
1

A Coalitional Cyber-Insurance Framework for a
Common Platform
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Abstract—Despite the benefits of cyber-insurance, organizations are reluctant to enroll in such policies mainly because of their
limitation and high price. On the other hand, insurers are confronting the adverse selection and moral hazard problems as monitoring
and distinguishing insureds’ cybersecurity posture are highly complicated. Considering the organizations’ security interdependency
and their demand for cyber-insurance, we study the design of coalitional insurance mechanisms with the goal of covering the adverse
selection, moral hazard, and motivating players for cybersecurity investment and information sharing. To this end, we propose a
synergistic insurance framework where organizations collaboratively insure a common platform instead of themselves. We present
three models for insuring a common platform. In the first model, organizations act as both insurer and insured to distribute the risk in
the coalition. In the second model, the system provides rewards to crowdfund the insurance. Finally, in the third model, we investigate
the outsourcing of a common platform insurance. Furthermore, we discuss how our proposed mechanisms for such framework satisfy
the budget balanced, ex ante individual rationality, and incentive compatibility properties. We study how such a system can improve the
social welfare by leveraging cyber-insurance as a motivation for organizations to cooperate on the cybersecurity investment and
information sharing.

Index Terms—Cyber-Insurance, Interdependent Security, Cybersecurity Information Sharing
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1 INTRODUCTION

Due to the growing dependency on cyberspace, businesses in
different domains invest in cybersecurity to safeguard their IT as-
sets from cyber-threats. In spite of the necessity of having security
measures, they are not sufficient to detect/prevent zero-day and
sophisticated cyber-attacks. As a result, organizations are enduring
massive damages caused by attackers. Since organizations cannot
completely mitigate cyber-threats, they adopt cyber-insurance to
transfer such risks to another party known as the insurer. It is
estimated that annual gross written premium will be increased
from around $2.5 billion today to reach $7.5 billion by 2020 [1].

However, several challenges are circumventing the growth
of the cyber-insurance market. For instance, the lack of reliable
data to compute insurance premium, and legal and procedural
hurdles for assessing the organizations’ security posture are two
of them [2]. In addition, setting a proper insurance policy and
premium is sophisticated. If the insurance policy is loose, the
insurer might fail or even may go bankrupt, and if the policy is
strict, the insured might withdraw from the contract and accept the
risks. Moreover, asymmetric information between the insurer and
insured exacerbates the situation causing moral hazard and adverse
selection problems [3], [4]. Moral hazard refers to the case where
insureds can increase the probability of the risks after signing the
contract. For instance, the insured reduces its security investment
after signing the insurance contract. On the other hand, users
with high risk are more likely to take insurance, and an insurer
cannot distinguish between insureds before signing the contract.
This problem is known as adverse selection.

As the organizations are using the same software libraries,
operating systems, firmware, applications, and hardware, they
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are susceptible to a common set of vulnerabilities. For instance,
consider the Heartbleed vulnerability (CVE-2014-0160) in the
OpenSSL library which was disclosed on April 2014 [5]. Heart-
bleed is a severe memory handling bug that results from improper
input validation, which allows an attacker to steal the servers’ data
that includes private keys, users’ session cookies, and passwords.
It is estimated that around half a million of the secure web servers
on the Internet certified by trusted authorities were vulnerable
to the Heartbleed at the time of disclosure. This vulnerability
affected other network services such as email servers, VPNs, and
network appliances which were applying the OpenSSL library in
their implementation [6].

Since organizations using the common platforms are suffering
from the same set of vulnerabilities, their security is interde-
pendent. In this situation, as one party’s investment on security
and detection of a common platform’s vulnerabilities brings the
positive externalities to other parties using the same platform,
organizations tend to under-invest on security, expecting other
organizations’ investment [7], [8].

Besides that, organizations using the same platform can reduce
the damages of attacks by sharing their cybersecurity information.
However, sharing such information is costly for organizations.
For instance, reporting a successful cyber-attack may affect the
organizations’ reputation negatively while such information can
help other organizations to patch their systems to be safe from
the same type of attack. Therefore, organizations tend to free-ride
by taking advantage of the shared information while not recipro-
cating. In other words, if we model the cybersecurity information
sharing as a non-cooperative game, although the sharing strategy
is the socially optimal point, the not-sharing behavior is the Nash-
Equilibrium point [9].

Therefore, it is important to motivate organizations to cyber-
security investment and sharing cybersecurity information. Such
motivation can be done by assigning punishment/reward to the
organizations. However, designing such mechanisms is a big
challenge mainly because the provisioning of the cybersecurity
investment and sharing is difficult.
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Considering the organizations’ security interdependency and
their demand for cyber-insurance, we study the design of coali-
tional insurance mechanisms with the goal of covering the ad-
verse selection, moral hazard, and cybersecurity investment and
sharing problems. To this end, we propose a synergistic insurance
framework where organizations collaboratively insure a common
platform instead of themselves. We present three models for
insuring a common platform. In the first model, organizations act
as both insurer and insured to distribute the risk in the coalition.
In the second model, the system provides rewards to crowdfund
the insurance. Finally, in the third model, we investigate the
outsourcing of a common platform insurance. Moreover, we study
how such frameworks can improve social welfare by motivating
organizations to collaborate on the cybersecurity investment and
sharing.

The main contributions of this work are the two parts, as
described below.
1- We propose a coalitional insurance framework where organi-
zations act as both insurer and insured of a common platform.
Further, we discuss how our proposed mechanisms for such frame-
work satisfy the budget balanced, ex ante individual rationality,
and incentive compatibility properties.
2- We present a model for crowdsourcing the insurance of a
common platform taking into account the budget balanced, ex
ante individual rationality, and incentive compatibility to propel
organizations toward social welfare.

To the best of our knowledge, this work is the first to inves-
tigate the coalitional cyber-insurance framework for a common
platform. This framework is applicable to other public-good in-
surance use-cases as well since the players can act as both insured
and insurer at the same time for the public-good.

The rest of the paper is organized as follows. The next section
reviews major works in interdependent security, cyber-insurance,
and cybersecurity information sharing. In section 3, we introduce
our system model. Details of our proposed mechanisms are de-
scribed in section 4. The numerical results have been discussed in
section 5. Finally, we conclude our paper in Section 6.

2 RELATED WORK

2.1 Interdependent Security
An organization’s security effort to find a vulnerability for a

common platform brings positive externality to other organizations
using the same platform. Game theory has been extensively
applied to model such security interdependency between strategic
users [10]–[17]. In such games, the players’ goal is to minimize
the security risk and the security investment cost altogether. In
this case, players under-invest in security expecting other players
investment. This problem is known as free-riding [12]. This causes
a general under-investment in security and as a result, the security
risks increase.

Price of Anarchy is the ratio between the Nash equilibrium and
the social optimum and it specifies how a system’s inefficiency
grows because of selfish behavior of its players. Authors in [13]
have demonstrated that the Price of Anarchy in the strategic-form
of interdependent security systems increases with the increase in
the number of agents and their interdependency. Naghizadeh et
al. in [15] have studied the impossibility of designing a mecha-
nism for interdependent security games which fulfills the social
optimality, voluntary participation, and the weak budget balanced
properties altogether. Böhme [16] has studied the role of auditing
in improving utility in the interdependent security games. Farhadi

et al. [17] have studied a dynamic incentive mechanism design
problem in networks of interdependent strategic agents. Their
proposed dynamic mechanism aims to maximize social welfare
while satisfying the expected individual rationality and the budget
balanced properties. Xiao et al. [14] have proposed a security
model based on the indirect reciprocity principle to detain wireless
nodes from adversary behavior.

Considering these works, in this paper, we propose mecha-
nisms to improve the overall security in an interdependent setting
by exploiting the coalition of players for insuring a common
platform.

2.2 Cyber-Insurance
The design of a cyber-insurance contract has been studied

extensively in the literature [2]–[4], [18]–[27]. Johnson et al. [2]
have formulated a one-shot security game with market insurance
assuming homogeneous players, fair insurance premiums, and
complete information. The result of this research demonstrates
the importance of tuning the stipulations for security investment
and the development of a market for cyber-insurance to achieve
social welfare. The role of cyber-insurance in improving the
overall security has been studied in [22], [24]. Pal et al. [22]
have shown that in the oligopolistic cyber-insurance market, the
network security is not improving. However, a monopoly cyber-
insurer can help solve the moral hazard problem partially and
improve network security by discriminating the contracts.

Tosh et al. [27] have modeled a three-layer game theoretic
framework in which the players are organizations, adversaries,
and the insurer, where the organization look for the optimal self-
defense investment considering sharing cybersecurity information
and cyber-insurance, the adversary aims to find the proper attack
rate, and the insurer’s goal is to find the best coverage level.
Khalili et al. [26] have investigated the premium discrimination
model based on pre-screening to improve the insurer’s profits and
circumvent the moral hazard problem. Moreover, the benefits of
pre-screening in increasing the profit for the insurer and improving
the network security have been studied in [19]. A differentiated
pricing framework for security vendors has been proposed in [20]
to improve the cyber-insurance market. In [25], the authors have
studied the design of an incentive-compatible and attack-aware
insurance policy by formulating a bi-level game framework to
model the interaction of users, attackers, and insurers. The effect
of risk interdependency on insurer’s utility has been studied in
[21], [28]. The result shows that the risk interdependency provides
more profit to an insurer.

In contrast to these research studies, in this work, we investi-
gate the benefits of coalitional approaches for insuring a common
platform. To this end, we propose several mechanisms where
organizations collaboratively participate in the insurance process.

2.3 Cybersecurity Information Sharing
Cybersecurity information sharing is an important parameter

to improve the effectiveness of malicious behavior detection. It
helps organizations to proactively defend against sophisticated
attacks while increasing the accuracy of attack detection. Because
of that, several laws and initiatives have been legislated to man-
date or encourage the governmental and private organizations to
share their cybersecurity information. For instance, in the US,
Cybersecurity Information Sharing Act (CISA) [29] has been
designed to improve cybersecurity through enhanced sharing of
information about cybersecurity threats, in the UK Cybersecurity
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Information Sharing Partnership (CiSP) [30] is an initiative for
industry and government that has been set up to exchange cyber
threat information in real time. Furthermore, Information Sharing
and Analysis Centers (ISACs) [31] have been founded to facilitate
sharing of cybersecurity information in a particular business. Also,
to facilitate cybersecurity information sharing, various protocols
and specifications have been developed such as TAXII, STIX,
and OpenIOC [32]. On the other hand, game theory has been
widely used to model the cybersecurity information sharing in the
literature [7]–[9], [33]–[36]. In [33], the authors have investigated
the influence of the social planner to motivate players toward cy-
bersecurity information sharing and investment. The cybersecurity
investment and sharing behavior in a competitive environment has
been studied in [8], [34]. Reference [36] has designed a principal-
agent model to study the economics of mandatory security breach
reporting to authorities. In our previous work [35], we have applied
a coalitional game theory approach to model a fair rewarding and
participation-fee in a cybersecurity information sharing platform.

Considering these research studies and leveraging the cyber-
insurance, we present mechanisms to push organizations toward
sharing behavior in the system by distributing the risks of a
common platform.

3 SYSTEM MODEL

In this section, we elaborate the system model of a coalitional
cyber-insurance framework for a common platform. First, we
model the cyber-insurance for a common platform, then we model
the cybersecurity information sharing in the coalition, and finally,
we discuss the design objectives.

3.1 Cyber-Insurance
Let O = {o1, ..., on} represent the strategic organizations

participating in a coalition of cybersecurity information sharing for
a common platform. For simplicity and without loss of generality,
we let p represent the probability that the attackersA (irrespective
of their type) discover a new vulnerability for the common
platform and exploit it. Note that p can be modeled differently
based on the common platform’s type, however analyzing and
studying the modeling of p is outside the scope of this paper.

Each organization oi decides on the amount of risk to be trans-
ferred to an insurer. This decision is based on the organization’s
risk aversion and insurance-fee. Organizations can be risk-averse,
risk-neutral, or risk-seeker. In a setting with multiple options
with same expected gain, a risk-averse organization chooses an
option with less risk, the risk-seeker chooses an option with the
most risk, and the risk-neutral does not have any priority. A
utility function mapping wealth into utility u(w) can describe
risk attitude where ∂u(w)

∂w2 > 0. For instance, u(w) is concave

for a risk-averse organization ∂2u(w)
∂w2 < 0. On the other hand,

the insurer is a risk-seeker entity accepting risks of another party
in return for a premium. In this paper, the insurance covers the
cost of exploitation of the new vulnerabilities associated with a
common platform.

Let li represent the loss of cyber-attack on oi, the insurance
indemnity is πi = αi×li where αi ∈ [0, 1]; αi = 1 indicating the
full coverage, and 0 < αi < 1 representing the partial coverage.
Let βi denote the premium the insured has to pay for the insurance.
The insurance is called actuarially fair if the net-payoff is zero.
In other words, in the actuarially fair insurance, the premium is
equal to the expected value of compensation β̄i = πi × p. The

risk-averse agent strictly prefers full coverage in the actuarially
fair setting [3]. However, in reality, the premium is higher than
the actuarially fair β̂i = πi × p + τ , where, τ represents the
administrative cost which is the insurer’s profit and cost of safety
capital. When the insurance premium is at least actuarially fair,
only risk-averse agents insure themselves [3].

3.2 Cybersecurity Information Sharing

After the establishment of a coalition for cybersecurity in-
formation sharing, the probability of successful exploitation of
a vulnerability decreases once A exploits a vulnerability over
one of the organizations in the coalition. This is because the
exploited organization shares the vulnerability information to the
other organizations in the coalition and they patch their systems
accordingly. We use µ(n) ∈ [0, 1] to describe the epidemic model
of the expansion of vulnerability exploitation. µ(n) = 0 indicates
that the coalition does not have any benefit as the vulnerability
information does not get shared before all of the organizations get
exploited. As the value of µ(n) approaches one, the efficiency
of the cybersecurity information sharing coalition increases. The
value of µ(n) depends on the nature of the vulnerability, type
of attacker, and the agility of cybersecurity information sharing
framework.

There is another set of vulnerabilities where µ(n) approaches
zero. For instance, consider a vulnerability where the time gap
between the detection of exploitation and patching the system is
large enough (for instance advanced persistent threats) allowingA
to exploit other organizations as well. As another example assume
an equipped A capable to attack more than one organization
at the same time. Thus, µ(n) can be interpreted as an index
of cybersecurity information sharing impact in a coalition of n
organizations. It is expected that with the growth of n, the value
of µ(n) increases as well.

Now let us study the model formally. Let K, K̄ ⊆ O represent
the set of exploited organizations from a new vulnerability and
the set of other organizations in the coalition (complement of K),
respectively. Having k = |K| and k̄ = |K̄|, we have K ∪ K̄ =
O,K ∩ K̄ = ∅, k + k̄ = |O|.

Let qi,k denote the probability that oi ∈ K, and q̄i,k̄ denote
the probability that oi ∈ K̄. Note that the matrix Q = {qi,k}
is modeling the epidemic model of the expansion of vulnerability
exploitation. In other words, we use Q to model the efficiency of
the cybersecurity information sharing for the common platform. If
organizations efficiently share the vulnerability information then
the vulnerability is getting patched and as a result the number
of exploited organizations k decreases. On the other hand, if
the vulnerability information has not been shared efficiently (e.g.
the time gap between sharing the vulnerability information and
patching it is large enough allowing attackers to exploit other
organizations as well), the number of exploited organizations k
increases.

We summarize the notations used in this paper in Table 1.

3.3 Design Objective

The main objective of our insurance policy design is to
improve the security state of organizations by motivating organiza-
tions to participate in cybersecurity information sharing and invest
in security to find new vulnerabilities in a common platform. To
this end, there are several challenges that should be addressed in
our design as follows:
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Fig. 1: Organizations Coalition For Cyber-Insurance

• Adverse selection. Users with high risk are more likely to
take insurance, and an insurer cannot distinguish between
insureds before signing the contract. Also, it is not easy
to assess the risk of a vulnerability exploitation, and the
estimation of the probability of successful attack from
insurer and insureds are different. The insurer tends to
estimate this value greater than the insureds’ estimation.
Such information asymmetry causes a discrepancy in the
insurance agreement.

• Moral hazard. After signing an insurance contract, the
insurer might decrease its security investment excessing
the chance of a new vulnerability detection by an attacker.

• Incentive compatibility. A mechanism is incentive com-
patible if players can achieve their best outcome by
playing based on their true preferences. In interdependent
security settings, organizations tend to free-ride such that
they do not invest in security or share their cybersecurity
information, but getting benefit from the security informa-
tion shared by the other organizations. We are interested
in designing mechanisms where security investment and
sharing of cybersecurity information is the organizations’
dominant strategy. In this case, the mechanism should be
equipped with a rewarding/punishment tool to stipulate
organizations for security investment and also sharing
cybersecurity information.

• Fairness. The costs and benefits should be fairly divided
between insurers and insureds based on their efforts and
commitments following the insurance policy.

4 INSURING A COMMON PLATFORM

In this section, we study three models for insuring a common
platform. In the first model, organizations act as both insurer and
insured to distribute the risk in the coalition. In the second model,
the system provides rewards to crowdfund the insurance. Finally,

in the third model, we study the outsourcing of a common platform
insurance.

4.1 Coalitional Self-Insurance Framework
As organizations use a common platform, they are sharing

the same set of vulnerabilities. In order to decrease the cost
of cyber-attack over a common platform, we propose a model
where organizations distribute the risks among themselves. In
our proposed coalitional self-insurance model, every organization
oi in the community commits to an indemnity value ci. This
commitment can be done through payment guarantee contracts.
These commitment values will be the source of indemnity when a
new vulnerability exploits in the system.

Then, once a new vulnerability of the common platform is
exploited, the exploited organizations will be reimbursed based on
the organizations’ commitments pool.

Having such a model, we have the following benefits:

• Organizations are stipulated to invest in security and share
their cybersecurity information in a more efficient way.
This is due to the fact that the loss of a vulnerability
exploitation for every organization in the coalition is costly
for other organizations as well.

• As the exploited organizations need to prove the ex-
ploitation of the vulnerability to get reimbursed by the
system, they should share the vulnerability information
to other organizations in the coalition. Therefore, other
organizations are able to patch their systems afterward.

• Organizations share the cost of cyber-attack and transfer
the risks to the system without paying the administrative
cost of an insurance.

Let ĉi,k̄ represent the payment of oi to community when k
organizations are exploited, and let π̂i,k represent the indemnity
that oi receives when k organizations are exploited by a new
vulnerability of the common platform.

Then, following this model, we can represent the expected
utility of an organization oi in the coalition as

E[ui] = p(
n∑
k=1

qi,k · (−li + π̂i,k) + q̄i,n−k · (−ĉi,n−k)) (1)

s.t.
n∑
k=1

qi,k +
n∑
k=1

q̄i,k = 1, π̂i,n = 0, ĉi,0 = 0

Note that in this model, when all of the organizations get
exploited, we have π̂i,n = 0, ĉi,0 = 0.

Then the problem is how to calculate the proper value for
ĉi,k̄ and π̂i,k to satisfy the requirements mentioned in section 3.3
in addition to the ex ante individual rationality and the budget
balanced properties defined as follows:

Ex ante individual rationality. This requires that an agent’s
expected utility in the framework should be greater than its ex-
pected utility outside the framework. Ex ante individual rationality
attracts agents to participate in the framework. Also, we define the
ex ante weak individual rationality when the expected utility of
an organization does not change whether it is in the framework or
not.

Budget balanced. As the resource of indemnity is the com-
mitment values, we need to satisfy the budget balanced property
as follows ∑

i∈K
π̂i,k =

∑
i∈K̄

ĉi,k̄
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Specifying our requirements, now let’s study the design of
mechanisms which satisfies these properties. A mechanism can be
specified by a game g : M → U where M = {m1, ...,mn} is
a set of input messages and U = {u1, ..., un} is the output of the
mechanism. A player chooses its message mi to increase its utility
ui. In what follows, we present the first mechanism to fulfill the
system requirements.

Mechanism 1. Organizations submit their proposed values
ψ̄ = {ψ1, ..., ψn} for the commitment. Let ψ̂ = min ψ̄, then the
commitment and the indemnity of each organization are calculated
as

ĉi,k̄ = ψ̂

π̂i,k =
k̄ · ψ̂
k

(Note that, hereM = ψ̄ and ui obtains from (1)).

Proposition 1. The budget balanced property is held in mech-
anism 1.

Proof. We need to show that the total of the committed values is
equal to the total indemnity value, which is given to the exploited
organizations. ∑

oi∈K̄

ĉi,k̄ =
∑
oi∈K̄

ψ̂ = k̄ · ψ̂

∑
oi∈K

π̂i,k =
∑
oi∈K

k̄ · ψ̂
k

= k̄ · ψ̂

Proposition 2. Assume the number of exploited organizations
in the coalition is identically distributed k ∼ U [0, n], and the
probability of exploitation/not-exploitation of an organization is
a fair coin, then mechanism 1 satisfies the ex ante individual
rationality and the expected benefit for each organization is:

E[ui]− E[u0
i ] = p(

ψ̂

2n
(
(n− 2)

2
+ ...+

1

n− 1
)) (2)

Proof. For ex ante individual rationality, we need to show that,
the expected utility of an organization in the coalition is higher
than the expected utility of an organization outside of the coalition
E[ui] ≥ E[u0

i ]. The expected utility of oi outside of coalition can
be calculated as

E[u0
i ] = p(

n∑
k=1

qi,k · (−l))

In the case of applying the model, the expected utility of oi is

E[ui] = p(qi,1 · (−li +
(n− 1) · ψ̂

1
) + q̄i,n−1 · (−ψ̂) +

qi,2 · (−li +
(n− 2) · ψ̂

2
) + q̄i,n−2 · (−ψ̂) + ...+

qi,n−1 · (−li +
ψ̂

n− 1
) + q̄i,1 · (−ψ̂) + qi,n · (−li))

As the number of exploited organizations in the coalition is
identically distributed and the probability of exploitation/not-
exploitation of an organization is a fair coin, we have∑n
k=1 qi,k =

∑n
k=1 q̄i,k = 1

2 and qi,1 = qi,2 = ... = qi,n =

q̄i,1 = q̄i,2 = ... = q̄i,n = 1
2n , therefore we can write the oi’s

expected utility as

E[ui] = p(
n∑
k=1

qi,k · (−l)) +

p(
ψ̂

2n
((n− 1) +

(n− 2)

2
+ ...+

1

n− 1
− (n− 1)))

As n ≥ 2, we have E[ui] ≥ E[u0
i ].

When the number of exploited organizations in the coalition is
identically distributed K ∼ U [0, n], by extending Proposition 2,
we have the following observations:

• When the probability of exploitation is higher than the
probability of not-exploitation ( qi,x > q̄i,y,∀i, x, y ),
then mechanism 1 is ex ante individually rational. In this
case, with the increase in the number of organizations in
the coaltion, the expected utility is also increasing.

• When the probability of exploitation is less than the
probability of not-exploitation ( qi,x < q̄i,y,∀i, x, y ),
then mechanism 1 is ex ante individually rational if the
following inequality holds:

(

(n−2)
2 + (n−3)

3 ...+ 1
n−1

(n− 1)
) ≥ (q̄i,y − qi,x)

In this case, with the increase in the number of organiza-
tions in the coalition, the expected utility is decreasing.

• In an ex ante individually rational setting, organizations’
utilities increase with the increase in ψ̂. Also, with the
increase in the number of organizations in the coalition,
the expected utility is increasing as well.

Proposition 3. When the probability of exploitation/not-
exploitation of an organization is a fair coin and n > 2, the
mechanism is ex ante individual rational if qi,k = 0,∀k > 1.

Proof. When the probability of exploitation/not-exploitation of an
organization is a fair coin, we have qi,k = q̄i,k =

(n
k

)
· ( 1

2 )n, thus
the expected benefit of the mechanism is

E[ui]− E[u0
i ] = p(ψ̂ · (1

2
)n · (

(
n

1

)
((n− 1)− 1) +(

n

2

)
(
n− 2

2
− 1) + ...+

(
n

n− 1

)
(

1

n− 1
− 1)))

The above equation is negative for n > 2. However, when k = 1
the expected benefit is

E[ui]− E[u0
i ] = p(ψ̂ · (1

2
)n · (

(
n

1

)
((n− 1)− 1)))

Which is always positive.

In order to satisfy the ex ante individual rationality when the
probability of exploitation/not-exploitation of an organization is
a fair coin, we can modify mechanism 1 such that only the first
organization which reports the exploitation will be reimbursed.
This also accelerates the flow of cybersecurity information shar-
ing, and organizations are stipulated to investigate the security
breaches in the early stages to report damages. By applying
this method and following proposition 3, we can see that when
qi,1 ≥ q̄i,1 the mechanism is ex ante individual rational, and
when qi,1 < q̄i,1, the mechanism is ex ante individual rational
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if (qi,1(n − 1) − q̄i,1) ≥ 0. In other words, this observation
indicates that as the probability of not-exploitation is increasing,
the organizations’ utilities are decreasing in mechanism 1.

Improvement
Note that in mechanism 1, as all of the organizations in the

coalition should be able to afford ci = ψ̂, the value of ψ̂ has been
set to the least amount between all of the proposed values from
the organizations. However, this limits the benefits organizations
can receive from the coalition especially when the variance of
the proposed values ψ̄ is high. For instance, assume a coalition
of three organizations, where a small organization o1 would set
ψ1 = $1000, while the other two big organizations o2 and o3

would set ψ2 = ψ3 = $100, 000, in this case, ψ̂ = $1000 will be
selected. However, the coalition of two big companies will bring
more values for them since in that case ψ̂ will be $100, 000. On
the other hand, a malicious organization oi would bid a small
value for ψi to decrease the performance of other organizations in
the coalition. To solve this problem, we present the extension of
mechanism 1 to make a set of coalitions as follows.

Mechanism 1 extension. Following mechanism 1, after mak-
ing the first coalition, the organization with the least proposed
value is removed from the coalition and the process is repeated by
setting the new proposed values as ψi = ψi − ψ̂. The iteration
continues until two organizations remain in the coalition.

We explain the mechanism 1 extension with an example. Con-
sider the previous example with three organizations and proposed
values as ψ̄ = {1000, 100000, 100000}. In this case, in the
first iteration, ψ̂ will be set to 1000. After the first iteration,
o1 will be removed, and the new coalition is {o2, o3}, with
ψ̄ = {99000, 99000}, thus the new ψ̂ will be set to 99, 000.
Assume that an attacker exploits a new vulnerability of a common
platform over o1, o2. Then, o3 pays $1000 for the first coalition
of the three organizations, and o1, o2 each receives $500 as
indemnity. On the other hand, o3 pays $99, 000 to o2 for the
second coalition.

Claim 1. Mechanism 1 alleviates the moral hazard and adverse
selection problems, and it is incentive compatible.

It is easy to see that, as in mechanism 1, the organizations
act as both insurer and insured, the moral hazard and adverse
selection requirements are alleviated. On the other hand, since
growing the number of exploited organizations decrease all of the
organizations’ utilities, then organizations are stipulated to invest
in security and share their vulnerability information in the system
which makes the system incentive compatible.

�

Fairness Issue
When the probability of exploitation of each organization is

equal, as the exploited organizations receive the same amount
while other organizations are paying the same amount to the
system, the fairness property is satisfied in mechanism 1. However,
when the probability of exploitation is not equal, mechanism 1 is
not fair. As the risk of exploitation of organizations is different,
their payment and indemnity should be set accordingly to satisfy
the fairness property.

For example, consider that there are two organizations using
the same platform, and they have made a coalition. An attacker
finds a new vulnerability but as he is resource bounded, it is not
possible to attack both organizations at the same time. In addition,
the attacker knows that the exploited organization is going to share

the vulnerability information with the other organization and the
other organization will patch its system afterward. In this case, the
attacker chooses an organization with the highest benefit to attack.
Hence, we have q1,1 6= q2,1. Therefore, if we set the ĉi,k̄ and π̂i,k
following mechanism 1, then the ex ante individual rationality and
fairness property will not be satisfied. In this case, we can apply
the following mechanism.

Mechanism 2. Once the system receives the organizations’
proposed values for the commitment ψ̄ = {ψ1, ..., ψn}, the com-
mitment and indemnity for all of the organizations are calculated
as

ĉi,k̄ = ψ̂ · qi,k

π̂i,k =

∑
i∈K̄ qi,k · ψ̂

k

Note that in mechanism 2, the commitment and indemnity
values are tuned based on the probability of an attack to meet the
fairness property.

Proposition 4. The mechanism 2 satisfies the budget balanced
property.

Proof. We need to show that the total commitment values are
equal to the total reimbursements.∑

i∈K̄

ĉi =
∑
i∈K̄

ψ̂ · qi,k

∑
i∈K

π̂i,k =
∑
i∈K

∑
j∈K̄ qj,k · ψ̂

k
=
∑
j∈K̄

ψ̂ · qj,k

Proposition 5. The mechanism 2 satisfies the ex ante individ-
ual rationality property if the following inequality holds

∑
j∈{-i }

qj,k
k
≥ q̄i,n−k, ∀i, k

Where {-i } is the set of organizations in the coalition except
oi.

Proof. For ex ante individual rationality, we need to show that,
the expected utility of an organization in the coalition is higher
than the expected utility of an organization outside of the coalition
E[ui] ≥ E[u0

i ]. Using the mechanism 2, we can expand the oi’s
expected utility as

E[ui] = p(qi,1 · (−l +

∑
j∈{-i } qj,1 · ψ̂

1
) + q̄i,n−1 · (−ψ̂ · qi,1)

+qi,2 · (−l +

∑
j∈{-i } qj,2 · ψ̂

2
) + q̄i,n−2 · (−ψ̂ · qi,2)

+...+ qi,n−1 · (−l +

∑
j∈{-i } qj,n−1 · ψ̂

n− 1
) + q̄i,1 · (−ψ̂ · qi,n−1))

As E[u0
i ] = p(

∑n
k=1 qi,k · (−l)), then E[ui] can be written as

E[ui] = E[u0
i ] +

p((qi,1 · ψ̂)(

∑
j∈{-i } qj,1

1
− q̄i,n−1) +

(qi,2 · ψ̂)(

∑
j∈{-i } qj,2

2
− q̄i,n−2) +

...+ (qi,n−1 · ψ̂)(

∑
j∈{-i } qj,n−1

n− 1
− q̄i,1))
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From the above equation, it can be seen that when ∀i, k we
have

∑
j∈{-i }

qj,k
k ≥ q̄i,n−k, then E[ui] ≥ E[u0

i ].

Mechanism 2 extension. As it can be seen from proposition
5, with the growth of the number of exploited organizations,
the system moves toward violating the ex ante individual ratio-
nality property. Thus, in order to satisfy the ex ante individual
rationality property, we can set the policy to just reimburse
the first k̂ organizations which report the damage of exploita-
tion of a new vulnerability. Here, k̂ is the maximum number
satisfying the

∑
j∈{-i }

qj,k̂

k̂
≥ q̄i,n−k̂, ∀i. As the function∑

j∈{-i }
qj,k̂

k̂
− q̄i,n−k̂,∀i is decreasing with increasing of k̂,

k̂ ≤ n, and n is not large, then k̂ can be found by exhaustive
search. This approach also accelerates the flow of cybersecurity
information sharing, and organizations are stipulated to investigate
the security breaches at early stages to report damages. Moreover,
the same approach introduced in the mechanism 1 extension can
be applied to improve the performance of mechanism 2 by making
several coalitions based on the proposed commitment values.

Claim 2. The mechanisms 2 alleviates the moral hazard and
adverse selection problems, and it is fair and incentive compatible.

Same as mechanism 1, as the organizations act as both insurer
and insured, the moral hazard and adverse selection requirements
are alleviated. On the other hand, since the exploitation of an
organization decreases all of the organizations’ utilities, then
organizations are stipulated to invest in security and share their
vulnerability information in the system which makes the system
incentive compatible. Also, as only the first k̂ exploited organiza-
tions are reimbursed, organizations tend to invest in monitoring
security breaches and report them as early as possible. This
empowers the cybersecurity information sharing. Moreover, as the
organizations’ commitment and reimbursement to the system are
based on the probability of their exploitation, the fairness property
will be satisfied as well.

�

Flexibility Challenge
Although mechanisms 1 and 2 are beneficial for the organiza-

tions, they do not allow organizations to set their indemnity value
directly. If a mechanism allows the organizations to choose their
own values for indemnity and commitment, then as the system
should satisfy the budget balanced property, the organizations who
commit to less value achieve more utility. This makes the ci = 0
the best response strategy of the organizations. On the other hand,
when the loss value is large, organizations might not be able to
cover the cost of loss and as a result, the total commitment value
can be far from the required loss coverage. In order to solve
this problem, in the next sections, we study the mechanisms to
give the flexibility of choosing commitment and indemnity to the
organizations. To this end, we apply the premium and reward in
the design to satisfy the budget balanced property and motivate
organizations to make the commitment.

4.2 Crowdfunding the Coalitional Insurance Frame-
work with Different Level of Indemnity and Commitment

In this section we study a model which is equipped to the
premium and reward, to let organizations choose the coverage
level and the commitment while satisfying the budget balanced
property. Furthermore, this model achieves outsiders participation
by providing a reward to them.

As the system should be budget balanced, the total value of
the rewards should be equal to the total premium values. Let c =
{ĉi,j},∀i, j and β = {βi},∀i. The reward value, oi receives from
the system can be represented as Ri(c,β) : R+n × R+n → R+.
In addition, we have ∂Ri(c,β)

∂ci
> 0 as the reward value is an

increasing function of the commitment value to the system. Then,
the oi’s expected utility is

E[ui] = p(
n∑
k=1

qi,k · (−li + π̂i,k) + q̄i,n−k · (−ĉi,n−k)) +

(1− p) · Ri(c,β)− βi

s.t.
n∑
k=1

qi,k +
n∑
k=1

q̄i,k̄ = 1, π̂i,n = 0, ĉi,0 = 0

We set reward as Ri(c,β) =
∑n

i=1 βi∑n
i=1

∑n
j=1 ci,j

×
∑n
j=1 ci,j

to meet the fairness requirement. Because of the reward value,
this model motivates the risk-seeker entities out of the coalition to
participate in the insurance process as well.

In this model, the reward and premium values are controller
variables to stabilize the system. To increase the total commitment
value, the system can increase the reward, which causes the
increase of premium. In contrast, the system can decrease the
premium, by decreasing the reward that causes the decrease of
the total commitment value.

It can be seen that in the worst case scenario oi commits
to ci and does not insure itself, thus it endures the full cost of
commitment payment and the loss of attack, and its utility will
be ui = −li − ci. Conversely, in the best case scenario, oi does
not insure itself and no organization is getting exploited, thus its
utility will be ui = Ri(c,β). The worst case scenario and the
best case scenario happen to the risk-seeker organizations, while
the risk-averse organizations enroll in the insurance.

Note that in this model as the organizations are charged based
on their coverage level, they should be reimbursed in the case
of a cyber-attack. However, it is not always possible to satisfy
the budget balanced property since as the number of exploited
organizations grows, the available budget in the pool decreases.
To solve this problem, we present two approaches as follows.

Approach 1. In order to satisfy the budget balanced property
and motivate organizations to share their cybersecurity informa-
tion, the system can set its policy such that only the first organiza-
tion, which reports the exploitation of a new vulnerability, receives
the reimbursement. This mechanism works as follows; At the
beginning, organizations submit their desired commitment values
{ci} to the system. Then organizations choose their coverage level
πi from 0 ≤ πi ≤

∑
j∈{-i} cj . In this case, having the actuarially

fair premium, oi’s expected utility is

E[ui] = p(qi,1 · (−li + πi) + q̄i,n−1 · (−
πκ∈K∑
j∈K̄ cj

ci)) +

(1− p) · (
p ·
∑n
j=1 qj,1 · πj∑n
j=1 cj

· ci)− (p · qi,1 · πi)

In this case, organizations are stipulated to investigate the secu-
rity breaches and accelerate the reporting of such information; this
improves the flow of cybersecurity information in the coalition.

Proposition 6. Approach 1 satisfies the budget balanced
property.

Proof. For the budget balanced property, we need to show that the
total commitment received from the organizations is equal to the
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indemnity which the exploited organization will be reimbursed,
and the total rewards are equal to the total premiums.∑

i∈K̄

πκ∈K∑
j∈K̄ cj

· ci =
πκ∈K∑
j∈K̄ cj

·
∑
i∈K̄

ci = πκ

And

n∑
i=1

Ri(c,β) =
n∑
i=1

(
p ·
∑n
j=1 qj,1 · πj∑n
j=1 cj

· ci) =

n∑
i=1

p · qi,1 · πi =
n∑
i=1

βi

Discussion
This model does not satisfy ex ante individual rationality and

as a result a risk-neutral organization’s best response strategy is
to bid ĉi = 0, π̂i = 0. However, the risk-averse organization’s
best response strategy is to bid π̂i = li, ĉi = 0 as the premium is
actuarially fair. On the other hand, the risk-seeker entities would
set π̂i = 0, ĉi > 0 and selects ĉi based on its budget and risk
function. Thus, this model will be advantageous if and only if we
have risk-seeker organizations in the model. In order to achieve
this, the platform can allow other entities outside of the coalition
to participate in the insurance process as well. In this case, the risk-
seeker entities make a commitment with the goal of receiving a
reward from the premiums organizations pay to the coalition. This
crowd-funding model allows organizations to have more power on
the price of cyber-insurance to avoid a monopoly market.

Approach 2. As another approach, the system can reimburse
the organizations based on the total exploited organizations and
the available budget in the pool. In this case, the available budget
will be distributed fairly among the exploited organizations. The
system charges organizations based on their expected coverage
level. Let us define Γ(πi) as follows

Γ(πi) =

{
πi

∑
j∈K πj ≤

∑
j∈K̄ cj∑

j∈K̄ cj∑
j∈K πj

· πi Otherwise

As the organizations should pay their premium based on the
expected coverage that they will be reimbursed in the case of
exploitation, then assuming that the organizations are exploited
with the same probability, the fair premium is

β̂i = p(qi,1 · (Γ(πi)) + qi,2 · (Γ(πi + π̄−i)) +

qi,3 · (Γ(πi + 2× π̄−i)) + ...+

qi,n−1 · (Γ(πi + (n− 2) · π̄−i))

Where π̄−i represents the average indemnity of the organiza-
tions in the coalition excluding oi. In addition, the commitment
value is

ĉi =

{
ci

∑
j∈K̄ cj ≤

∑
j∈K πj∑

j∈K πj∑
j∈K̄ cj

· ci Otherwise

Proposition 7. Approach 2 satisfies the budget balanced
property.

Proof. We need to show that the total commitment value is equal
to the total reimbursement value. When

∑
j∈K̄ cj ≤

∑
j∈K πj we

have ∑
i∈K̄

ĉi =
∑
i∈K̄

ci

∑
i∈K

Γ(πi) =
∑
i∈K

∑
j∈K̄ cj∑
j∈K πj

· πi =
∑
j∈K̄

cj

And when
∑
j∈K πj ≤

∑
j∈K̄ cj we have:∑

i∈K̄

ĉi =
∑
i∈K̄

∑
j∈K πj∑
j∈K̄cj

· ci =
∑
j∈K

πj∑
i∈K

Γ(πi) =
∑
i∈K

πi

Outsider Participation
As we have discussed earlier, in this model, the risk-seeker

entities outside the coalition is also able to invest in the insurance
with the goal of receiving a reward. In this case, the premium
and reward should be set in such a way to attract outsiders
to invest in the system. In other words, the ex ante individual
rationality property for the outsiders should be satisfied. Therefore,
the expected utility of an entity outside of the coalition should be
larger than zero E[uext(cext)] > 0. Let β̃ = ||β||1 represent the
total premium collected from the coalition. Algorithm 1 can be
used to achieve this goal. In this algorithm, the premium has been
set to satisfy the ex ante individual rationality for the external
entities. First, the expected indemnity cost and the expected
available budget are calculated in lines 1-6. Then, in lines 7 and 12,
the algorithm compares the expected indemnity cost and expected
available budget to check the corresponding requirement. In case
c̃ ≤ π̃, the following should be held

E[uext(cext|c̃ ≤ π̃)] = p(−cext) +

(1− p)( β̃

(
∑n
j=1 cj + cext)

· cext) > 0⇒

β̃ >
p · (

∑n
i=1 ci + cext)

1− p
And in case π̃ < c̃ the following requirement should be

satisfied

E[uout(cext|π̃ < c̃)] = p(− π̃

(c̃+ cext)
· cext) +

(1− p)( β̃∑n
i=1 ci + cext

· cext) > 0⇒

β̃ >
p · π̃ · (

∑n
i=1 ci + cext)

(1− p) · (c̃+ cext)

If the requirement satisfies, then the algorithm exits, otherwise
the premium value increases in lines 9 and 14. Note that this
increase can be done based on the fairness definition. For example
following the proportional fairness, the organizations will be
charged based on their required indemnities. Once the premium
has been increased, organizations might lower their coverage level
accordingly, thus the algorithm jumps to line 2 to calculate c̃ again.

The complexity of algorithm 1 is O(2n.π̃). This is because
the line 4 iterates (2n − 1) times to calculate the c̃ value, and in
the worst case the total requested indemnity decreases to zero in
π̃ iterations.
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Algorithm 1: Tuning premium to acquire external com-
mitment resource

Input : The vector of indemnities π, The vector of
commitments c, The matrix of exploitation
probability Q, The probability that an attacker
finds a vulnerability for the common platform p,
The desired commitment from an external
resource cext, The total premium β̃

Output: The tuned total premium value β̃
1 c̃← 0, π̃ ← 0
2 π̃ ← π.Q
3 π̃ ← ||π̃||1
4 foreach possible set of K ∈ O do
5 c̃← c̃+

∏
i∈K qi,|k| ·

∑
j∈K̄ cj

6 end
7 if c̃ ≤ π̃ then
8 if β̃ < p·(

∑n
i=1 ci+cext)

1−p then
9 Increase β̃, update π, and Goto line 2

10 end
11 end
12 if π̃ < c̃ then
13 if β̃ < p·π̃·(

∑n
i=1 ci+cext)

(1−p)·(c̃+cext)
then

14 Increase β̃, update π, and Goto line 2
15 end
16 end
17 return β̃

Proposition 8. In the case of c̃ ≤ π̃, outsider’s best response
strategy is to commit c∗ext as

c∗ext =

√
(1− p).β̃.

∑n
i=1 ci

p
−

n∑
i=1

ci

Proof. As the second derivative of E[uout(cext|c̃ ≤ π̃)] is
negative, thus we calculate the first order condition as

∂E[uout(cext|c̃ ≤ π̃)]

∂cext
= 0

−p+ (1− p)(
β̃ ·
∑n
j=1 cj

((
∑n
j=1 cj + c∗ext))

2
) = 0

c∗ext =

√
(1− p).β̃.

∑n
i=1 ci

p
−

n∑
i=1

ci

On the other hand, in the case of π̃ < c̃ as the second derivative
of the outsider’s expected utility is positive, it can be seen that the
increase of commitment value, increases the expected utility.

4.3 Outsourcing the insurance of a common platform
Although the crowdfunding is beneficial, outsiders might not

participate in the insurance process when it cannot estimate the
p value. This incapability of estimation might be because of
the inaccessibility of a common platform (e.g. hardware) or the
lack of expertise. In this case, we study a model of outsourcing
the insurance of a common platform to cover the demanded
coverage level. In this model, the organizations insure the cost
of exploitation of the common platform’s vulnerabilities. In the
case of exploitation of the vulnerabilities related to the common

platform, the insurer reimburses the organizations that have been
damaged. The benefits of this model are as follows

• The insurer has a better estimation of the probability of
the exploitation p. Since in the traditional cyber-insurance
model it is not easy to estimate p as this parameter usually
depends on multiple systems working together. On the
other hand, there are some limitations to the security
evaluation of the entire system. While in this model, the
coverage is limited to only the common platform. This
comforts the evaluation process and as a result, the adverse
selection problem will be addressed partially.

• Monitoring the current security state is easier for the
insurer, as the attack vectors are limited to the common
platform. This alleviates the moral hazard problem.

• Organizations collaboratively insure a common platform
taking advantage of sharing the price of the administrative
cost. In contrast, having an incentive compatible mecha-
nism, the insurer profits as the organizations invest more
on their security and share their cybersecurity information
and as a result, fewer organizations will be exploited and
the cost of indemnity would decrease.

Let πK represent the indemnity that the insurer should pay
to the coalition considering the set of exploited organizations K.
Then, the total premium that the coalition should pay β̂O is

β̂O = p(
n∑
i=1

n∑
j=1

qi,j · πi) + τ

And the expected utility of the coalition is

E[uO] = p(−
∑
i∈K

li + πK)− β̂O

Then to satisfy the fairness property, oi’s premium can be calcu-
lated as

β̂i = p(
n∑
j=1

qi,j · πi) + (
n∑
j=1

qi,j · τ)

Note that, this model is beneficial for the organizations as the
administrative cost of the insurer is divided between them. How-
ever, as the organizations have outsourced the risk of exploitation,
they might decrease their investment in the security of the common
platform and they are not motivated to share their cybersecurity
information. In order to satisfy the incentive compatibility, the
following approaches can be applied.

Approach 1. The insurer does not provide the full coverage.
In this case, as the organizations also endure the cost of exploita-
tion, they would invest in the security of the common platform.
However, in this case, the incentive compatibility problem is
still existing as organizations are not motivated to share their
cybersecurity information.

Approach 2. In order to stipulate organizations and free-
market security testers to invest in the security of the common
platform to find a new vulnerability, the system can provide a
bug bounty rewarding system [37]–[39]. In this case, the system
pays the vulnerability finder. However, it is important to set a
reward value properly, since if the value is small, then there is no
motivation for investment in finding a new vulnerability. Worse
than that, a free market tester who finds a new vulnerability might
sell the vulnerability information on the black market. On the
other hand, if the value is high, the organizations and insurance
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company might lose. The value of a vulnerability for the coalition
of organizations vc is

vc =
n∑
i=1

n∑
j=1

qi,j(li − πi)

On the other hand, the value of the vulnerability for the insurer
vI is

vI =
n∑
i=1

n∑
j=1

qi,j(πi)

Thus, the total benefit of accessing the vulnerability informa-
tion to patch the system is V = vc + vI =

∑n
i=1

∑n
j=1 qi,j · li

which is equal to the case of no insurance being applied. As
studied in [35], the fair payment to the vulnerability finder is half
of the benefit of the information beneficiaries.

Proposition 9. Assume there is a black market value vb for
the new vulnerability and this value is an independent draw from
a uniform distribution with support [0, N ], then the best response
strategy of the system is to offer V2 to the vulnerability finder.

Proof. Let θ represent the offer to the vulnerability finder. The
expected payoff of the system is

E[us] = Pr(vb < θ) · (V − θ)

= (
θ

N
) · (V − θ)

The first order condition is

∂(( θN ) · (V − θ))
∂θ

= 0

V − θ∗

N
− θ∗

N
= 0

θ∗ =
1

2
· V

As the second derivative of the expected gain is negative, θ∗

provides the maximum expected gain.

Proposition 9 shows that, when the market value is not biased,
the fair payment and the best response strategy are equal.

Approach 3. In order to motivate organizations to share
their cybersecurity information and decrease the probability of
exploitation of a large number of organizations from the same
vulnerability, the insurer sets one part of the indemnity as the
reward value. In this case, there is a fixed amount that is given to
the exploited organizations, if the number of exploited organiza-
tions is small, the share of reward is large and as the number of
organizations grows, this share shrinks. In this way, as with the
growth of the exploited organizations the reward value decreases,
the organizations tend to share their data in the coalition to receive
a larger share of the reward. Let R represent the reward value,
then the premiums of the coalition and each organization can be
calculated as follows

β̂O = p((
n∑
i=1

n∑
j=1

qi,j · πi) +R) + τ

β̂i = p(
n∑
j=1

qi,j · (πi +R)) + (
n∑
j=1

qi,j · τ)

And the expected utilities of the coalition and each organization
are

E[uO] = p(
∑
i∈K
−li + πK +R)− β̂O

E[ui] = p(
n∑
j=1

qi,j · (−li + πi +
R

j
))− β̂i

It is easy to see that the above model is budget balanced
and incentive compatible to motivate organizations for security
investment and sharing behavior.

The combination of the three approaches mentioned above can
be used to achieve the best result.

5 NUMERICAL ANALYSIS

In this section, we analyze the expected utility of the proposed
models. In the first case study, we consider a set of organizations
using a common platform. For simplicity, we assume the number
of exploited organizations in the coalition is identically distributed
k ∼ U [0, n], and the probability of exploitation/not-exploitation
of an organization is a fair coin. In order to check the benefit of the
coalitional self-insurance framework, we calculate the expected
benefit of applying this model. Then, applying the mechanism 1,
the profit of an organization in the coalition is p( ψ̂2n ( (n−2)

2 + ...+
1

n−1 )) as discussed in proposition 2. Figure 2 depicts the expected
benefits of an organization in the coalition when p, ψ̂, and n vary.
In figures 2 (a) and (b), we have set p = 0.1.

As it can be seen with the increase of n (figure 2. (a)), ψ̂
(figure 2. (b)), and p (figure 2. (c)), an organization’s expected
benefit increases with increasing rates. This implies that when the
probability of an attack to organizations over the common platform
is not biased, organizations’ expected benefit is increasing with
the growth of the probability of finding a vulnerability by an
attacker, the organizations’ commitment value, and the number
of organizations in the coalition.

In the next case study, we consider a set of risk-averse
organizations that aim to cover a specific amount of the indemnity
in the case of a cyber-attack. Note that although mechanism 1 or 2
can be applied, as organizations are resource-bounded, they might
not be able to commit to large values to cover all of the requested
indemnities. For example, consider that a loss of an attack for
an organization is $1, 000, 000 yet the expected coverage level
applying mechanism 1 or 2 is $10, 000. Thus, in this case,
organizations outsource the insurance. The benefit of applying the
crowdfunding is that organizations can achieve a cheaper premium
for their insurance service by saving the insurance administrative
cost. Furthermore, this helps to change a monopolistic insurance
market into a competitive market. To analyze the crowdfunding
model, we check how the outsiders’ commitment value changes
with the variation of other parameters. As in this model, the
expected coverage level is higher than the expected commitment
coverage of organizations in the coalition, we study the case of
c̃ ≥ π̃. In this case, following proposition 8, the outsider chooses

c∗ext =

√
(1−p).β̃.

∑n
i=1 ci

p −
∑n
i=1 ci to maximize its benefit.

Figure 3 depicts an outsider’s best response commitment strategy,
when the total internal commitment

∑n
i=1 ci, the probability of

finding a new vulnerability p, and the total premium value β̃
vary. As it can be seen, with the growth of p and

∑n
i=1 ci,

the outsider commitment decreases with an increasing rate; and
with the increase of β̃, the outsider commitment increases with a
decreasing rate.

Finally, consider the case of outsourcing the insurance of a
common platform to an insurer. We follow the model introduced in
section 4.3 to collaboratively outsource a common platform to an
insurer. In this case, the risk-averse organizations register for the
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(a) (b) (c)

Fig. 2: The changes of expected benefit when p, ψ̂, and n vary

Fig. 3: Outsider commitment value when
∑n
i=1 ci, p, and β̃ vary

insurance. We apply Constant Absolute Risk Aversion (CARA)
to model the organizations’ risk aversion [3], [4]. CARA is one
of the most well-known candidate functions to model the utility
function considering the risk aversion level. This function maps
wealth to utility by u(w) = −exp(−σ ·w), where σ indicates the
degree of risk aversion. The expected benefit is calculated based
on the discount of the administrative cost and also the decrease
of exploitation probability by assuming that the organizations in
the coalition share the probability of attack between themselves.
Figure 4 depicts how the risk-averse organizations benefit from
such a model when the number of organizations in the coalition
vary. We have set the E[u0

i ] = −10 and we calculated the
expected benefit for organizations with different level of risk
aversion σ = 0.01, σ = 0.05, and σ = 0.1. As it can be seen
by increasing the number of organizations in the coalition, the
organizations’ utilities are increasing.

Note that although in this section we have discussed the direct
benefits of applying the model, as discussed in the paper, the main
advantages of the proposed models are their indirect profits which
are the alleviation of the moral hazard, adverse selection, and
motivating organizations toward the social welfare by investing
in cybersecurity and sharing cybersecurity information.

Fig. 4: The expected benefit of a risk-averse organization by
cooperatively outsourcing the insurance of a common platform

6 CONCLUSION

Although cyber-insurance allows organizations to transfer their
risk to another party, it has not been deployed as expected. This
is mainly because of the insurance policy limitation and its high
price. In addition, Moral Hazard and Adverse Selection are two
big challenges that make such a process difficult. On the other
hand, when the organizations are using a common platform, they
are susceptible to a same set of vulnerabilities. Thus, their security
is interdependent and their security investment to find a new
vulnerability over the common platform causes positive external-
ity. Leveraging cyber-insurance and risk interdependency for a
common platform, we have presented three models for insuring a
common platform to alleviate Moral Hazard, Adverse Selection,
and Free-Riding problems. In the first model, organizations act as
both insurer and insured to distribute the risk in the coalition.
In the second model, the system provides rewards to crowd-
fund the insurance. Finally, in the third model, we have studied
the outsourcing of a common platform insurance. We presented
mechanisms to motivate organizations for security investment and
cybersecurity information sharing while cooperatively transferring
risks.
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