
Sharing Susceptible Passwords as Cyber Threat
Intelligence Feed

Iman Vakilinia∗, Sui Cheung†, Shamik Sengupta‡
Department of Computer Science and Engineering, University of Nevada, Reno

Reno, NV, USA
Email: ∗ivakilinia@unr.edu, †scheung@unr.edu, ‡ssengupta@unr.edu

Abstract—Password-strength checkers provide feedback to
users about their password choice. Several parameters are inves-
tigated by password-strength checkers such as length, character
set, user information, and entropy to score the chosen password.
Moreover, such checkers use dictionaries to detect susceptible
passwords such as keyboard sequences (e.g. qwert), simple and
usual words (e.g. password). As the password patterns are
language specific, having an English dictionary of patterns is
not helpful to detect other language patterns. Besides that, the
users’ passwords choice might be inspired by the new patterns
emerging in their culture. For instance, new movies, books, and
games. Hence, the dictionary needs to be updated to cover the
new patterns. However, generating such dictionaries which cover
new and diverse patterns is not simple and needs excessive efforts
to extract new patterns from different cultures.

To update the list of susceptible passwords and extract new
password patterns dynamically, we propose a method for sharing
attacked passwords which are collected from the honeypot
through brute-force attack attempts. To achieve this goal, first, we
analyze the passwords collected in brute-force attack attempted
in our honeypot. Then, we model the password sharing as cyber
threat intelligence feed in the Structured Threat Information
Expression (STIX) format. We also provide a tool which allows
users to query if a string or its leet transformation is existing in
the susceptible password dataset.

Index Terms—Password, Cybersecurity Information Sharing,
Threat Intelligence

I. INTRODUCTION

Password-based authentication is the most common method
for authentication services, despite the recent increased de-
velopment in public-key infrastructure and multi-factor tech-
niques. According to Verizon’s 2017 Data Breach Investiga-
tions Report, 81% of hacking-related breaches leveraged either
stolen and/or weak passwords [1]. To overcome this issue,
servers apply password policies to prohibit users from choos-
ing simple passwords. For instance, password policies usually
enforce a minimum length for the passwords. Moreover, one
of the well-known password requirement is to check if the
password’s character set contains Lower and Uppercase letters,
Digits and Symbols known as LUDS. However, there are many
research studies that showed the insufficiency of LUDS [2]–
[4] password requirements. For example, studies have shown
that users tend to use particular characters more than others.
Additionally, LUDS does not check passwords that contain
the most common patterns. Last but not least, LUDS rejects
a large set of strong passwords which do not contain specific
characters (e.g. DkRPSjx).

In addition to policies for password requirements, there
are password-strength checkers that compute the password
strength considering several factors and it assists users to
find a better password. Servers may prevent a password to
be selected if its score is less than a threshold. Password-
strength checkers calculate a score based on several parameters
such as length, character set, user information, and entropy.
Moreover, the password-strength checker uses a dictionary
to detect susceptible passwords such as simple and usual
words (e.g. password) and easy keyboard sequences (e.g.
qwert). Since password patterns are language specific, using
an English dictionary is not as helpful as to detect other
language patterns [5]. Furthermore, a user’s password choice
might be inspired by the new patterns emerging in their
cultures such as new movies, books, animations, and games.
Hence, the word dictionary needs to be updated to cover the
new patterns. However, generating such word dictionaries is
not an easy task and it requires excessive efforts to extract
new patterns from different cultures.

On the other hand, attackers also apply various dictionaries
to perform brute-force attacks on password-based authenti-
cation systems. Such dictionaries convey a wide range of
words with different levels of complexity. Furthermore, these
word lists are not limited to one language or culture and it
is more dynamic compared to currently available password
dictionaries.

To proactively defend against attackers, cyber threat in-
telligence has been proposed. Gartner defines cyber threat
intelligence as: “evidence-based knowledge, including context,
mechanisms, indicators, implications and actionable advice,
about an existing or emerging menace or hazard to assets
that can be used to inform decisions regarding the subjects
response to that menace or hazard.” [6]. The indicator of
Compromise (IoC) is the most common cyber threat feeds. It
includes blacklist IP addresses, malware signatures, malicious
URLs and domain names. However, such information is not
sufficient to protect password-based authentication systems.

As the available password-strength checkers do not update
the list of susceptible passwords and they are insufficient
to classify the passwords, we propose a method for sharing
updated susceptible passwords which have been used by the
attackers. To achieve this goal, first, we set up a honeypot to
collect attackers’ password lists and then we present those
passwords as cyber threat feed for the password-strength
checkers.

2

TABLE I: Cybersecurity information sharing specifications

Specification Description
STIX Structured Threat Information Expression is a language and serialization format for exchanging cyber threat intelligence
TAXII Trusted Automated eXchange of Indicator Information is a free and open transport mechanism that standardizes the automated

exchange of cyber threat information
CybOX Cyber Observable eXpression is an expression format which has been integrated into STIX 2.0
VERIS The Vocabulary for Event Recording and Incident Sharing is a set of metrics designed to provide a common language for describing

security incidents in a structured and repeatable manner
MAEC Malware Attribute Enumeration and Characterization is a standardized language for sharing structured information about malware

based upon attributes such as behaviors, artifacts, and attack patterns
IODEF Incident Object Description Exchange Format is a data format which is used to describe computer security information for the

purpose of exchange between Computer Security Incident Response Teams
OpenIOC OpenIOC has information about the indicators of compromise which includes threats details, attack methodologies, and information

about the vulnerable platform.

We model the password sharing in the Structured Threat
Information Expression (STIX) format [7] which is a language
and serialization format for exchanging cyber threat intelli-
gence (CTI). Furthermore, we provide a tool for users to check
if a string and its leet transformations exist in the attackers’
password dataset. The contribution of this work is as follows.

• We analyze the attackers’ dataset of passwords by com-
paring them with existing password datasets. To this end,
we have deployed a low-interaction honeypot to collect
attackers’ passwords which have been applied in the
brute-force attacks.

• We propose a method for sharing the susceptible pass-
words as cyber threat intelligence feeds to improve the
password-strength checkers’ performance.

The rest of the paper is organized as follows. The next
section reviews major works in the password-strength checkers
and cybersecurity information sharing. Section IV, describes
our investigation on collected passwords from brute-force
attacks performed on our honeypot. Details of our proposed
sharing method are described in Section V. Finally, we con-
clude the paper in Section VI.

II. RELATED WORK

Estimating the password-strength have been studied exten-
sively for many years both experimentally and theoretically.
Applying dictionary words to impose password rules have
been studied in [8]–[10]. Authors in [3] analyzed the attacker’s
guess-ability of passwords by evaluating different attacks over
the dataset of passwords. Li et al. [5] investigate the distinction
between password inclination of Chinese and English users.
The effectiveness of applying password-strength checkers has
been studied in [11], [12]. Furnell [13] assessed the password
guidelines and policies of several well-known web service
providers and evaluated the enforcement of such requirements.

Several research studies have been done for designing the
robust password meters [2], [14]–[16]. zxcvbn [2] is the
open-source password-strength estimator tool which is used by
Dropbox. In its core, zxcvbn investigates the generality of a
password based on several sources which are common pass-
words, leaked passwords, common names, and common words
from Wikipedia. Authors in [17] evaluate and characterize the
password meters of several popular websites such as Dropbox,
eBay, Google, Microsoft, and Paypal. Telepathwords [18] have
been proposed to examine passwords against guessing attacks

such that it makes a real-time prediction of the next character
as the user types a password.

Furthermore, several research studies have analyzed the
passwords in brute-force attacks and discuss the defensive
techniques [19]–[21]. Moreover, they argue that based on
the collected password dataset, what is known as a strong
password is not sufficient to protect systems authentication
since the attackers’ passwords dictionary conveys the so-called
strong passwords.

On the other hand, recently, a large number of research
studies focused on the cyber threat intelligence and cyberse-
curity information sharing [22]–[24]. To provide a common
platform for sharing such information, various protocols and
specifications for cybersecurity information sharing have been
developed which are listed in Table I [25]–[28]. Several
repositories provide threat intelligence feeds such as Virus
Total [29], CYMON [30], and HAIL A TAXII [31]. The threat
intelligence feeds are IoCs such as blacklist IP addresses, mal-
ware signatures, malicious URLs and domain names. However,
such information is not sufficient to protect password-based
authentication systems.

Inspired by the previous works, in this paper, we analyze the
passwords which are currently being used in the brute-force
attacks. Then, we propose a method for sharing information
about such passwords to improve the password-strength check-
ers for the detection of susceptible passwords.

III. SYSTEM ARCHITECTURE

In this section, we elaborate the honeypot installation for
collecting the attackers’ passwords lists.

To collect the passwords used by the attackers on the
Internet, we have installed two low-interaction honeypots with
the subsequent IP addresses. Although brute-force attacks are
running over many services such as Telnet, FTP, SSH, Email,
and web, in our data collection we are focusing on SSH brute-
force attempts because it has the highest rate and the collected
dataset conveys the other services brute-force passwords.

We have changed the code of OpenSSH server 7.6 to log
the username, password, and source IP address in the login
attempts. This change has been done in auth_password
function located in auth-passwd.c file by adding the
following line of code:

3

Fig. 1: Geomap of the source IPs initiating the SSH brute-force attacks using Kibana

logit("IP: %s Port: %d Username: %s Password:
%s", ssh_remote_ipaddr(active_state),
ssh_remote_port(active_state), authctxt->user,
password);

We also use ELK1 stack 6.1 to parse, transfer, store and
query the collected information. Once SSH login attempt
happens, rsyslog2 sends the login information to ELK. To this
end, we have set the rsyslog config file as follows:
:msg, regex, "IP:.*Port:.*Username:.*Password:
.*" @Logstash_IP:Logstash_port

Logstash first receives, parses and tags data, and then
Logstash transfers them to Elasticsearch. Elasticsearch stores
and indexes data, and finally Kibana is used to query and
visualize the collected information. Figure 2 shows the system
architecture. We use QEMU and KVM for virtualization and
pfSense3 as our gateway and firewall. We have put honeypots
in a separate network by deploying of the virtual switches.

Fig. 2: System architecture

IV. PASSWORDS COLLECTION AND ANALYSIS

In this section, we analyze the collected passwords by
comparing them to the available password datasets. Then we
check the scores that several passwords are receiving from
available password-strength checkers.

1Elasticsearch Logstash Kibana, https://www.elastic.co/products
2http://www.rsyslog.com/
3https://www.pfsense.org/

The data has been collected from the first of November-
2017, until the end of January-2018. Figure 1 shows the
geolocation map of the source IP addresses that initiated the
SSH brute-force attacks. Table II shows the overall information
about the collected logs.

TABLE II: Overall information about SSH brute-force attacks

Testbed-1 Testbed-2
Total login Attempts 1,018,101 838,109

Number of Source IP addresses 3,063 2,144
Number of Usernames 1,062 805
Number of Passwords 69,427 68,202

From the total login attempts, the most frequent username
that has been attempted is “root” and the most frequent
password is “123” with 126, 134 times. Excluding “123”,
Figure 3 displays the top 40 passwords that have been tried by
attackers in our dataset. The highest number of login attempts
happened from one IP address, was 69 times.

In total, we have gathered 69, 644 distinct
passwords from both datasets. The longest password is
“0xLsHymi8BFU353Qr0wctoIGlSwnLfSInQo24S0qWlkZS5jb20vZG93b00
wctoIG0” which has 65 characters.

By analyzing our datasets, we can see that attackers have
different strategies. For example, one class of attackers have a
small list of passwords (usually less than ten passwords), and
they have tried those passwords at different times. Another
set of attackers have a large password dataset and choose
several passwords each time they perform brute-force. On the
other hand, it can be seen that there are groups of attackers
which share the same password datasets. Botnets are usually
using the same password dataset. Although it is not sufficient
to conclude one specific botnet based on just username and
password login attempts, we suspect that a large number of
requests to our honeypot have been initiated by the Mirai
botnet, since this botnet has 62 pair of username and password
which are existing in our dataset and have been applied by the
attackers repetitively [32].

4

Fig. 3: Top 40 passwords excluding “123”

We have used three public available password datasets4 of
Top passwords, phpBB, and RockYou, to compare with our
dataset. Top password is the list of 100, 000 most common
passwords, phpBB and RockYou are two leaked password
databases from phpBB.com and RockYou.com websites, re-
spectively. These lists include 184, 389, and 14, 344, 382 pass-
words, respectively. Comparing our datasets with these three
datasets, Figure 4 shows how many passwords in our attack
dataset are not existed in any of these datasets. Figure 5 shows
the number of passwords with various length. As it can be seen
there are a large number of passwords exist with larger than
six characters. This indicates that the length policy is good,
but it is not enough to resist against brute-force attacks.

From the collected passwords, 1, 399 passwords following
the LUDS policy. We have investigated the score of mul-
tiple passwords by using the multi-checker tool provided
by MADIBA security research group [17]. Table III depicts
the results of password strength scores calculated by Apple,
Dropbox, eBay, Google, Drupal, Intel, PayPal, QQ, Twit-
ter, Yahoo!, and Yandex. As it can be seen, most of the
password-strength checkers are giving relatively high scores
to the selected passwords. However, these passwords have
been tried several times by the attackers. Among the service
providers, Dropbox is the only one which has presented the
algorithm of its password-strength checker [2]. Our experi-
ment supports Carnavalet and Mannan research [17] that the
Dropbox password-strength checker generates a more realistic
classification mainly because of checking how common a
password is according to several datasets. However, as these
datasets are not completely covering all of the words and are
not dynamically filled, this password-strength checker is also
incapable to realistically classifying many passwords.

For example, consider “SeRvEr2003@” as password, this
password receives “Weak2/5” from Dropbox, while as you
can see in the table “FuWuQi2003@” receives “Great!5/5”
from Dropbox. Other password-checkers also classify this
password as strong. Whereas “Fuwuqi” is the Chinese transla-
tion of “Server” and it has appeared in attack dataset multiple
times. This case is true for other passwords as well, for
example as you can see the second password contains “Mima”
which is the Chinese translation of “Password”. The third

4Downloaded from https://github.com/danielmiessler/SecLists

password contains word “Spadie” which is the name of a
Japanese poker league. Moreover, we have noticed a large
number of website addresses have been tried by attackers. By
checking these passwords, the majority of password-strength
checkers classify them as strong since they are not equipped
with a dictionary of such website addresses. Thus, we can
see that the password-strength checkers are not efficient in
classifying a large set of passwords considering the attack
datasets.

Fig. 4: Number of unique passwords in our dataset

Fig. 5: Number of passwords of different length

V. PASSWORDS AS THREAT INTELLIGENCE FEEDS

In this section, we present two methods for sharing infor-
mation about the attackers’ dictionary. In the first method, we
use STIX format to transfer new password trends as cyber
threat intelligence feed. In the second method, we provide a
tool which allows users to query a string from the attackers’
password dataset to check if there are passwords consisted of
the string or its leet transformations in the attacker dictionary.

5

TABLE III: The classification of different passwords by several password-strength checkers

FuWuQi2003@ 12345Mima!@ SpAd!e-8 AKG450@ikki.me w!ns@ckP@$$12 www.hao123.com

Apple Strong 3/3 Strong 3/3 Moderate 2/3 Strong 3/3 Strong 3/3 Moderate 2/3
Dropbox Great! 5/5 Weak 2/5 Good 4/5 Great! 5/5 Good 4/5 Great! 5/5

eBay Strong 4/4 Strong 5/5 Strong 5/5 Strong 5/5 Strong 5/5 Medium 4/5
Google Strong 5/5 Strong 5/5 Strong 5/5 Strong 5/5 Strong 5/5 Strong 5/5
Drupal Strong 4/4 Strong 4/4 Strong 4/4 Strong 4/4 Strong 4/4 Strong 4/4
Intel Oh No! 1/2 Oh No! 1/2 Oh No! 1/2 Congratulations! 2/2 Congratulations! 2/2 Congratulations! 2/2

PayPal Strong 4/4 Weak 2/4 Strong 4/4 Strong 4/4 Strong 4/4 Fair3/4
QQ Strong 4/4 Strong 4/4 Strong 4/4 Strong 4/4 Strong 4/4 Strong 4/4

Twitter Perfect 6/6 Perfect 6/6 Perfect 6/6 Perfect 6/6 Perfect 6/6 Okay5/6
Yahoo! Very Strong 4/4 Very Strong 4/4 Very Strong 4/4 Very Strong 4/4 Very Strong 4/4 Strong 3/4
Yandex OK 4/4 OK 4/4 OK 4/4 OK 4/4 OK 4/4 OK 4/4

TABLE IV: Leet Transformations available in the dataset

String Leet Transformations available in the dataset

Root ROOT, Root, rOOt, ro0t, root, ro0t, r0ot, r00t, ro0t, 2007
Admin ADMIN, ADmin, AdmIn, Adm1n, Admin, adm!n, adm1n, admin, 4dm1n, 4dmin, @dm1n, @dmin

Pass PASS, Pass, P@SS, P@ss, pass, p@ss, p@$$, 6425
Server SERVER, Server, server, s3rv3r
User User, user, us3r, u5er, u53r, uzer

Mima MIma, Mima, mima
Fuwuqi FUWUQI, FuWuQi, Fuwuqi, fUWUqI, fuwuqi

Fig. 6: STIX Observed Data to represent attacker password

A. Using STIX to share weak passwords
STIX components are Objects and Relationships. STIX Ob-

jects represent information with a set of attributes. Relation-
ships chain multiple objects to simplify the representation of
complex CTI.

We use STIX Observed Data object to represent password
information. Observed Data object provides information about
the system and network elements using cyber observable
specification [33]. For example, the observation of an IP
address, an email, a file, or a registry key can be represented
by STIX Observed Data object.

Irrespective of the data type an Observed data object has
some common properties: type, id, created by ref, created,
modified, first observed, last observed, and number observed.
The type field must be “observed-data” as it describe the
object we are representing. id and created by ref utilizes
Universally Unique Identifiers (UUID) to identify the particu-
lar event and the organization respectively. Created, modified,

first observed, and last observed are timestamps in Coordi-
nated Universal Time (UTC) zone and are self-explanatory.
number observed field identifies the number of occurrence
of the event within the time period from first observed to
last observed. This allows the observed data object to ag-
gregate multiple sightings of the same event and consecu-
tively reduce data clutter. Figure 6 depicts an example of
our proposed STIX presentation for sharing a susceptible
password. Here STIX Observed Data object indicates that the
password “FuWuQi2003!” has been observed three times over
the time window of 2017-12-14T18:26:14.134Z till 2018-01-
01T18:26:14.213Z.

Note that since many passwords in the attack dataset are
completely random, in order to increase the data quality,
it is better to filter passwords before publishing them. For
filtering, we consider a threshold value τ as a requirement for
publishing. In this case, a password is going to be reported if
it is repeated by different IP addresses for τ times in a time
window (e.g. from Jan/01/2018 till March/01/2018). Also, this
filtering can happen on the client side which is the receiver
of the shared information. In this case, a receiver can put
a password in its blacklist if it receives the password from
different sources and with a predefined threshold.

B. Searching among the attack dataset

Leet transformation replaces characters with other charac-
ters which are visually similar. For instance, the letter “i”
is analogous to “1”, “!”, “\”, “/”, and “;” characters. Users
usually apply the leet transformation to make their password
complex and meet the password policy requirements such as
LUDS. We provide a tool which checks if a string or its leet
transformations, is in the list of attackers’ datasets or not. This
helps users to have a better understanding of guess-ability
of their passwords to avoid susceptible passwords. For this
purpose, our tool receives a string as input and queries all

6

of its leet transformations from the attacker password dataset
collected by the honeypot.

The password-checker receives a string as input and finds
every password which has the string or its leet transforma-
tions as a substring in a password dataset. First, the checker
computes all of the leet transformations. Then, it searches
for the passwords that contained a substring of each trans-
formation. As an example, the Table IV depicts the available
passwords transformations for the input strings of “root”,
“admin”, “pass”, “server”, “user”, “mima”, and “fuwuqi”. in
our collected password dataset.

The scripts and the collected password dataset
are in a Github repository and available at
https://github.com/imanvk/SSH-BruteForce-Honeypot

for research purpose.

VI. CONCLUSION AND FUTURE WORKS

Password-strength checkers help users to choose safer pass-
words by scoring the chosen password. However, such check-
ers do not consider the passwords that have been used by the
attackers for brute-force. Making a honeypot to collect attack
passwords dataset, we modeled sharing susceptible password
as cyber threat feeds using STIX. We have also provided a tool
that allows users to query a string from a password dataset
to check if the string and its leet transformations exist as a
substring of vulnerable passwords. For the future works, We
will measure the rate of appearance of a new password in the
dataset. Having such information, we would then investigate
what kind of algorithm attackers use to extract new passwords.
Also, we will investigate if it is possible to classify botnets
based on their password datasets.

VII. ACKNOWLEDGMENT

This research is supported by the National Science Founda-
tion (NSF), USA, Award #1739032. Any opinions, findings,
and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

REFERENCES

[1] “Verizon 2017 data breach report,” http://www.verizonenterprise.com/
resources/reports/rp DBIR 2017 Report execsummary en xg.pdf.

[2] D. L. Wheeler, “zxcvbn: Low-budget password strength estimation.” in
USENIX Security Symposium, 2016, pp. 157–173.

[3] M. Dell’Amico, P. Michiardi, and Y. Roudier, “Password strength: An
empirical analysis,” in INFOCOM, 2010 Proceedings IEEE. IEEE,
2010, pp. 1–9.

[4] R. Shay, S. Komanduri, P. G. Kelley, P. G. Leon, M. L. Mazurek,
L. Bauer, N. Christin, and L. F. Cranor, “Encountering stronger password
requirements: user attitudes and behaviors,” in Proceedings of the Sixth
Symposium on Usable Privacy and Security. ACM, 2010, p. 2.

[5] Z. Li, W. Han, and W. Xu, “A large-scale empirical analysis of chinese
web passwords.” in USENIX Security Symposium, 2014, pp. 559–574.

[6] “Threat intelligence,” https://www.gartner.com/imagesrv/
media-products/pdf/webroot/issue1 webroot.pdf.

[7] “Structured threat information expression (stix),” https://oasis-open.
github.io/cti-documentation/.

[8] D. V. Klein, “Foiling the cracker: A survey of, and improvements
to, password security,” in Proceedings of the 2nd USENIX Security
Workshop, 1990, pp. 5–14.

[9] J. Nagle, “An obvious password detector,” USENET news, vol. 16, p. 60,
1988.

[10] M. Bishop, “Anatomy of a proactive password changer,” group, vol. 501,
p. 20, 1992.

[11] B. Ur, P. G. Kelley, S. Komanduri, J. Lee, M. Maass, M. L. Mazurek,
T. Passaro, R. Shay, T. Vidas, L. Bauer et al., “How does your password
measure up? the effect of strength meters on password creation.” in
USENIX Security Symposium, 2012, pp. 65–80.

[12] S. Egelman, A. Sotirakopoulos, I. Muslukhov, K. Beznosov, and C. Her-
ley, “Does my password go up to eleven?: the impact of password meters
on password selection,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM, 2013, pp. 2379–2388.

[13] S. Furnell, “Assessing password guidance and enforcement on leading
websites,” Computer Fraud & Security, vol. 2011, no. 12, pp. 10–18,
2011.

[14] C. Castelluccia, M. Dürmuth, and D. Perito, “Adaptive password-
strength meters from markov models.” in NDSS, 2012.

[15] B. Rodrigues, J. Paiva, V. Gomes, C. Morris, and W. Calixto, “Passfault:
an open source tool for measuring password complexity and strength,”
Orlando, Florida, Mar, 2017.

[16] M. Dell’Amico and M. Filippone, “Monte carlo strength evaluation:
Fast and reliable password checking,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2015, pp. 158–169.

[17] X. D. C. De Carnavalet, M. Mannan et al., “From very weak to very
strong: Analyzing password-strength meters.” in NDSS, vol. 14, 2014,
pp. 23–26.

[18] S. Komanduri, R. Shay, L. F. Cranor, C. Herley, and S. E. Schechter,
“Telepathwords: Preventing weak passwords by reading users’ minds.”
in USENIX Security Symposium, 2014, pp. 591–606.

[19] J. Owens and J. Matthews, “A study of passwords and methods used in
brute-force ssh attacks,” in USENIX Workshop on Large-Scale Exploits
and Emergent Threats (LEET), 2008.

[20] A. Abdou, D. Barrera, and P. C. Van Oorschot, “What lies beneath?
analyzing automated ssh bruteforce attacks,” in International Conference
on Passwords. Springer, 2015, pp. 72–91.

[21] E. Kheirkhah, S. M. P. Amin, H. A. Sistani, and H. Acharya, “An
experimental study of ssh attacks by using honeypot decoys,” Indian
Journal of Science and Technology, vol. 6, no. 12, pp. 5567–5578, 2013.

[22] I. Vakilinia, D. K. Tosh, and S. Sengupta, “Privacy-preserving cyber-
security information exchange mechanism,” in Performance Evaluation
of Computer and Telecommunication Systems (SPECTS), 2017 Interna-
tional Symposium on. IEEE, 2017.

[23] I. Vakilinia and S. Sengupta, “A coalitional game theory approach
for cybersecurity information sharing,” in Military Communications
Conference, MILCOM 2017-2017 IEEE. IEEE, 2017.

[24] I. Vakilinia, D. K. Tosh, and S. Sengupta, “3-way game model
for privacy-preserving cybersecurity information exchange framework,”
in Military Communications Conference, MILCOM 2017-2017 IEEE.
IEEE, 2017.

[25] “Standards and tools for exchange and processing of
actionable information,” https://www.enisa.europa.eu/publications/
standards-and-tools-for-exchange-and-processing-of-actionable-information/.

[26] J. Steinberger, A. Sperotto, M. Golling, and H. Baier, “How to exchange
security events? overview and evaluation of formats and protocols,” in
Integrated Network Management (IM), 2015 IFIP/IEEE International
Symposium on. IEEE, 2015, pp. 261–269.

[27] P. Kampanakis, “Security automation and threat information-sharing
options,” Security & Privacy, IEEE, vol. 12, no. 5, pp. 42–51, 2014.

[28] C. Wagner, A. Dulaunoy, G. Wagener, and A. Iklody, “Misp: The
design and implementation of a collaborative threat intelligence sharing
platform,” in Proceedings of the 2016 ACM on Workshop on Information
Sharing and Collaborative Security. ACM, 2016, pp. 49–56.

[29] “Virus total,” https://www.virustotal.com/.
[30] “Cymon,” https://www.cymon.io/.
[31] “Hail a taxii,” http://hailataxii.com/.
[32] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,

J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis
et al., “Understanding the mirai botnet,” in USENIX Security Symposium,
2017.

[33] “Stix version 2.0. part 4: Cyber observable objects. edited by trey
darley and ivan kirillov.” 19 July 2017. OASIS Committee Specification
01. http://docs.oasisopen.org/cti/stix/v2.0/cs01/part4-cyber-observable-
objects/stix-v2.0-cs01-part4-cyber-observableobjects.html. Latest
version: http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part4-
cyberobservable-objects.html.

