,
when the account was created and if the account was genuine
or a bot. Along with the account information there are also
hundreds, sometimes thousands, of tweets that belong to each
account.

For our research purposes we use a subset of each dataset
as the data is somewhat repetitive. Dataset V1 contains 445
real accounts and 3202 bot accounts from the original 2017
dataset and V2 which contains 1946 real accounts and 3457
bot accounts from the original 2015 dataset. These datasets V1
and V2 are then imported into a MySQL [9] database to make
the preprocessing stage smoother. The data is imported into
two databases, V1 and V2 where each database has two tables,
namely Users and Tweets. The primary key shared between
these two tables is the user id which is a unique identifier
given to every Twitter account.

B. Dataset Preprocessing

We select basic account attributes from the database table
Users that could have an impact on the account being genuine
or fake. These attributes are length of description (bio), age
of account, number of followers, number of tweets, number
of people the account is following (friends), number of likes
and the follower to friend ratio. These attributes are chosen
because they explain the account usage at a fundamental level.
The basic feature subset can be seen in Table I.

TABLE I: Basic Feature Set

Length of Bio
Followers

Age of account
Following

Number of tweets
Number of likes
Follower ratio

After the basic attributes are chosen, we create derived
attributes by computing ratios. These derived attributes allow
us to gain more insight on the activity of the account. These
are derived features because they are not directly available
through the Twitter API.

1) Likes age ratio: First we create the likes to age ratio,
where we divide the number of likes the account has given by
the number of days since the account’s creation. This feature
tells us how actively the account likes another account’s tweet.

2) Tweet age ratio: The tweets to age ratio is created by
dividing the number of tweets by the days since the account
has been created. This attribute tells us how often the account
tweets. We now analyze the account’s tweets by performing an
inner join on the user id between the User table and Tweets
table.

3) Hashtag tweet ratio: The hashtag to tweet ratio is com-
puted by counting all tweets in our sample that contain at least
one hashtag and dividing it by the total number of tweets in
our given sample. The total number of tweets in the sample
is given by using the SQL aggregate COUNT() to count the



number of tweets associated with a given user id. This new
ratio attribute gives insight on how often the account uses
hashtags in their tweets.

4) URL/Pics tweet ratio: The url to tweet ratio is com-
puted similarly. We use COUNT() to tally up all the tweets
in the sample that contain urls and divide that integer by the
total number of tweets in the sample for that particular user id.
Interestingly enough, when accounts post pictures on twitter
the pictures are represented as urls, therefore this url to tweet
attribute accounts for links to websites as well as pictures.
This ratio tells us how often the account posts urls or pictures
when they tweet.

5) Reply tweet ratio: The reply to tweet ratio is computed
the same way using the COUNT() aggregate, and it tells us
the approximate percentage of tweets posted that are replys to
other accounts. This percentage is only based on the sample
of tweets we have available, but provides valuable insight on
the account’s overall tendencies. The derived feature subset
can be seen in Table II.

TABLE II: Derived Feature Set

Hashtag tweet ratio
URL/Pics tweet ratio

Reply tweet ratio
Tweet age ratio
Likes age ratio

The full proposed feature set can be seen in Table III along
with a description of each attribute.

TABLE III: Proposed Feature Set

Length of Bio Number of characters in bio
Hashtag tweet ratio Ratio of tweets with hashtags to total tweets

Followers Number of accounts following
URL/Pics tweet ratio Ratio of tweets with URL’s to total tweets

Age of account Number of days since account creation
Reply tweet ratio Ratio of replies to total tweets

Following Number of accounts the account is following
Number of tweets Number of tweets on the account
Tweet age ratio Ratio of tweets to days since creation
Likes age ratio Ratio of likes to days since creation
Number of likes Number of likes on the account
Follower ratio Ratio of followers to following

Once all of these attributes are queried from the SQL
database or created by the above methods, we create a CSV
file that serves as input for our machine learning classifier. One
CSV is created for genuine accounts and another is created for
known bot accounts since the information is held in separate
databases.

C. Random Forest Model Background

Before going into model implementation, a brief back-
ground of supervised learning and the Random Forest algo-
rithm is needed.

1) Supervised Learning: Supervised learning is a subsec-
tion of machine learning where the user feeds the model
training data which contains labels. The model learns to
classify or predict the labels based on the training data that

is associated with it. Once training is complete, the model
uses its prior knowledge of the training data to predict labels
on new data or test data. We use supervised learning, as
opposed to unsupervised learning, because we want to train a
classifier on existing labeled examples. Unsupervised learning
makes decisions based on the relationship between the data
instance at hand and the rest of the dataset. The unsupervised
learning algorithm does not have any prior information about
the correct class the data instance should belong to. Since we
have data to shape our classifier, we chose supervised learning.
There are many supervised machine learning algorithms, but
for this particular classification problem we use the Random
Forest algorithm.

2) Random Forest: A Random Forest is a meta estimator
that fits a number of Decision Tree classifiers on various
sub-samples of the dataset and uses averaging to improve
the predictive accuracy and control over-fitting [10]. The
Random Forest algorithm is an ensemble learning algorithm,
meaning the algorithm is actually made up of many other
basic machine learning algorithms. To predict a class, each
basic machine algorithm votes for a class and after all of the
basic algorithms have voted, the class with the most votes
is the class the ensemble algorithm predicts. With Random
Forests, the underlying algorithm used is the Decision Tree
classifier, hence the “Forest” in Random Forest. The Random
Forest algorithm brings randomness into the model when it
is growing the Decision Trees. Instead of searching for the
best attribute while splitting a node, or decision in the tree,
it searches for the best attribute among a random subset
of attributes. This process creates diversity among trees and
allows for each tree to be built upon different attributes,
which generally results in a better model [11]. We choose the
Random Forest algorithm because of its general effectiveness
when classifying numerical inputs.

D. Random Forest Implementation

To implement the Random Forest classifier, we use
python3.5 as well as the libraries Scikit-Learn, pandas, and
numpy [12]–[14]. First, we read the CSV’s for the genuine
accounts and the bot accounts into pandas dataframes. Then,
using numpy, we add the label column to each dataframe,
namely “Fake Or Real”. The genuine accounts get a ‘0’ in
this column while the bot accounts receive a ‘1’. Next, we
combine the two dataframes into one that is then split it into
the input attributes, X, and the output labels, y. Before training
the model, we must create a train set and test set.

Since we have two completely separate datasets as discussed
in II-A, we create three different models each using the data
differently. Model 1.0 uses V1 for both the training and testing.
The data is randomly split with 75% going to training while
the remaining 25% is kept for testing. Model 2.0 combines
both V1 and V2 and then does the same 75%-25% split for
training and testing. Model 3.0 uses the entire V1 dataset for
training and then tests on the entire V2.

We use the Scikit-learn RandomForestClassifier class and
specify the forest to be made up of 20 Decision Trees [12].



20 Decision Trees is decided upon after tests of 10, 20, and
50 trees. The accuracy increase from 10 to 20 was significant
while the accuracy increase from 20 to 50 was very minimal,
thus leaving 20 as the optimal amount. We also specify that we
want the trees to make decisions based on entropy by making
the nodes, or decisions, yield more binary splits. The more
binary the split, the higher the entropy. To train the models,
we feed the twelve attributes X, discussed in Section II-B, as
well as the output label y, into the model as training input and
associated output.

III. RESULTS

A. Experiment Environment

The training and testing of the models presented in this
paper were trained and tested on a machine with the specifi-
cations from Table IV.

TABLE IV: Machine Specifications

Processor: Intel Core i7-7700 CPU @ 3.60GHz x 8
RAM: 16 GiB

OS: Ubuntu 16.04 LTS
Environment: python3.5 in Spyder3

B. Model Results

Model 1.0 is tested with 25% of V1 and averaged 99%
accuracy over the course of 10 runs. Model 2.0 is tested with
25% of V2 and averaged 98% accuracy over the course of 10
runs. Because of the high accuracy, we look to the decision
trees produced in the random forest to see if there is any
potential over-fitting in these two models. The decision trees
give a visualization of each decision node and the size of the
tree. The larger the tree, the more fit to the training data the
model is. The goal is to have trees that can accurately classify
instances with as few decision nodes as possible. The tree
needs to be smaller, or generalized, in order to be useful in
a real world situation. The larger, less-generalized trees may
perform well on the training data but poorly on real world
data because it is too tightly fit to the training data.

As seen in Figure 2a, the tree from model 1.0 is smaller and
cleaner than the tree from model 2.0, seen in Figure 3. The tree
from model 1.0 has less decision nodes and the splits are more
binary, which means higher entropy. Since model 1.0 is more
suitable for generalized usage we use its foundation to create
model 3.0, previously discussed in section II-D. Model 3.0 is
trained and tested on completely different datasets therefore
giving a more clear picture of how this model would work if
deployed onto Twitter right away. Over the course of 10 runs
the model produced an average accuracy of 90.25%. Figure 2b
shows a Decision Tree from model 3.0; note the similarity
between the tree from model 1.0 and model 3.0. Both models
are more general than model 2.0. The purpose of Figures 2
and 3 are to display the overall generalizability of each model.
It should also be noted that the tree numbers were chosen
arbitrarily and that any other tree could have been chosen to
display the generalizability of each model. Models 1.0 and
3.0 are generalized compared to the overfit tree from model

2.0. This similarity between models 1.0 and 3.0 makes sense
because they are trained on the same dataset. Model 1.0 is
trained on a subset of V1 and tested on a different subset of
V1 while model 3.0 is trained on all of V1 and tested on
V2. Model 3.0 shows better real world feasibility than model
1.0 because it achieved the 90.25% accuracy on data from
a different dataset. Model 1.0 was tested on a subset of data
from the same dataset as its training data, therefore its accuracy
cannot be transferred to a real world situation.

To evaluate accuracy and generalization of the models, a
ratio of average decision nodes per tree to test accuracy is
computed. Since model 3.0 is essentially a more feasible
version of model 1.0, a comparison of this ratio between model
2.0 and model 3.0 is shown in Figure 4. Model 2.0 has, on
average, 156 decision nodes per tree with an accuracy of 98%.
Model 3.0 averages 43 decision nodes per tree and achieves
an accuracy of 90.25%. This gives model 2.0 a ratio of .628
and model 3.0 a ratio of 2.09. These ratios show that although
model 2.0 has a higher accuracy, it is not nearly as generalized
as model 3.0. Model 2.0 may have a higher accuracy by 7.25%
but the average amount of nodes per tree is more than triple
of the average nodes per tree in model 3.0.

C. Feature Results

Since our contribution in this paper is not only the model,
but also the features used to build it, we now look at fea-
ture importance to show our new features make a positive
difference in classifier accuracy. All test runs to show feature
importance are done with model 3.0 as it is the best, most
generalized model of the three discussed in section III-B.
Table V shows the feature importance for each attribute
averaged over the same ten runs that model 3.0 achieved the
90.25% accuracy. Note the feature importance was calculated
by the Scikit-learn [15] feature importance built-in method.

TABLE V: Feature Importance of Proposed Feature Set

Length of Bio .004
*Hashtag tweet ratio .0054

Followers .0145
*URL/Pics tweet ratio .0174

Age of account .0189
*Reply tweet ratio .0304

Following .0511
Number of likes .1105
*Tweet age ratio .1345
*Likes age ratio .1654
Number of likes .1834
Follower ratio .2647

The * next to the feature name in Table V represents a
derived feature while the rest of the attributes are basic account
elements obtained through the Twitter API. To show that
our derived features make a positive difference in regards to
accuracy, we run versions of model 3.0 with different attributes
to see the differences in accuracy as we change the attributes
the model is trained upon.

First, we take the seven basic features, denoted in Table V
by not having a *, and build model 3.0 on just those attributes.



(a) Model 1.0 Tree 15 (b) Model 3.0 Tree 0

Fig. 2: Decision Tree’s for models 1.0 and 3.0

Fig. 3: Model 2.0 Tree 19



Fig. 4: Accuracy to Generalization Ratio Test

Over a period of 10 runs the accuracy of the Random Forest
model was 81.7%. Therefore, by adding our derived ratio
attributes to the model we increase its accuracy by just under
10%. From here, we look at the top two most important
features from Table V and build a model on just those two
features. When running the model on just Number of likes
and Follower ratio, the model achieved 98% accuracy on the
test set. Although this accuracy was higher than the proposed
model of all twelve attributes, it is not fit to be deployed
as it lacks generalizability and could potentially be overfit;
however, we can use this model as a baseline and see if a
model using only our derived ratio attributes performs better.
Over ten runs, the model trained on our five derived ratio
attributes produced an accuracy of 99.6%. This test shows
that these ratio attributes provide valuable insight on whether
an account is genuine or fake. Using the derived features in
conjunction with basic account features yields a generalized
model that can classify Twitter accounts at an accuracy of
90.25%. The feature set test results can be seen in Figure 5.
One should note that accuracy above 95% shows that the
feature set provided valuable insight, but the model might
not be generalized enough. Therefore, some tests show high
accuracy, but have low feasibility for real world application
which is why the proposed model has an accuracy of 90.25%,
but is generalized.

IV. CONCLUSION

The unstoppable growth of social media in today’s world
also brings forth the problems of false information spreading,
malicious content spreading and fake followers for popularity.
These problems often involve the use of bot accounts or
automated accounts. In this paper we have proposed a machine
learning classifier along with a set of features that can accu-
rately detect these automated accounts and label them as bots.
To train and test this classifier we use datasets from different
years that were gathered by the IIT (Institute of Informatics
and Telematics) in Italy. We selected basic features that could

Fig. 5: Feature Set Tests

be accessed from the Twitter API then created five ratio
features that granted additional insight on how the account was
generally operated. We then tested different models that used
subsets of our proposed attributes in order to demonstrate that
our derived ratio features played a significant role in creating
a model that was general enough to be deployed onto Twitter,
but could also maintain a 90% accuracy on new data.

ACKNOWLEDGMENT

We would like to thank Stefano Cresci and the Institute of
Informatics and Telematics in Italy for allowing us to use their
Twitter bot datasets.

REFERENCES

[1] http://www.pewinternet.org/2018/03/01/social-media-use-in-2018/
[2] http://www.internetlivestats.com/twitter-statistics/#rate
[3] https://www.theatlantic.com/technology/archive/2016/11/election-

bots/506072/
[4] https://qz.com/1108092/twitter-has-a-serious-bot-problem-and-wikipedia-

might-have-the-solution/
[5] https://techterms.com/definition/captcha
[6] Makice, K. (2009). Twitter API: up and running. Sebastopol, CA:

O’Reilly.
[7] The Paradigm-Shift of Social Spambots: Evidence, Theories, and Tools

for the Arms Race, S. Cresci, R. Di Pietro, M. Petrocchi, A. Spognardi,
M. Tesconi. WWW ’17 Proceedings of the 26th International Conference
on World Wide Web Companion, 963-972, 2017

[8] Fame for sale: efficient detection of fake Twitter followers, S. Cresci,
R. Di Pietro, M. Petrocchi, A. Spognardi, M. Tesconi. arXiv:1509.04098
09/2015. Elsevier Decision Support Systems, Volume 80, December 2015,
Pages 5671

[9] Widenius, M. and Axmark, D. (2002). MySQL reference manual. Beijing:
O’Reilly.

[10] SK-learn RandomForestClassifier, https://tinyurl.com/SKRanFor
[11] https://towardsdatascience.com/the-random-forest-algorithm-

d457d499ffcd
[12] Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12,

pp. 2825-2830, 2011.
[13] Travis E, Oliphant. A guide to NumPy, USA: Trelgol Publishing, (2006).
[14] Wes McKinney. Data Structures for Statistical Computing in Python,

Proceedings of the 9th Python in Science Conference, 51-56 (2010)
[15] http://scikit-learn.org/stable/modules/feature selection.html


