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Abstract: Cybersecurity information sharing is a key factor of cyber threat intelligence, allowing organizations to detect and
prevent malicious behaviors proactively. However, stimulating organizations to participate and deterring free-riding in such shar-
ing is a big challenge. To this end, the sharing system should be equipped with a rewarding and participation-fees allocation
mechanisms to encourage sharing behavior. The problem of cybersecurity information sharing as a non-cooperative game has
been studied extensively. In contrast, in this paper, we model such a problem as a coalitional game. We investigate a rewarding
and participation-fees calculation based on profit sharing in coalitional game theory. In particular, we formulate a coalitional game
between organizations and analyze the well-known Shapley value and Nucleolus solution concepts in the cybersecurity information
sharing system. Moreover, as the participation-fees may leak sensitive information about the organizations’ cyber-infrastructure,
we study the application of differential privacy in the coalitional game theory to protect the organization’s fees while approximating
the fairness.

1 Introduction

The frequency and complexity of cyber-attacks have increased
with the significant growth of our daily life dependency to the
cyberspace. To get ahead of the security threats, it is crucial to
have a proactive security approach to prevent any dangers before
they occur. Cybersecurity information sharing is a key factor in
proactively defending against sophisticated cyber-attacks [1]. More-
over, such sharing decreases the time and enhances the accuracy of
the detection and prevention of malicious behaviors in the system.
Due to the importance of cybersecurity information sharing, govern-
mental laws/initiatives have been legislated to mandate/encourage
the governmental and private organizations to share their cyber-
security information [2]. For instance, the US Senate has passed
the Cybersecurity Information Sharing Act (CISA) [3] federal law
designed to improve cybersecurity through enhanced sharing of
information about cybersecurity threats. The law allows the shar-
ing of Internet traffic information between the US government and
private companies. In the UK, Cybersecurity Information Sharing
Partnership (CiSP) [4] is an initiative for industry and government
that has been set up to exchange cyber threat information in real
time, in a secure, confidential and dynamic environment to increase
situational awareness and reduce the impact on UK business. EU
has also launched several cross-sector and intra-sector initiatives to
enhance the EU Member States capability for preparedness, coop-
eration, information exchange, coordination, and response to cyber
threats [5].

In the private sector, the organizations act as self-interested ratio-
nal players and sharing cybersecurity information can be costly for
the information possessor. For example, attackers might utilize the
shared information for reconnaissance, the competitive organization
might take advantage of the shared information which indirectly
affects the organization’s utility, and sensitive private information
(such as names and email addresses) might leak out. On the other
hand, the finder of a vulnerability can sell it on the black market.
Thus, stimulating the owner of cybersecurity information to choose
sharing behavior is a big challenge.

Recently, plenty of research has been done in modeling the ben-
efit and cost of the cybersecurity information sharing by applying
game theory [6–8]. Traditionally the cybersecurity information shar-
ing is modeled as a non-cooperative game where the players are
the organizations, and the strategies are choosing between sharing

and not-sharing. In this case, we have the following conditions: if
none of the organizations share their information, the organizations’
payoffs are zero, if some of the organizations participate in shar-
ing, but the others refuse to reciprocate, then the organizations who
refused, receive better payoff than the rest of them. Finally, if all
of the organizations share, then all of them benefit from sharing.
This game resembles the well-known Prisoner’s Dilemma game [9].
Although the best payoff is received from mutual sharing, players
choose not-sharing as their Nash Equilibrium approach.

To change the equilibrium point to the sharing strategy, we need
a mechanism to stimulate the sharing behavior. Here, choosing the
proper rewarding value is a big challenge. To stimulate organizations
to share applicable information, the reward should be an increasing
function of the total benefits of the other organizations applying the
information. Furthermore, as we assume the organizations are the
only financial sources of the cybersecurity information sharing sys-
tem, the total rewards are equal to the total amount of organizations’
participation-fee. The participation-fee calculation ought to prevent
organizations from free-ride by taking advantage of shared infor-
mation without participation. Furthermore, this fee should be fair,
such that the organizations’ payment should be proportional to their
benefits from the information.

On the other hand, organizations’ participation-fees are classi-
fied as confidential information since they reveal the organizations’
cyber-infrastructure configuration through the organizations’ cyber-
security investment tendency [10]. Disclosure of organizations’
participation-fee, paves the attackers’ way for reconnaissance to
exploit the organizations’ vulnerabilities. Thus, the value of orga-
nizations’ participation-fee should be protected. As an example,
consider that a vulnerability in a specific database management sys-
tem has been detected and an organization is interested to pay a big
amount of money to access such information. Such an investment
tendency allows an attacker to have a better picture of the target’s
cyber-infrastructure configuration.

In this paper, we investigate the fair and private rewarding and
participation-fee calculation by applying the coalitional game the-
ory and differential privacy in the cybersecurity information sharing
system. The main objective of our proposed mechanism is to stim-
ulate organizations to share more useful information with the goal
of increasing the organizations’ payoff fairly while preserving the
participants’ participation-fee private. To achieve this goal, first we
investigate the solution concepts of Shapley value and Nucleolus
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allocations in the cybersecurity information sharing game. Sec-
ond, we inspect the differential privacy concept in the coalitional
cybersecurity information sharing rewarding.

The main contributions of this paper are the two parts, as
described below:
1- We present a novel coalitional game for rewarding and
participation-fee allocation in the cybersecurity information sharing,
and then we investigate the Shapley value and Nucleolus distribution
solution concepts of utility among organizations in the cybersecurity
information sharing.
2- We investigate the application of differential privacy in coalitional
game theory. For this purpose, we relax the fairness definition by
introducing δ-fair concept. Then, we study the rewarding mechanism
in the coalitional cybersecurity information sharing environment,
such that the organizations’ participation-fees are protected from an
adversary with side information.

To the best of our knowledge, this research is the first work
to investigate the fair and differentially private rewarding and
participation-fee allocation in the cybersecurity information sharing.
Our mechanism can also be applicable to other profit sharing settings
as well.

A preliminary version of this work appeared in [11], where we
modeled a cybersecurity information sharing platform as a coop-
erative game and we investigated the Shapley value and Nucleolus
distribution solution concepts. We extend our previous work by
proposing a new privacy-preserving model for profit sharing con-
sidering the fairness requirement. For this purpose, we have applied
the differential privacy concept.

The rest of the paper is structured as follows. Next section reviews
major related works in the cybersecurity information sharing, coali-
tional game, and differential privacy. In section 3, we state the
problem. We investigate the coalitional formation in the cybersecu-
rity information sharing environment in section 4. Section 5 presents
our differentially private and fair profit sharing in the cybersecurity
information sharing coalitional game. Simulation result is presented
in section 6. We conclude our paper in section 7.

2 Related Works

2.1 Cybersecurity Information Sharing

Cybersecurity information sharing and risk interdependency have
been studied extensively in [12–20]. Rutkowski et al. [12] have
investigated the specification and use case of the cybersecurity infor-
mation exchange framework. To facilitate sharing the cybersecurity
information, various protocols and standards have been proposed
such as TAXII, STIX, and CybOX [14, 15]. The cybersecurity infor-
mation sharing in competitive environments with the game theory
approach has been studied in [7, 8]. Economic analysis of cyber-
security information sharing and applying incentives for motivation
have been studied in [6].

On the other hand, the role of a social planner to control free-
riding in cybersecurity information sharing game has been investi-
gated in [19]. Mandatory security breach reporting through security
audits and imposing sanctions have been studied in [13].

Privacy risks in sharing cybersecurity information have been stud-
ied in [21]. In this work, the authors have studied the trade-off
between the need for potentially sensitive data, and the perceived
privacy risk of sharing that data.

In [22], Garrido-Pelaz et al. analyze the benefits and drawbacks
of information sharing by proposing a model among organizations
with the different level of dependency. The proposed model applies
functional dependency network analysis to investigate the attacks
propagation and game theory for information sharing management.

Tosh et al. [23] present a game theoretic framework to investigate
the economic benefits of cyber-threat information sharing and ana-
lyze the impacts and consequences of not participating in the game
of information exchange. They model the information exchange
framework as distributed non-cooperative game among the firms
and investigate the implications of information sharing and security
investments.

In [24], Tosh et al. have investigated the cybersecurity infor-
mation sharing from an evolutionary game theoretic strategy and
investigated the conditions under which the players’ self-enforced
evolutionary stability can be achieved. Furthermore, the authors
have presented a heuristic approach to obtain an evolutionary stable
strategy.

We have also studied the security and privacy issues of cyber-
security information sharing and proposed different mechanisms
to overcome such challenges in our previous works [17, 25, 26].
A framework for privacy preservation of cybersecurity information
sharing has been proposed in [26]. This scheme uses group signature
to hide the identities of the organizations. However, this scheme does
not protect the participants’ information.Vakilinia et al. [25] have
modeled the privacy issue in cybersecurity information sharing as a
game between organizations and attackers. Although such a model
helps the organizations to decide their sharing strategy, it does not
provide any practical solution to protect the underlying information.

However, in contrast to previous works, we model the cybersecu-
rity information sharing as a cooperative game in this work, then, we
analyze the rewarding and participation-fee allocation according to
the organization’s benefits obtained from the sharing platform. We
investigate the solution concepts for fair and differentially private
allocation of utility among the players.

Note that, although the problem of cybersecurity information
sharing has similarities to the problem of secret sharing, they are
not equal. The secret sharing is a well-known cryptographic primi-
tive that allows an entity to share a secret among n other agents, so
that anym of them may reconstruct it. The logic behind this protocol
is that, of the n agents, at most (n−m) are “bad". While the bad
agents might not cooperate, the good agents will follow the protocol
and pool their share of the secret [27]. However, in the cybersecurity
information sharing, there is no bad agent among organizations who
want to access the information, on the other hand, the information
owner is not willing to share its information unless it gets a reward
from the sharing platform. In this scenario, there is no subset of n
to open the information, and the information owner decides to share
its data if the reward is satisfying. In the paper, we have modeled a
cooperative game between organizations to study the fair profit shar-
ing in cybersecurity information sharing platform. In this work, we
are interested to analyze the fair profit sharing in a cooperative game
setting.

It is also worth to mention that Goldman and Zilberstein [28] have
studied the problem of information exchange in the multi-agent sys-
tems where the problem is to decide the optimal rate of information
exchange among agents considering the cost of sharing information
with the risk of revealing it to competing agents in an unreliable
connection.

2.2 Privacy Preserving Methods

As in the cybersecurity information sharing, rewarding and
participation-fee leaks sensitive information about the organizations’
cyber-infrastructure [10], we aim to protect those values. Apply-
ing cryptographic techniques, many research studies have been done
to protect the private information while allowing the computation
of a function. For instance, secure multiparty computation [29]
and homomorphic encryption [30] are introduced to compute the
result of a function without revealing the sensitive input parame-
ters belonging to the entities. Despite the benefit of such methods,
an attacker with side information accessing the output value can still
infer private information. In order to overcome this challenge, per-
turbation techniques have been introduced [31]. In such methods,
the output is perturbed to preserve the individual values private in
the result while keeping the output utility as much as possible.

Differential privacy [32] is a well-known provable concept in
the privacy literature which is independent of adversary and data.
Differential privacy was first proposed to protect the statistical
database where a trusted curator perturbs responses for the queries.
Afterwards, this concept has been more developed in many other
studies such as data-mining [33], mechanism design [34, 35], smart
metering [36, 37], and distributed stream monitoring [38].
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Table 1 Feature Set of Vulnerability CVE-2016-10012 (http://www.cvedetails.com/cve/CVE-2016-10012/)

Feature Description
CVSS 7.2

Confidentiality Impact Complete (There is total information disclosure, resulting in all system files being revealed.)
Integrity Impact Complete (There is a total compromise of system integrity. There is a complete loss of system

protection, resulting in the entire system being compromised.)
Availability Impact Complete (There is a total shutdown of the affected resource. The attacker can render the

resource completely unavailable.)
Access Complexity Low (Specialized access conditions or extenuating circumstances do not exist. Very little

knowledge or skill is required to exploit.)
Authentication Not required (Authentication is not required to exploit the vulnerability.)
Gained Access None

Vulnerability Type(s) Overflow Gain privileges
CWE ID 119

Vendor, Product, Version Openbsd, Openssh, 7.3

In this paper, we investigate differentially private profit sharing
in the coalitional game setting. Specifically, we apply differential
privacy to preserve the privacy of the participation-fee in the cyber-
security information sharing. To the best of our knowledge, this work
is the first research to investigate the differential privacy in the fair
profit sharing of the coalitional game theory.

3 Overview and Problem Statement

Let O = {o1, ..., on} represent the organizations participating
in cybersecurity information sharing. Although various informa-
tion can be shared among organizations such as raw network logs,
attackers techniques, the signature of attacks, and the vulnerabilities’
details, in this work, we particularly focus on sharing discovered
security vulnerabilities as in [8]. In each sharing cycle, a set of
vulnerabilities V = {v1, ..., vm} will be detected by the participant
organizations. For example, a cycle can be a time window of a year.
Each vulnerability is associated with a unique feature set Fvk∈V ,
which is the vulnerability specification.

As an example, consider vulnerability CVE-2016-10012. The fea-
ture set of this vulnerability is shown in Table 1. In this table, CVSS
(Common Vulnerability Scoring System, https://nvd.nist.gov/vuln-
metrics/cvss) is a metric for the calculation of vulnerabil-
ities’ impacts, and CWE (Common Weakness Enumeration,
https://cwe.mitre.org/) represents the weakness category.

Having Fvk , organizations can calculate the expected cost of vul-
nerability exploitation. For example, assume there is a vulnerability
allowing the attackers to gain access to the data of a database sys-
tem. This can be realized from the vulnerability properties CVE.
The exposing of underlying data has different costs for the orga-
nizations. Therefore, the organizations would value the vulnerability
information differently considering the cost and benefit of patching
their vulnerable systems. Such valuations are performed considering
the risk estimation of the exploitation of the vulnerabilities associ-
ated with the affected assets. Let πi(Fvk ) be the expected cost of
exploitation of vulnerability vk for oi. Let Pi(Fvk ) and Ei(Fvk )
denote the probability and the cost of successful exploitation of vk
for oi, respectively. Thus, we can calculate the expected cost as

πi(Fvk ) = Pi(Fvk )× Ei(Fvk ) (1)

In the rest of paper, we will denote πi(Fvk ) with πi,k for
simplicity. If oi patches the vulnerability by accessing the shared
information before exploitation, then πi,k is the expected benefit of
accessing the shared information for oi regarding the vulnerability
vk.

We assume there is a trusted third party server S, verifying the
vulnerability information and computing the participation-fee and
reward for the players.

Once oj submits the vulnerability information vk to S, S first
verifies it and then calculate the reward rj,k. The reward rj,k is
the total payment of the other participant organizations oi 6=j for
accessing the vulnerability information vk. Let xi,k denote the oi’s

payment for accessing the shared information of the vulnerability vk.
Hereafter, the term participation-fee represents xi,k. The possessor
of vulnerability information decides whether to share the vulner-
ability information or not, based upon the proposed reward value
rj,k =

∑
oi∈O xi,k. Let fi denote the membership-fee of oi at the

end of cybersecurity information sharing, then fi is computed as

fi =
∑
vk∈V

(xi,k − ri,k) (2)

The steps of information sharing are as follows. At the first step,
organizations register into the system by providing the certificates
and their platform information to S. As the vulnerability information
is sensitive and can be used by malicious entities to attack the other
systems, in the proposed model, the framework requires to authenti-
cate the organizations to prevent the entrance of malicious entities.
When a new vulnerability has been detected by one of the mem-
bers, S calculates the patching benefit and participation-fee for the
organizations getting advantage of such information. Then, based
on the total participation-fee, S computes the reward value for the
information possessor.

When a cybersecurity information sharing cycle ends, S cal-
culates the membership-fee fi. If fi is negative, then S pays
corresponding amount to oi, and if fi is positive, then oi pays
corresponding amount to S.

Figure 1 displays the general architecture of cybersecurity infor-
mation sharing system, and Figure 2 depicts the overall picture of
participation-fee and reward calculation.

Fig. 1: The cybersecurity information sharing platform
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Fig. 2: The calculation of reward and participation-fee

On the other hand, we assume there is an adversary accessing
the reward value ri,k, and aiming to estimate the victim organiza-
tion’s participation-fee. We assume adversary has side information
and organizations might collude with an adversary by sharing their
participation-fee. In this case, an adversary is interested in finding
the organization’s participation-fee to gain information about the IT
infrastructure of the victim. For example, if an adversary knows that
the victim is willing to pay a large value for a vulnerability of spe-
cific database management system, it can conclude that the victim is
using such a database management system to store valuable informa-
tion. It is also worth to mention that, the proposed mechanisms are
not limited to profit sharing in cybersecurity information sharing,
but can also be applied to other profit sharing schemes which expect
private profit allocation. Our goal is to present an efficient mecha-
nism for preserving the privacy of an organization’s participation-fee
while approximating fair profit sharing in the process of rewarding.
More specifically, the fair and private mechanism should satisfy the
following requirements.

Fairness The rewarding and participation-fee allocation should
be fair, such that the reward is calculated based on the organizations’
advantage from the information, and participation-fee is calculated
based on the advantage receives from the information. Furthermore,
in the privacy preserving model, the cost of augmented noise to the
reward value should be distributed fairly among participants.

Privacy The mechanism should prevent an adversary with side
information to infer an organization’s participation-fee. An adver-
sary might have access to participation-fees of some organizations
by colluding with them.

Having this system model, first we study the fair profit sharing
among organizations by investigating the Shapley value and Nucle-
olus solution concepts. Then, we examine the private rewarding
method to protect an organization’s participation-fee xj,k from an
adversary with the side information. To achieve this goal, we present
a differentially private rewarding mechanism.

4 Rewarding in Coalitional Game with
Transferable Utility

In this section, first, we introduce the coalitional games, then
we investigate the requirements of participation-fee and reward
calculation for cybersecurity information sharing system. Finally,
we analyze the solution concepts for the coalitional formation of
cybersecurity information sharing game.

4.1 Coalitional Game

Coalitional game theory studies the behavior of rational self-
interested players in strategic settings where players reach agree-
ments to elevate their payoffs. The main question in a coalitional
game is how to share the benefits among agents in a coalition. The

most well-known solution concepts for such sharing are the Shap-
ley value [39] and the Nucleolus [40]. Saad et al. [41] classify the
coalitional game into three different groups as canonical coalitional
games, coalition formation games, and coalitional graph games. In
canonical coalitional games, the problem is to stabilize the grand
coalition. The grand coalition of all users is an optimal structure. In
coalition formation games, the network structure that forms depends
on gains and costs from cooperation and the problem is how to form
an appropriate coalitional topology. In coalitional graph games, play-
ers’ interactions are governed by a communication graph structure
and the problem is to stabilize the grand coalition or form a network
structure taking into account the communication graph.

Since in cybersecurity information sharing system, the goal is
to have the grand coalition of the entities to maximize the bene-
fits of sharing information, the problem of proper rewarding and
participation-fee allocation falls into canonical coalitional games
category. Canonical coalitional games have been studied in the wire-
less network area. For instance, Singh et al. [42] discuss the profit
sharing in coalition base resource allocation in wireless networks,
and fair payoff allocation for cooperation in wireless ad-hoc net-
works using Shapley value is studied in [43]. Muto et al. [44]
categorize a set of coalitional games as big-boss games. In such
games, the coalition value is dependent on the existence of a specific
player (namely big-boss) in the coalition. The coalition of subsets
not containing the big-boss receives zero value. In this work, we
model the cybersecurity information sharing as a coalitional game
such that if the information possessor does not locate in the coalition
then there is no benefit for any member of the coalition. Hence, this
game is a subset of big-boss games. Afterward, we investigate the
solution concepts of profit sharing in the cybersecurity information
sharing game.

As pointed out earlier, typically organizations are not willing to
share their cybersecurity information because of the sharing cost.
Let τi,k denote the sharing cost of vk for oi, then oi would share vk
if and only if τi,k < ri,k. Besides that, the impacts of vulnerabilities
are not equal and other organizations oj 6=i, would pay xj,k to access
vk to patch their systems as long as the patching benefit outweighs
the participation-fee, in other words we have xj,k < πj,k. If xj,k is
small, then the reward may not be motivative for oi, and as a result,
oi will not share the information, resulting in risk of vulnerability
exploitation for oj . On the other hand, if xj,k is large, then the mar-
gin of profit for oj is small. Thus, in this setting, we are interested in
the fair distribution of the utilities among organizations to satisfy all
of them. To achieve this goal, first, we define the following features
for the rewarding mechanism in cybersecurity information sharing.

Definition 4.1. The rewarding mechanism of the cybersecurity
information sharing is dynamic if it calculates the reward based on
the overall benefits to the system. In the dynamic rewarding mecha-
nism, the participants are motivated to share more useful information
since the reward is an increasing function of the benefits achieved by
the other organizations exploiting the shared information.

Definition 4.2. The rewarding mechanism of the cybersecurity
information sharing is fair if the participation-fee for beneficiary
organizations is calculated based on their advantages from accessing
the information. If the rewarding mechanism is not fair, organiza-
tions may not contribute to the reward value (since their benefits
may not outweigh the payment cost). In this case, the reward may
not be motivative for the information possessor and as a result, the
information will not be shared in the system.

Definition 4.3. The rewarding mechanism of the cybersecurity
information sharing is stable, if it is dynamic and fair.

As we are interested in finding the stable rewarding mecha-
nism, we investigate the profit sharing in the coalition formation of
cybersecurity information sharing.

4.2 Profit Sharing

In coalitional game with transferable utility, an n-person game
is given by the pair G(N, v), where N = {1, 2, ..., n} is the set of
players and v is a real-valued payoff that the coalition’s members
can distribute among themselves. v is also called the characteristic
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function of the game, which returns a value for each subset of N . In
other words v : 2N → R. Superadditivity and Convexity of the game
are defined as follows.

Definition 4.4. (Superadditivity) A game G(N, v) is superaddi-
tive, if for all S, T ⊂ N and (S ∩ T = ∅), then v(S) + v(T ) ≤
v(S ∪ T ).

Definition 4.5. (Convexity) A game G(N, v) is convex if for all
S, T ⊂ N , then v(S ∪ T ) ≥ v(S) + v(T )− v(S ∩ T ).

While the characteristic function describes the payoff available
to coalitions, it does not prescribe a way of distributing these pay-
offs. An allocation is a vector x̄ = (x1, ..., xn) assigning payoff to
each player. In the cybersecurity information sharing game, we are
looking for an allocation which stimulates organizations to make the
largest coalition. In other words, we are looking for an allocation
which is located in the Core.

Definition 4.6. (Core) An allocation x is in the core ofG(N, v) iff
x(N) = v(N) and for any S ⊆ N we have x(S) ≥ v(S). In words,
core is the set of x payoff allocations with the property that no coali-
tion of agents can guarantee all of its members a payoff higher than
to what they currently receive under x.

As the Core allocation is a set of allocations that are feasible
and cannot be improved upon by any coalition, the Core alloca-
tion is Pareto efficient. Therefore, there is no pareto improvement
from Core allocation. We investigate two most widely used fair
allocation methods in this paper which are Shapley Value [39] and
Nucleolus [40].

Definition 4.7. (Shapley Value) The Shapley value deals with
dividing the surplus among players in a coalition. Given the coalition
(v, N), the Shapley value for each player i is calculated as:

φi(v) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
[v(S ∪ {i})− v(S)] (3)

Definition 4.8. (Nucleolus) Nucleolus searches for the allocation
which minimizes the worst inequity. As an inequity measure of an
allocation x, it uses excess value as

e(x, S) = v(S)−
∑
j∈S

xj (4)

Both Shapley value and Nucleolus prescribe a unique solution in
all cases.

4.3 Coalition Formation

Here, we model the cybersecurity information sharing as a multi-
stage coalitional game. The game players are the organizations. The
information possessor oi strategy is to decide whether to share or not
to share the information taking into account the reward value ri,k. If
oi decides to share the vulnerability information vk, then its utility
is ui,k = ri,k − τi,k. On the other side, when the vulnerability gets
shared then the utility of oj 6=i players are uj,k = πj,k − xj,k. This
game has m stages where m represent the number of vulnerabilities
which are being detected in the cybersecurity information sharing
cycle. Thus, the characteristic function of this game for each stage is

v(S) =

{
0 |S| = 1 or i /∈ S∑
j∈S πj,k i ∈ S (5)

Here, the value of a single coalition is equal to 0, this is due to
the fact that no information is getting shared between entities. If
the information possessor belongs to the coalition, then the value
of coalition is equal to the total benefit of organizations existing in
the coalition. In this case, the organizations receiving profits from
the shared information should pay to the information possessor.

As an example, consider we have O = {o1, o2, o3}. o1 detects
a vulnerability vk and shares its feature set Fvk to o2 and o3.
Then, S computes the patching benefit of this vulnerability over
o2 and o3 as π2,k = 5, π3,k = 12. In this case, for |S| = 1 or
o1 /∈ S, no information is getting shared and as a result, the value

of coalition is zero. For, S = {o1, o2}, S = {o1, o3}, and S =
{o1, o2, o3}, the coalition values are v(S) = 5, v(S) = 12, and
v(S) = 17 respectively.

In this setting, it is trivial that there is no incentive for any subset
of the members to separate and form smaller cooperation. In other
words, this game is Superadditive. In the following, we investigate
the Shapley value and Nucleolus allocations for the cybersecurity
information sharing game.

Theorem 4.1 The Shapley Value allocation for the cybersecurity
information sharing coalitional game is located in the Core.

Proof: The Shapley Value solution of a convex game is in the
core [45]. Thus we investigate the convexity of the game. As in this
game v(S ∪ T ) = v(S) + v(T ) and the value of v(S ∩ T ) ≥ 0,
thus the game is convex and the Shapley Value solution is in the
core. �

Theorem 4.2 The Shapley value of the oi(information possessor)
is half of the total patching benefits of other organizations accessing
the information, and the Shapley value for oj 6=i is half of its patching
benefit from accessing the information in cybersecurity information
sharing game.

Proof: First we start from the Shapley Value of the oi. Let (S ⊆
N\{i}, |S| = p), to simplify the proof we use an auxiliary variable
Vp as

Vp =
p!(n− p− 1)!

n!
(6)

Then based on equations (3) and (6) we have

φi(v) =

n−1∑
p=1

Vp.
∑

S⊆N\{i}
[v(S ∪ {i})− v(S)]

Note that, when p = n, then the coalition contains oi, and thus we
do not count this subset. Based on equation (5), v(S) = 0 and the
value of v(S ∪ {i}) is a coefficient of

∑
j πj,k, in other words

v(S ∪ {i}) = αp ·
∑
j πj,k. Hence, we can rewrite φi(v) as

φi(v) =

n−1∑
p=1

p!(n− p− 1)!

n!
· αp ·

∑
j

πj,k

As the number of subsets (S ⊆ N\{i}, |S| = p) is
(n−1
|S|
)

and for
each subset S, we have p

n−1 benefit values, thus we can calculate
αp as

αp =

(
n− 1

p

)
· p

n− 1
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Thus φi(v) is

φi(v) =

n−1∑
p=1

p!(n− p− 1)!

n!
·

(
n− 1

p

)
· p

n− 1
·
∑
j

πj,k

=

n−1∑
p=1

p!(n− p− 1)!(n− 1)! · p
n!p!(n− p− 1)! · (n− 1)

·
∑
j

πj,k

=

n−1∑
p=1

p

n(n− 1)
·
∑
j

πj,k

=
1

n(n− 1)

n−1∑
p=1

p ·
∑
j

πj,k

=
1

n(n− 1)
· n(n− 1)

2
·
∑
j

πj,k

=
1

2
·
∑
j

πj,k

Now we compute oj ’s Shapley Value. For oj , we need to count the
subsets S containing oi, since the coalition values for other subsets
are zero. In this case, we have [v(S ∪ {j})− v(S)] = πj,k. Thus,
we have

∑
S⊆N\{i}[v(S ∪ {j})− v(S)] = βp · πj,k, where βp is

the number of subsets {S ⊆ N\{j}, {i} ∈ S, |S| = p} which is

βp =

(
n− 2

p− 1

)

Thus we have

φj(v) =

n−1∑
p=1

p!(n− p− 1)!

n!
·

(
n− 2

p− 1

)
· πj,k

=

n−1∑
p=1

p!(n− p− 1)!(n− 2)!

n!(p− 1)!(n− p− 1)!
· πj,k

=

n−1∑
p=1

p

n(n− 1)
· πj,k

=
1

n(n− 1)

n−1∑
p=1

p · πj,k

=
1

n(n− 1)
· n(n− 1)

2
· πj,k

=
1

2
· πj,k

�

Theorem 4.3 The Shapley value and Nucleolus solution concepts,
coincide in the cybersecurity information sharing game.

Proof:
In order to proof this theorem, we calculate the excess value in

equation (4) with the Shapley Value allocation. Let oi indicate the
information possessor and oj 6=i represent other organizations. For
subsets |S| = 1 and i /∈ S, the coalition value is zero v(S) = 0 and
we have

∑
j∈S xj = 0, thus we have e(x, S) = 0. For the remain

subsets, according to theorem 4.2 oi’s allocation is 1
2

∑
j∈S πj,k

and oj ’ allocation is 1
2πj,k. By replacing the coalition value accord-

ing to equation (5) characteristic function, we have

e(x, S) = v(S)− (xi +
∑
j∈S

xj)

=
∑
j∈S

πj,k − (
1

2

∑
j∈S

πj,k +
∑
j∈S

1

2
πj,k) = 0

As the excess value for all of the subsets are equal to zero and since
Nucleolus present a unique solution, then we conclude that the solu-
tion concepts of the Shapley Value and Nucleolus coincide in the
cybersecurity information sharing game.

�

So far we have analyzed the fair profit sharing in cybersecurity
information sharing. However, as the participation-fee reveals sensi-
tive information about the organizations’ cyber-infrastructure, in the
next section we propose a method to protect participation-fee.

5 Differentially Private Rewarding

As the organizations’ participation-fee in the cybersecurity infor-
mation sharing rewarding system reveals sensitive information about
the organizations’ cyber-infrastructure, and such information can be
exploited by the attackers to exploit the organizations’ vulnerabil-
ities, it is critical to protecting the organizations’ participation-fee.
To this end, in this section, we propose a differentially private
mechanism for cybersecurity information sharing coalitional game.
First, we describe the differential privacy and the methods for
achieving this requirement. Then, we analyze the security require-
ments for cybersecurity information sharing. Finally, we propose our
algorithm and check if it fulfills the differential privacy requirement.

5.1 Differential Privacy

The notion of differential privacy [32] was first introduced in the
statistical database to hide sensitive private data in aggregate statisti-
cal information. Roughly speaking, the goal of differential privacy
is to allow learning useful information about a population in the
database while protecting an individual’s information. By applying
differential privacy, the responses to the queries are independent of
the presence or absence of an individual in the database. This method
applies a randomized response to prevent an adversary armed with
background information to infer the existence of an individual in the
database with a probability. Formally we can define the differential
privacy as follows

Definition 5.1. (Differential privacy) [32] Let D ∈ N|U| denote a
collection of records from a universe U . A randomized algorithm
M(D) is ε-differentially private if for any set of possible output
O ⊆ Range(M) and for any adjacent databases D,D′ ∈ N|U| such
that ||D −D′||1 ≤ 1 (D,D′ known as neighbor databases which
only differ in one record), we have

Pr[M(D) ∈ O] ≤ eε × Pr[M(D′) ∈ O] (7)

In this definition, ε is known as the privacy budget. The smaller
value of ε leading stricter indistinguishability and improves privacy.
In words, Definition 5.1 indicates that by having access to the differ-
entially private mechanism output, it is unlikely to distinguish which
of two neighboring databases are given as input to the mechanism.
There are two well-known tools to provide differential privacy as
described in the following.

1) The Laplace Mechanism [32]
In this technique, a noise value is appended to the output to hide

the original value. One way to calculate the noise is to sample it
from the Laplace distribution. In this case, first, the global sensitiv-
ity rate is measured. Given any function f : N|U| → O, the global
sensitivity of f is defined as

IET Research Journals, pp. 1–11
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∆f = max
D,D′∈N|U|
||D−D′||1=1

||f(D)− f(D′)||1 (8)

Then, the Laplace mechanism calculates the output as follows

M(D, f(.), ε) = f(D) + Lap(∆f/ε) (9)

2) The Exponential Mechanism[34]
The exponential mechanism chooses output with probability con-

sidering the utility of output while preserving the result differentially
private. More precisely, let u(D,O) : (N|U| ×O)→ R represent
the utility function receiving the database and mechanism output
value as input and returns the utility score. Let’s define ∆u as

∆u = max
D,D′:||D−D′||1≤1

O∈O

|u(D,O)− u(D′, O)| (10)

Then, the mechanism M(D,u) is ε-differentially private if it

returns O with probability proportional to exp(
εu(D,O)

2∆u
).

5.2 Private Rewarding Mechanism

In the fair and private rewarding mechanism, as we want to keep
the fairness property, we apply the exponential mechanism to pre-
serve the fairness quality. The Laplace mechanism can not directly
be applied in cybersecurity information sharing rewarding, because
the global sensitivity range can be large causing the noise value
increases substantially and as a result, the participation-fee might
get larger than the patching benefit. Hence, we apply the exponential
mechanism.

In order to apply the exponential mechanism, first, we need to
define the utility function. As our mechanism needs to fulfill fair-
ness along with the privacy, we define the utility function considering
fairness. To this end, we relax the fairness allocation presented in the
profit sharing by defining δ-fairness.

Definition 5.2. Let Ψ = (ψ1, , ..., ψn) represent the fair alloca-
tion, then the allocation x̄ = (x1, ..., xn) is δ-fair if for all xi, we
have xi ∈ (ψi − δ, ψi + δ).

According to δ-fairness definition, and the fair profit sharing
discussed in section 4, in the cybersecurity information sharing
rewarding, for the information possessor oi, an allocation xi is δ-
fair if we have xi ∈ (1/2

∑
j πj − δ, 1/2

∑
j πj + δ), and for oj

exploiting the patching benefit, an allocation xj is δ-fair if we have
xj ∈ (1/2πj − δ, 1/2πj + δ).

Note that, δ value should be chosen in a way to fulfill the dif-
ferential privacy requirement. More precisely, when the probability
of output for a mechanism over a database input is larger than zero,
then the probability of output for the mechanism over the adjacent
database should also be larger than zero. Formally we have

(Pr[M(D) ∈ O] > 0)⇒ (Pr[M(D′) ∈ O] > 0) (11)

To meet this requirement, the δ value should be chosen such that
if the most effective element in the database is removed then the
probability of mechanism output is still larger than zero. Formally
we have

x̂ <
∑
n−2

δ

s.t. x̂ ∈ D, x̂ = arg max||M(D)−M(D − x̂)||1 (12)

This requirement indicates that with the increasing of the input val-
ues variance and also with the decreasing of the number of input
elements, δ value should be increased, which results in the increasing
of fairness cost.

As the randomized response is changing the fair profit sharing,
we are interested in finding the δ-fair private profit sharing. Our
proposed mechanism has two parts. In the first part, we deal with

finding the private and δ-fair reward value, and in the second part, we
investigate the private and δ-fair cost division among participants.

Let X = (x1, ..., xn) represent the profit allocation given the allo-
cation of information possessor xi = ri. The algorithm (1) takes as
input the privacy budget ε and the fair profit sharing vector Ψ =
(ψ1, ..., ψn) (which is ψj = πj/2 and ψi =

∑
j πj/2 in cyberse-

curity information sharing), and obtains the private δ-fair reward ri
as output.

In the beginning, δ value is selected in such a way to fulfill the
requirement (12). As the goal of the privacy preserving algorithm is
to retain fairness as much as possible, we define the utility function
as follows

u(Ψ,X) =
1

||X−Ψ||1 + 1
(13)

In this definition, we consider the increasing of distance between
profit allocation and fair profit sharing decrease the utility. As the
maximum value of utility is obtained in Ψ allocation, then according
to equation (10) we have

∆u(Ψ,X) =
1

||Ψ−Ψ||1 + 1
− 1

max(ψj) + 1

= 1− 1

max(ψj) + 1
=

max(ψj)

max(ψj) + 1
(14)

To meet the δ-fair requirement, the candidate reward values are taken
from (ψi − δ, ψi + δ) range. Then, the probability distribution of
different values for reward is calculated and the output is sampled
from the following distribution.

Pr[ri = xi] =
exp(

ε.(max(ψj)+1)
2.(||X−Ψ||1+1).max(ψj)

)∑
xi∈(ψi−δ,ψi+δ) exp(

ε.(max(ψj)+1)
2.(||X−Ψ||1+1).max(ψj)

)

(15)
This distribution is chosen to fulfill the differential privacy require-
ment as discussed in theorem 5.1. Note that, with the decrease of the
distance to fair allocation, the probability increases exponentially.
This makes the distribution to be biased toward fair profit sharing
while fulfilling the differential privacy requirement.

Theorem 5.1 Algorithm (1) is δ-fair and ε-differentially private.

Proof: It is trivial that Algorithm (1) is δ-fair as the range of sam-
ples is (ψi − δ, ψi + δ). In order to prove ε-differential privacy,
we investigate the probability of having the same output for two
neighbor profiles X,X′. We sketch the proof from [46]. Thus we
have

(Note that, ||X−Ψ||1 − ||X′ −Ψ||1 ≤ max(ψj).)

Pr[Alg1(X) = r]

Pr[Alg1(X′) = r]
=

exp(
ε.(max(ψj)+1)

2.(||X−Ψ||1+1).max(ψj)
)

exp(
ε.(max(ψj)+1)

2.(||X′−Ψ||1+1).max(ψj)
)
.

∑
xi∈(ψi−δ,ψi+δ) exp(

ε.(max(ψj)+1)
2.(||X′−Ψ||1+1).max(ψj)

)∑
xi∈(ψi−δ,ψi+δ) exp(

ε.(max(ψj)+1)
2.(||X−Ψ||1+1).max(ψj)

)

= exp(
ε.( 1
||X−Ψ||1+1

− 1
||X′−Ψ||1+1

)

2.
max(ψj)
max(ψj+1)

).

∑
xi∈(ψi−δ,ψi+δ) exp(

ε.(max(ψj)+1)
2.(||X′−Ψ||1+1).max(ψj)

)∑
xi∈(ψi−δ,ψi+δ) exp(

ε.(max(ψj)+1)
2.(||X−Ψ||1+1).max(ψj)

)

≤ exp(
ε

2
).exp(

ε

2
).∑

xi∈(ψi−δ,ψi+δ) exp(
ε.(max(ψj)+1)

2.(||X−Ψ||1+1).max(ψj)
)∑

xi∈(ψi−δ,ψi+δ) exp(
ε.(max(ψj)+1)

2.(||X−Ψ||1+1).max(ψj)
)

= exp(ε)
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Hence we can rewrite the probabilities as follows

Pr[Alg1(X) = r] ≤ exp(ε).P r[Alg1(X′) = r]

�

Algorithm 1: Randomized algorithm for finding the differ-
entially private reward value

Input : Privacy budget ε, fairness threshold δ, and fair profit
sharing vector Ψ

Output: The randomized private δ-fair reward value ri
1 S ← 0;
2 foreach xi ∈ (ψi − δ, ψi + δ) do
3 S ← S + exp(

ε.(max(ψj)+1)
2.(||X−Ψ||1+1).max(ψj)

);
4 end
5 Sample ri from the following distribution

Pr[ri = xi] =
exp(

ε.(max(ψj)+1)

2.(||X−Ψ||1+1).max(ψj)
)

S
6 return ri;

In the next algorithm, we apply differential privacy to privately
divide the cost of reward into the organizations considering their
patching benefits. Note that, if we divide the cost fairly, this problem
is a particular instance of the airport cost allocation game [47]. In this
case, the adversary with side information and the collusion of organi-
zations reveals the victim’s patching benefit. Thus, in algorithm (2)
we randomize the cost to preserve the differential privacy. In this
case, we model the utility function as follows

u(X,Y) =
1

||Y− X||1 + 1
(16)

Having this definition, with the increase of distance of allocation
and As the maximum utility is obtained in Y = X, then ∆u is

∆u(X,Y) =
1

||X− X||1 + 1
− 1

||X− (X−max(xj))||1 + 1

= 1− 1

max(xj) + 1
=

max(xj)

max(xj) + 1
(17)

Algorithm (2) takes the profit sharing vector X with xi = ri, the
fairness threshold value δ, and the original fair profit sharing vector
Ψ as input, and generates the private δ-fair profit sharing allocation
vector Y = (y1, ..., yn) as output such that yi = ri.

In algorithm (2), every possible combination of participation-fees
leading to the reward value ri, as it can be seen in line 3. The
combinations of participation-fees make the samples of the distri-
bution. Afterward, the probability distribution is calculated and the
participation-fee vector is sampled from the following distribution
to fulfill the differential privacy requirement as discussed in theorem
5.2.

Pr[Y = m] =
exp(

ε.(max(xj)+1)
2.(||m−X||1+1).max(xj)

)∑
∀m∈M exp(

ε.(max(xj)+1)
2.(||m−X||1+1).max(xj)

)
(18)

Theorem 5.2 Algorithm (2) is δ-fair and ε-differentially private.

Proof: The proof is almost the same as that of Theorem 5.1. As
the elements of the matrix M is chosen from the range of (ψj −
δ, ψj + δ), algorithm (2) is δ-fair. Let X and X′ be neighbor payment
profiles, then we have

(Note that, ||m− X||1 − ||m− X′||1 ≤ max(xj).)

Pr[Alg2(X) = Y]

Pr[Alg2(X′) = Y]
=

exp(
ε.(max(xj)+1)

2.(||Y−X||1+1).max(xj)
)

exp(
ε.(max(xj)+1)

2.(||Y−X′||1+1).max(xj)
)
.

∑
m∈M exp(

ε.(max(ψj)+1)
2.(||m−X′||1+1).max(ψj)

)∑
m∈M exp(

ε.(max(ψj)+1)
2.(||m−X||1+1).max(ψj)

)

= exp(
ε.( 1
||m−X||1+1

− 1
||m−X′||1+1

)

2.
max(ψj)
max(ψj+1)

).

∑
m∈M exp(

ε.(max(ψj)+1)
2.(||m−X′||1+1).max(ψj)

)∑
m∈M exp(

ε.(max(ψj)+1)
2.(||m−X||1+1).max(ψj)

)

≤ exp(
ε

2
).exp(

ε

2
).∑

m∈M exp(
ε.(max(ψj)+1)

2.(||m−X||1+1).max(ψj)
)∑

m∈M exp(
ε.(max(ψj)+1)

2.(||m−X||1+1).max(ψj)
)

= exp(ε)

Hence we can rewrite the probabilities as follows

Pr[Alg2(X) = Y] ≤ exp(ε).P r[Alg2(X′) = Y]

�

Algorithm 2: Randomized algorithm for finding the differ-
entially private reward value

Input : The fair cost allocation vector X with xi = ri, the
fairness threshold value δ, and the original fair
profit sharing vector Ψ

Output: The randomized private δ-fair patching benefit
vector Y

1 S ← 0
2 Initialize matrix M’s rows to all of possible combinations of

the cost allocations such that for each row vector m we have
ai,m = ri, aj,m ∈ (ψj − δ, ψj + δ), and

∑
j aj,m = ri.

3 foreach row vector m ∈ M do
4 S ← S + exp(

ε.(max(xj)+1)
2.(||m−X||1+1).max(xj)

);
5 end
6 Sample Y from the following distribution

Pr[Y = m] =
exp(

ε.(max(xj)+1)

2.(||m−X||1+1).max(xj)
)

S
7 return Y;

6 Simulation Results

In this section, we investigate the performance of our proposed
mechanisms. First, we evaluate the effect of applying coalitional
game theory model introduced in section 4 for reward/participation-
fee allocation on cybersecurity information sharing system. After-
ward, we analyze the private reward/participation-fee allocation as
presented in section 5.

6.1 Fair Rewarding

Here, we compare our proposed game-theoretic mechanism dis-
cussed in section 4 with the static allocation where participation-fee
and reward are constant values for all of the organizations and
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(b) Game-theoretic approach

Fig. 3: Comparing the game-theoretic and non-game-theoretic approaches
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(a) Sampling distribution for δ = 7
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(b) Sampling distribution for δ = 10

Fig. 4: Comparing sampling distributions with δ = 7 and δ = 10

every vulnerability information sharing. The goal of this experiment
is to study the benefits of applying the coalitional game theoretic
approach comparing to a static reward/participation-fee allocation
scheme. We set the number of organizations to n = 10 and the num-
ber of vulnerabilities to m = 100. We assume each vulnerability
randomly detected by an organization and the rest of organizations
are vulnerable with probability 0.5. Organizations are sorted in the
list based on their size in terms of their patching benefit πj,k (e.g.
o10 is the largest organization and o1 is the smallest organization).
We assume the patching benefit is proportional to the organization’s
size and we calculate it as πj,k ∼ N (j × 10, 5).

In the static model, we consider ri,k = 100, xj,k = 20. Figure 3b
shows the improvement achieved by game-theoretic formation
as compared to the non-game-theoretic approach as depicted in
Figure 3a. We calculate net-benefit value as the summation of patch-
ing benefit and sharing reward deducted by the participation-fee. As
it can be seen, using the game-theoretic approach results in better
distribution of the payoff among organizations while in the non-
game-theoretic model the larger organizations benefit more from
the system. It is due to the fact that in the non-game-theoretic set-
ting, participation-fee is same for all of the organizations without
consideration of their benefit from the system, while in the game-
theoretic approach, the participation-fee is dynamically calculated
based on the patching benefit. Besides that, as the reward value in
the game-theoretic method is dynamically calculated based on the
patching benefit, organizations are stimulated to share more use-
ful information to the system. In our simulation, the game-theoretic
approach results in higher rewards comparing to the non-game-
theoretic approach. We have used MatTuGames [48] to implement
the proposed profit-sharing model.

6.2 Differentially Private Rewarding

Here, we analyze the performance of the differentially private
profit sharing algorithms introduced in section 5. For this purpose,
we measure the changes of privacy-leakage and fairness-distance
when other parameters vary. We calculate privacy-leakage through
Kullback-Leibler (KL) divergence [49]. KL divergence computes the
difference between two distributions. LetD,D′ represent two neigh-
bor databases differ in only one organization participating in the
rewarding process, and Q,Q′ indicate the probability of patching
benefit distribution, correspondingly. Since by increasing the differ-
ence of these distributions, the databases are more distinguishable,
we define the privacy-leakage to be calculated as KL divergence as
follows

D(Q||Q′) =
∑
y∈Y

Q(y)ln(
Q(y)

Q′(y)
) (19)

Figure 4 illustrates the sampling distributions where n = 10 and
x = 50 for δ = 7 and δ = 10. Note that, in this case, the δ value
should be larger than seven according to requirement (12). It can be
seen that the increase of δ value provides more privacy by distribut-
ing sample space and decreasing the probability of sample selection
as a result. Also, with the decrease of the distance to fair allocation,
the probability increases exponentially. This makes the distribution
to be biased toward fair profit sharing while fulfilling the differential
privacy requirement. On the other hand, figure 5 displays the impacts
of δ, ε, and n on privacy leakage. As it can be observed, by increasing
the privacy budget ε, the privacy leakage increase but at the decreas-
ing rate. Moreover, with the growth of the number of organizations
in the coalition, the privacy leakage decreases. This is in light of the
fact that with the growth of organizations coalition the sample space
is also growing as indicated in equations (15), and (18).
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(a) Privacy leakage with the increase of ε
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Fig. 5: Privacy leakage with the increasing of δ and ε
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(a) Fairness distance with the increase of ε
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(b) Fairness distance with the increase of δ

Fig. 6: Fairness distance with the increasing of δ and ε

In order to calculate the fairness, we calculate the distance
between the fair profit sharing vector Ψ and the expected profit allo-
cation vector Y from our algorithms output, and then we divide the
result by the number of participating organizations to calculate the
average distance. Figure 6 shows the impacts of δ, ε, and n on fair-
ness distance. The distance from fair allocation is decreasing with an
increase of organizations number and an increase of ε. On the other
hand, increasing the δ value, increase the fairness distance linearly.
As a result, it can be concluded that the increase of the number of
organizations participating in the cybersecurity information sharing
coalition, the value of patching benefit, and δ yield better perfor-
mance of our algorithm. Moreover, the algorithm provides a better
result when the patching benefits variance is small.

7 Conclusion

Despite the benefits of sharing cybersecurity information, stim-
ulating organizations to share their cybersecurity information is
a big challenge. As such sharing is costly, organizations tend to
free-ride in the system and as a result, useful information is not
getting shared. To motivate sharing behavior, we have proposed a
reward/participation-fee allocation mechanism based on coalitional
game theory. We have also investigated the Shapley value and Nucle-
olus solution concepts of cybersecurity information sharing as a
coalitional game to reach a fair, dynamic, and stable profit sharing
method. On the other hand, as a participation-fee reveals sensi-
tive information about the organizations’ cyberstructure, we have
investigated the private and fair rewarding mechanism applying the
differential privacy concept. We relax the fairness definition by
introducing δ-fair concept. Then, we have offered a private and δ-
fair profit allocation mechanism. The simulation results depict the
efficiency of our proposed mechanism.

For future works, we are interested in modeling a cybersecurity
information sharing platform as a self-driven public-good market,
where the organizations’ participation-fee motivates data holders to
share useful information. In such a market, organizations can bid for
their required cybersecurity information based on their true valua-
tions. On the other hand, the vulnerability finder decides whether to
sell the information to the organizations or sell it to the attackers
in the black market. In this game, we would like to investigate the
Nash Equilibrium and design mechanisms to motivate organizations
toward the socially optimal point where useful information is getting
shared and organizations’ best strategy is to invest on cybersecurity.
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