Cuckoo’s Malware Threat Scoring and
Classification: Friend or Foe?

Aaron Walker
Department of Computer Science
and Engineering
University of Nevada, Reno
Reno, USA
awalker @unr.edu

Abstract—Malware threat classification involves understanding
the behavior of the malicious software and how it affects a victim
host system. Classifying threats allows for measured response
appropriate to the risk involved. Malware incident response
depends on many automated tools for the classification of threat
to help identify the appropriate reaction to a threat alert. Cuckoo
Sandbox is one such tool which can be used for automated
analysis of malware and one method of threat classification
provided is a threat score. A security analyst might submit a
suspicious file to Cuckoo for analysis to determine whether or
not the file contains malware or performs potentially malicious
behavior on a system. Cuckoo is capable of producing a report of
this behavior and ranks the severity of the observed actions as a
score from one to ten, with ten being the most severe. As such, a
malware sample classified as an 8 would likely take priority over
a sample classified as a 3. Unfortunately, this scoring classification
can be misleading due to the underlying methodology of severity
classification. In this paper we demonstrate why the current
methodology of threat scoring is flawed and therefore we believe it
can be improved with greater emphasis on analyzing the behavior
of the malware. This allows for a threat classification rating which
scales with the risk involved in the malware behavior.

Keywords—Malware Detection, Malware Behavior Analysis,
Dynamic Analysis, Sandbox, Threat Score, Threat Classification

I. INTRODUCTION

Malware, i.e., malicious software, presents a threat to com-
puting environments in the office, at home, and in travel.
Malware artists develop software to exploit the flaws in any
platform and application which suffers a vulnerability in its de-
fenses, be it through unpatched known attack vectors or zero-
day attacks for which there is no current solution. Malware
which successfully exploits such a vulnerability produces an
information security incident. Security incidents may involve
the loss of functionality of a system, compromise of user
account credentials, unauthorized access into a system, or any
number of conditions which compromise the confidentiality,
integrity, or availability of a system or application.

IThis research is supported by the National Science Foundation (NSF),
USA, Award #1528167.

978-1-7281-0554-3/19/$31.00 ©2019 IEEE

Muhammad Faisal Amjad
Department of Computer Science
and Engineering
University of Nevada, Reno
Reno, USA
mamjad @unr.edu

Shamik Sengupta
Department of Computer Science
and Engineering
University of Nevada, Reno
Reno, USA
ssengupta@unr.edu

While all successful malware compromises require a mea-
sure of response in order to restore faith in the proper
working order of a system, not all malware attacks are created
equal. For large organizations, the number of live information
security incidents can be staggering. Prioritization of incidents
based upon levels of severity is necessary for the quick elimi-
nation of the most severe threats and the continued monitoring
and assessment of threats not yet handled. This is especially
true for organizations with a relatively small information
security incident response team. In situations where high
volumes of security incidents may be present, an automated
means of prioritization is essential to help incident analysts to
quickly triage and respond in an appropriate manner. The use
of automated tools, especially those made available through
open-source, adds value to the work performed by the security
incident response team because in many cases it allows for
greater understanding of information security threats, quicker
remediation times, and provides more information for after-
action analysis and reporting.

The Cuckoo Sandbox [1] provides a means of automated
analysis of suspicious files. Through behavioral analysis, hash
comparisons, and various integrated tools it is possible to iden-
tify malware and discover what indicators of compromise one
should look for in their production environment to ascertain the
presence of malicious activity on a network or system. It is im-
portant to note that as an automated malware analysis system,
Cuckoo provides information about the behavior of a suspected
file on a system but it is not using these observations to actively
classify malware. As an option, Cuckoo can be configured to
enable submission of a file to VirusTotal [8] for a comparison
to known malicious files and the associated malware families
as determined by various anti-virus vendors. Additionally,
Cuckoo can be configured to allow custom signatures and/or
those from the open source community which define severity
scores for particular API calls and malware family attribution
[1]. These optional elements are meant to enhance the Cuckoo-
generated report on a sample file so as to bring more depth
to the analysis. Without these optional features Cuckoo only
has the ability to execute potential malware samples in a
sandbox, observe the dynamic behavior, and report the actions
committed. In this paper we are interested in the optional

element of malware signatures and what value they bring to
the automated malware analysis.

Another reason to consider the Cuckoo Sandbox is that it is
open source software. It is familiar to the information security
community [2] and free to use, which makes it more available
to incident response teams who cannot easily justify the ex-
pense of similar closed-source products. While the initial setup
and configuration of Cuckoo is not particularly user-friendly,
the end result is a system which allows for the submission
of a file and the automated return of a report describing the
observed actions of a suspected malware sample in a sandbox
environment. The benefit of Cuckoo is in this automation —
no human interaction is required for the behavioral analysis. A
report is generated describing the actions which occurred when
the suspicious file was opened or executed, and all an analyst
needs to do is investigate the report. A detailed list of system
operations, file manipulations, attempted communication with
external systems, and even screenshots of the activity are
generated. All of these artifacts are essential for understanding
the nature of the malicious file analyzed.

One element of the Cuckoo report stands out as an element
which immediately captures the eye of an analyst, and for
good reason. The “Score” section appears at the top of the
report and represents the threat severity of a malicious file
as a number out of ten. The color of the section containing
the score changes with severity, further suggesting the impact
of a file as it goes from benign light green with a score of
0/10 to an angry red with a score of 10/10. This score does
come with a notice from the developers: “Please notice: The
scoring system is currently still in development and should be
considered an alpha feature.”

While using Cuckoo as an analysis tool in practice, we
discovered odd behavior in the reported score for many
malware samples. Several executable files were identified as
malware with a score higher than the upper threshold of 10.
This was confusing and caused us to wonder if there was
an error in the scoring mechanism. Instead we discovered
that there was no error in the configuration of our system
or a bug in the Cuckoo software. Instead, we found that
the methodology used by Cuckoo to generate this threat
score results in an arbitrary value that is of little help to
illustrate the threat severity of malicious code to an incident
responder. The arbitrary nature of this score is not immediately
apparent to the end user. The otherwise excellent value of
the Cuckoo Sandbox in automated behavioral analysis might
lead an incident responder to place a similar value in this
score, perhaps so far as to reduce the priority of remediation
for an incident involving a malware with a score of 2/10 in
comparison to a similar incident involving a malware with
score of 9/10 or 15/10. This could also lead an incident
responder to prioritize an incident involving less actual risk,
given the arbitrary nature of the threat score.

Contribution: Our contributions in this paper include the
following:

o« We provide an analysis of the malware threat scoring

mechanism of the Cuckoo sandbox.

o We demonstrate that the current malware threat scoring
in Cuckoo sandbox is arbitrary; we propose the need for
a new solution.

The rest of the paper is organized as follows. Section II
presents an overview of related work. Section III describes
the malware behavior analysis methodology we employed
including the hardware and software setup, malware dataset,
and analysis of the scoring of API calls. Section IV discusses
our evaluation of the Cuckoo malware threat scoring, problems
identified, and possibilities for future work. Finally, Section V
concludes the paper.

Internet
" S
|

Router

Ubuntu

PC

Windows
7VM

Windows
7VM

Fig. 1. Setup for Cuckoo Sandbox and the VM Environment.

II. RELATED WORK

Researchers have evaluated the value of threat scoring in
terms of privacy risk [3], cyber threat feeds [4], and Common
Vulnerability Scoring System metric-based analysis (CVSS)
[5], to name a few. This research shows the need for a robust
scoring mechanism for the assessment of threats. This concept
led us to consider the threat scoring system used by the
Cuckoo Sandbox so as to determine what problems exist or
improvements could be made to benefit the practice of in-
formation security incident response. Researchers have shown
how the behavioral analysis reports from Cuckoo can be used
to classify malware [7] in conjunction with labels for malware
families extracted from VirusTotal [8] reports for each sample.
This methodology relies on the presence of key features in the
malware which correspond to a signature; however, malware
authors can overcome signature-based analysis via mutation
engine generating polymorphic code [10]. When malware is
detected, another problem lies in automatic classification of
malware family. To reduce the number of false positives, it is

shown that using a combination of static and dynamic analysis
is more beneficial in identifying and classifying malware than
using a single feature such as a signature [9]. Even machine
learning techniques can be thwarted by a malware author
and lead to misclassification through adversarial examples -
this has led to analysis of malware through image analysis
performed within generative adversarial networks [11].

What is clear from this research is that a combination of
several techniques of malware analysis is most beneficial.
Term Frequency-Inverse Document Frequency [12] metrics are
used to effectively extract features of malware given access
to logs of both malicious and non-malicious behavior and is
robust to polymorphism [13]. Analysis of the semantics of
code has been shown to detect malicious software independent
from signature-based bytecode analysis [14]. The classification
of particular API calls for potential malicious behavior can be
used to analyze malware for particular traits [15]. We believe
that the combination of several robust techniques to create a
malware threat score will increase the confidence in such a
metric.

III. MALWARE BEHAVIOR ANALYSIS

In order to evaluate the current scoring mechanism Cuckoo
uses to classify severity, we designed an environment to
allow for the installation of Cuckoo and the analysis of
known malware samples in a virtual machine sandbox per the
installation instructions provided by Cuckoo [1]. Our goal was
to create an environment which would perhaps be most typical
for small to medium-sized security incident response teams
and focus on the evaluation of potentially malicious software
affecting Windows operating systems. This included the usage
of a single Linux host machine to run the Cuckoo application
and house Windows 7 virtual machine guest environments.
Cuckoo allows for the configuration of Linux virtual machine
guest environments as well; however, for this paper we were
most interested in the analysis of Windows-based threats.

A. Setup

Cuckoo Sandbox version 2.0.6 was installed on a dedicated
Ubuntu Linux host with access to the public internet, as
shown in figure 1. Cuckoo was configured per the installation
guide found on the Cuckoo website [1], including two 64-
bit Windows 7 virtual machines installed on the Ubuntu
host. Cuckoo recommends the usage of 64-bit Windows 7
over Windows XP for better results. Cuckoo supports many
virtualization software solutions but does assume the usage
of VirtualBox by default, so for ease of setup we chose this
platform. VirtualBox is a free system virtualization product
developed by Oracle and it easily integrates with Cuckoo for
administration of the virtual machines.

The Windows 7 virtual machines were configured with
essentially none of the built-in security measures in order to
make them as vulnerable to malware as possible, including the
disabling of User Access Control, Windows Firewall, and au-
tomatic updates. Software known to be the target of attack for
malware was also installed on the virtual machines, including

Adobe PDF reader, Java, and Microsoft Office. This ensures
that when a malicious software sample is executed in the
environment, the full breadth of the malware’s behavior might
be observed as it may attempt to access these applications as
part of the process to compromise the system. Python has
been installed to facilitate the communication between the
Windows operating system on the virtual machine and Cuckoo
on the host machine. Afterward, the Windows virtual machine
resets to the base, non-compromised state via an automated
Cuckoo command to VirtualBox. Furthermore, on the host
Ubuntu system we ran the “cuckoo community” command to
load the signatures provided by contributions from the Cuckoo
user community. These signatures are curated by the Cuckoo
development team and provide the definitions of malware
severity and family attribution described later in this Section.

Receive sample file

Submit
to
Cuckoo

File Report
Generation

Cuckoo Sandbox

S——

Reference
Windows 7 VM - Community
opens file API Inspection Rules for
severity ratings
File behavior is .
captured and AS;'Q"EWW Report file delivered
ased on >
reported to "
Cuckoo severity levels .

Fig. 2. Flow of the Cuckoo Sandbox malware analysis and report generation.

B. Malware Dataset

Known malware samples were acquired from Malpedia [6],
a curated online resource of malicious software containing
multiple versions of malware samples seen over time. This al-
lows for the observation of evolving behaviors as the methods
of exploiting system and application vulnerabilities changes
with new generations of malware. Malpedia samples often
include references to third party analysis of the malware as
well as identified malware family and threat actor affiliation.
This information is quite valuable for those desiring to create
custom signatures in Cuckoo for malware family attribution.
However in this paper we were mainly concerned with the
native functionality of Cuckoo scoring using the community-
provided signature set.

C. Methodology

Figure 2 describes the process of malware analysis in the
Cuckoo Sandbox. When a malware sample is submitted to
Cuckoo, it will designate a virtual machine for use in analyzing

the software. The virtual machine will resume from a snapshot
from which it was in a known good, non-compromised state
and Cuckoo passes the malware sample to the virtual machine
for execution and analysis. Once the analysis has been per-
formed, Cuckoo generates a report of the observed activity,
including but not limited to changes to the registry, newly
spawned processes, file creation and access, virtual memory
access, HTTP communication to an external IP, and much
more. These behavioral events are captured as a number of
Windows API calls.

{
"markcoumt": 1,
“families": [1,
"description": "Queries for the computername",
"severity': 1,
"marks": [
"call": {
“category'": "misc",
“"status": 1,
“"stacktrace": [],
“api": "GetComputerNameW",
“return_wvalue": 1,
"arguments": {
“computer_name": "IBLIS"
’
“time": 1537825743,625125,
"tid": 2748,
“flags": {}
}l
"pid": 2736,
"type': "call",
"eid": 330
}
]l
“references": [],
"name": "antivm_gueries_computername"
}l

Fig. 3.
1.

Sample of ”GetComputerNameW” API call with a severity score of

These API calls are each designated a severity score, which
is determined by a repository of rules defined by the Cuckoo
user community. According to the Cuckoo documentation [1],
the range of severity scores is from 1-3, though our observation
shows scores of 5 as well. While often a description will be
included in the signature asserting the malicious nature of how
a particular API call is being manipulated by malware, it is not
immediately clear how the actual severity value is determined.
All of the API calls flagged in these signatures perform
common actions in a Windows system. This makes ranking
a particular API call as more suspicious than another quite
difficult. The community signatures clearly are attempting to
note API calls which are used to have a potentially damaging
effect, but the ranking from 1-3 or higher appears to be at the
discretion of the author of the signature and subject to review
by the Cuckoo developers.

Once all of the behavior witnessed by Cuckoo has been
checked against these signatures and severity scores have been
tallied, a final report is generated and available for inspection
by an analyst via local web page or command line delivery.
Below is an example of an API call with a severity score of
1. The activity shown here is the usage of the GetComputer-
NameW Windows function which retrieves the NetBIOS name
of the local computer. The signature matched is identified

as “antivm_queries_computername” and the function of this
call is indeed to query for the name of the computer. In this
example, our Windows 7 VM chosen by Cuckoo to analyze
the malware sample was named “IBLIS.” For the full set of
sample malware we analyzed, we found that this particular
API call was committed a total of 38,867 times.

"markcount": 145,

“families": [],

"description": "Executed a process and injected code
inte it, probably while unpacking",

"severity": 5,

"marks": [

“eall": {
"category":
“status": 1,
“"stacktrace": [],

"api": "CreateProcessInternalW",
“return_value": 1,
"arguments": {
"thread_identifier":
"thread_handle": "@x@@@@@lcc"
"process_identifier": 2736,
“current_directory": "",
“filepath": "CiviUsers\\bob\\AppData
WhwLocal\wTempyh\this.exe",

"process",

2740,

"track": 1,

“command_line": "",

“filepath_r": "C:\\Users\\bob\\AppData
Wlocal\\Tempi\\this.exe",

“stack_pivoted": @,

“"creation_flags": 4,

"process_handle": "@xB80881de",

"inherit_handles": @

Fig. 4. Sample of “’CreateProcessInternalW” API call with a severity score
of 5.

Figure 5 presents an example of a CreateProcessInternalW
API call which has been classified by the community rules
with a severity score of 5. This particular call demonstrates
the malware executing a process and injecting code into it.
In this example, a process identified as 2736 is being loaded
with the code within the file “this.exe” from within the logged
in user’s temporary files within an AppData subdirectory. It is
interesting to note that the description of the behavior matched
in the signature involves the possibility of code unpacking,
which refers to a compressed executable file which must
“unpack” in memory in order to execute. This procedure of
unpacking is common in malware samples so it is likely that
this is why the severity score for this signature was rated as a
five. However, there is no clear indication that this is the case,
which further leads to confusion regarding the assignment of
this value. We discovered that this particular API was called
32,880 times across our sample set. The severity score of each
identified signature-matched activity is evaluated and a final
“Score” is produced in the report. Not all of the signatures
single out specific API calls, as it has been seen that certain
signatures refer to specific known malicious sites, known
malicious malware file names, etc.

D. Discussion

Cuckoo reports were generated for 7,401 known malware
samples retrieved from Malpedia. Analysis of these reports
show that there were 138,523,300 API calls in total with
just 264 unique API calls in all. Given that the Cuckoo
analysis assigns severity scores to particular API calls as a
result of a signature match, we found it interesting to compare

GetAsync

NtDelayExecution KeyState NtClose Memory

Metrics

LdrGetDII
Handle

RegQuery

Lo
Address CryptHashData NtReadFile ValueExW

Measure Names
Number of occurances in all
#InScore>=3

. #InScore >=6

M #inScore >=8

. # InScore >=10

. #InScore >=15

Fig. 5. Sample frequency of API calls by number of samples in Cuckoo report score range.

the frequency of API calls to the overall report threat score
reported by Cuckoo. The severity ratings for these API calls
are determined by Cuckoo community signatures, but not all
of the APIs discovered in a Cuckoo analysis match these
signatures. Thus we find that a high number of API calls
will not necessarily translate to a high report threat score.
As seen in Figure 6, our sample file named 891 had a
reported 1,326,166 individual API calls (174 unique) and was
assigned a threat score of 16.8/10 by Cuckoo. In contrast,
our most threatening file with a score of 23.6/10 committed
only 34,480 API calls (190 unique). What we discovered
is that the majority of these individual function calls do
not result in a severity score because there is no associated
signature to assign the value. In fact, a single API function
call may result in different severity rating assignments based
upon different signature matched. For example, one malware
sample was observed calling the “NtAllocateVirtualMemory”
function with this behavior of possibly allowing code injection
for another process and was assigned a severity score of
3. In the same malware sample this API function call was
made again with the behavior matching a rule describing the
possibility of the injection of code into an executed process
while unpacking, resulting in a severity classification of 5. This
creates a challenge when attempting to determine the relative
threat of a particular API call observed in a malware sample.
We believe a great deal of confusion regarding consistent
threat classification exists given the disparity between severity
scores for the same API calls amongst the signatures.

Table I describes this relationship for the top ten occurring
API calls.

Figure 5 details the relationship between these highest
occurring API function calls and the final threat score Cuckoo
assigned to malware samples containing these calls. It is

TABLE I
Top TEN OCCURRING API FUNCTION CALLS

Function Type Occurances
NtDelayExecution Windows Kernel 13,052,984
GetAsyncKeyState Windows Control 10,786,787

NtClose File System 10,142,832

ReadProcessMemory Process Control 9,626,589
GetSystemMetrics ‘Windows Conrol 7,974,563
LdrGetProcedure Address Windows Kernel 5,563,886
LdrGetDIIHandle Windows Kernel 4,497,628
CryptHashData Security & Identity 3,568,810
NtReadFile File System 3,425,244
RegQuery ValueExW Windows Registry 3,303,343

interesting to note the changes in frequencies of these API calls
between the different threat values. For instance, “GetAsyncK-
eyState” is called a total of 10,786,459 times in the malware
samples Cuckoo rated a threat score greater than or equal to
three and just 1,543,317 for malware samples greater than or
equal to ten. Of all of our tested malware samples, the average
score was 2.6 with the majority of samples with a score in the
0 — 2.12 range. Of particular interest is that we found that 257
samples were rated above the suggested maximum “10” rating.
These ranged from 10.2 — 23.6. This finding is of interest
because nearly 3.5% of the samples analyzed were classified a
threat rating above the maximum value. Why was this the case
and what does this mean about the severity of these samples
in comparison to those with a threat rating below 10?7 The
answer to our question is that the arbitrary nature of the threat
score denies the opportunity for the O — 10 rating to provide an
evaluation of the threat of a given malware sample in relation
to others. Essentially, what we can say about any suspected
malware sample with a score of O is that no behaviors matched
a signature rule. A score of 0.2, or 1/5, implies that exactly

one signature was matched for an observed behavior. Since any
higher score is similarly only representative of the number of
potentially malicious actions and not truly representative of the
impact of the risks associated with those actions, we feel that
this is an insufficient metric for assigning priority of malware
remediation tasks for an incident response team.

IV. EVALUATION
A. Results

Given that in this sample set we observed malware threat
severity scores from O — 23.6, we decided to understand
the methodology behind the value of the threat score. This
required the analysis of the reports for each malware sample
in our set which was evaluated by Cuckoo Sandbox. These
reports are easily parseable as they are in JSON format. We
found that the bulk of the Cuckoo report involves the observed
behavior of the malware in terms of Windows API calls. Many
of these API calls were designated a “severity” score within
this report and it is here that we see what Cuckoo uses to
determine the final report threat score value. When creating the
report for a sample, captured behaviors are compared to any
signature rules enabled as part of the Cuckoo configuration.
The final threat score assigned by Cuckoo to the analyzed
malware is the result of adding the scores of all the signatures
which match an observed behavior of the malware and then
dividing the sum by 5. Therefore, if S}’ is the threat rating of
a signature which matches the n-th observed behavior of the
malware then the malware’s final threat score Sy is given by:

Sy SB
=5 (1

where k is number of observed malware behaviors that
matched a cuckoo signature. For example, in the highest
rated malware sample in our testing set Cuckoo observed six
behaviors which matched signatures with a severity rating of
1, sixteen behaviors which matched signatures with a severity
rating of 2, twenty-five behaviors which matched signatures
with a score of 3, and one behavior which matched a signature
with a severity rating of 5. The sum of these severity ratings is
118, which when divided by five results in the final threat score
of 23.6 assigned by Cuckoo. We observed this formula again
when analyzing a malware sample with 1,326,166 observed
API function calls, with only 36 of these API calls resulting
in a signature match — eight with a severity of 1, ten with a
severity of 2, seventeen with a severity of 3, and finally one
behavior matching a signature with a severity score of 5. The
sum of these severity ratings is 84, which when divided by
five results in the final threat score of 16.8 delivered in the
Cuckoo report. The number five is the consistent denominator
across all malware samples regardless of the number of APIs
called or signatures matched. The developers of the Cuckoo
Sandbox acknowledge the use of this number five [16] and
state that this means of generating a final threat score is in
need of improvement [17].

There is no obvious benefit in the use of the number five to
divide the total severity score to achieve the final threat value

Sy =

for a malware sample. For all 7,401 malware samples, a sum
was tallied for every severity score in a sample report and
divided by five to achieve the same final threat score reported
by Cuckoo. The consistent use of the number five across all
analyzed malware sample suggests that this number is not
related to any behavior or attribute of the analyzed malware
samples but is instead an arbitrarily chosen value, similar to the
severity values assigned to the Cuckoo community signatures.
This adds to the confusion regarding the true value of the
threat reported for a malware sample by Cuckoo.

What we found is that Cuckoo is designed to produce a
final threat score which is the sum of the severity ratings
for each observed API call, divided by five. What is not
immediately obvious is what this means for the relationship
between different malware samples analyzed in Cuckoo. The
denominator value of five used in the calculation of the final
threat score is not associated with the number of API function
calls or other behaviors observed by Cuckoo in its behavioral
analysis, nor is it linked to the number of matched signatures.
Therefore, we cannot take this final threat score as an accurate
measure to compare malware samples for the relative priority
by which they should be addressed to mitigate the risk which
they represent.

Threat score

15.000 23.600

Sample: 891
API Calls: 1,326,166
Score: 16.800

Sample: 4989
#APICalls: 122,521
Score: 15.000

Sample: 4016

sample: Sample: 4997
1165 #API Calls: 135,092
sample: 3570 Score: 16,000
#API Calls:
81349

#API Call:
69,592 5.
Sample: 400; Sample: 2211
00 s 0

Sample: 688
#API Calls: # AP Calls:
763233 75276

Sample: 630

sample:
1260

e
sample Sample: 6955
7
90 sample: 1296 3574 #API Calls:
#API Calls 65,335
Sample: 3284
EL I EECEE T —

Sample: 3138 Sample:2755
c AP Calls Score: 18.600 e pae

sample: # AP Calls:
4548 Sample: 3534
4 AP Calls:

Sample: 3554 sample:
6589

Sample: 3859

Sample: 3763 APICalls:
#aPiGalls: | o O ‘

Sample: 4467
#APICalls:

63793

#API Calls: 136,997

Score:19.800

Fig. 6. Distribution of malware samples with score of 15 and greater, sized
by the number of API calls.

B. Discussion and Recommendations

The arbitrary nature of the Cuckoo scoring methodology
casts confusion upon the threat level of a given malware
sample. For the incident responder, it might seem appropriate
to immediately act to contain an incident involving a malware
with a score of 18.8 instead of an incident involving a malware
with a score of 6.4. However, if it is determined that the
malware with the larger score is simply repeatedly attempting
to reach out to a dead host on the internet (and of course

failing) while the malware with the lower score is actively
injecting malicious code into legitimate Windows services, this
casts confusion upon the meaning of the severity score. Should
such a score be evaluated in conjunction with the behavior to
determine actual severity? One could make a case for ignoring
the scoring mechanism altogether and focus on the relevant
indicators of compromise.

Yet the purpose of a threat score is to provide a quick,
immediate index value to support effective triage. Even though
the current methodology used in the Cuckoo Sandbox is
arbitrary, one could argue that it was included to provide a
general guide to help support a quick assessment. What is
necessary is a more reliable metric. Currently the Cuckoo
report threat score is dependent upon community-provided
signatures. The severity score assigned to these signatures
affects the final score Cuckoo evaluates, again via an arbitrary
method. Of note is the fact that if the community signatures
are not loaded into Cuckoo as described in Section III and no
custom signatures are created by the user, each file analyzed
by Cuckoo will have a threat score of zero due to not having
any API severity values to evaluate.

This issue is not limited to the problem of scoring. Malware
family classification is also dependent on these community
signatures. Thus when Cuckoo analyzes a malware sample and
reports that it belongs to a particular malware family, this is
determined by the logic provided in a signature which checks
for the presence of a particular mutex or specific filename
in a particular Windows folder, for example. This is not a
particularly robust method as malware behavior will change
over time with new generations and variants.

We believe that in order to take the confusion out of the
malware threat scoring, a more thorough analysis of malicious
API calls is necessary. Statistical analysis of these function
calls shows that a large amount of activity witnessed by
Cuckoo remains unevaluated. Instead of relying on signatures,
the breadth of the API calls can be evaluated in conjunction
with the context of the behavior. For example, an API call
made to reach an external host on the internet which is known
to be a recent command and control server used by a large
threat actor should carry a heavier severity score than a similar
API call reaching out to Google. This requires both statistical
analysis of each malware sample as well as reliable, current
threat intelligence. In this manner, threat scoring and malware
family attribution will be dynamic, robust, and provide greater
confidence in threat prioritization for the information security
incident response team.

V. CONCLUSION AND FUTURE RESEARCH

In this paper we have identified the arbitrary nature of the
Cuckoo Sandbox malware Score value and the need for a more
robust methodology to replace it. This would add value to
the Cuckoo application as well as to any incident response
methodology which makes use of malware analysis. A system
of evaluating function calls in relation to successful actions
performed on a system along with a comparison to CVSS
scores and other threat intelligence sources will add a great

deal more confidence in such a malware threat scoring system.
Future research will consider the usage of Windows API calls
in known malware samples in relation to known non-malicious
software so as to develop a means of improved scoring and
malware family identification.

REFERENCES

[1] Cuckoo Foundation. ’Automated Malware Analysis - Cuckoo Sandbox’,
2014. [Online]. Available: http://www.cuckoosandbox.org/. [Accessed:
10- Nov- 2018].

[2] Malwarebytes, Inc. *Automating Malware Analysis with Cuckoo Sand-
box’, 2016. [Online]. Available: https://blog.malwarebytes.com/threat-
analysis/2014/04/automating-malware-analysis-with-cuckoo-sandbox/.
[Accessed: 10- Nov - 2018].

[3] Best, Daniel M., Jaspreet Bhatia, Elena S. Peterson, and Travis D.
Breaux. 'Improved cyber threat indicator sharing by scoring privacy
risk.” In Technologies for Homeland Security (HST), 2017 IEEE In-
ternational Symposium on, pp. 1-5. IEEE, 2017.

[4] Meier, Roland, Cornelia Scherrer, David Gugelmann, Vincent Lenders,
and Laurent Vanbever. 'FeedRank: A tamper-resistant method for the
ranking of cyber threat intelligence feeds.” In 2018 10th International
Conference on Cyber Conflict (CyCon), pp. 321-344. IEEE, 2018.

[5] Kebande, Victor R., Ivans Kigwana, H. S. Venter, Nickson M. Karie,
and Ruth D. Wario. ’CVSS Metric-Based Analysis, Classification and
Assessment of Computer Network Threats and Vulnerabilities.” In 2018
International Conference on Advances in Big Data, Computing and Data
Communication Systems (icABCD), pp. 1-10. IEEE, 2018.

[6] Plohmann, D., M. ClauB, S. Enders, and E. Padilla. 'Malpedia: a
collaborative effort to inventorize the malware landscape.” Proceedings
of the Botconf, 2017.

[7]1 Hansen, Steven Strandlund, Thor Mark Tampus Larsen, Matija Ste-
vanovic, and Jens Myrup Pedersen. *An approach for detection and
family classification of malware based on behavioral analysis.” In Com-
puting, Networking and Communications (ICNC), 2016 International
Conference on, pp. 1-5. IEEE, 2016.

[8] VirusTotal. *Virustotal Free online virus, mal-
ware and url scanner’, 2004. [Online]. Available:
https://www.virustotal.com/en/documentation/. [Accessed: 10- Nov-

2018].

[9] Ma, Xinjian, Qi Biao, Wu Yang, and Jianguo Jiang. ’Using multi-
features to reduce false positive in malware classification.” In Infor-
mation Technology, Networking, Electronic and Automation Control
Conference, IEEE, pp. 361-365. IEEE, 2016.

[10] Selamat, Nur Syuhada, Fakariah Hani Mohd Ali, and Noor Ashitah
Abu Othman. "Polymorphic Malware Detection.” In IT Convergence and
Security (ICITCS), 2016 6th International Conference on, pp. 1-5. IEEE,
2016.

[11] Kargaard, Joakim, Tom Drange, Ah-Lian Kor, Hissam Twafik, and
Emlyn Butterfield. "Defending IT systems against intelligent malware.’
In 2018 IEEE 9th International Conference on Dependable Systems,
Services and Technologies (DESSERT), pp. 411-417. IEEE, 2018.

[12] Salton, Gerard, and Christopher Buckley. 'Term-weighting approaches
in automatic text retrieval.” Information processing and management 24,
no. 5 (1988): 513-523.

[13] Chen, Qian, and Robert A. Bridges. ’Automated Behavioral Analysis
of Malware A Case Study of WannaCry Ransomware.” arXiv preprint
arXiv:1709.08753 (2017).

[14] Lakhotia, Aran, and Paul Black. "Mining malware secrets.” In Malicious
and Unwanted Software (MALWARE), 2017 12th International Confer-
ence on, pp. 11-18. IEEE, 2017.

[15] Zhao, Chunlei, Wenbai Zheng, Liangyi Gong, Mengzhe Zhang, and
Chundong Wang. ’Quick and Accurate Android Malware Detection
Based on Sensitive APIs.” In 2018 IEEE International Conference on
Smart Internet of Things (SmartloT), pp. 143-148. IEEE, 2018.

[16] Cuckoo Foundation. ’Cuckoo GitHub
Repository’, 2017. [Online]. Available:
https://github.com/cuckoosandbox/cuckoo/issues/2019#issuecomment-
352305821. [Accessed 10- Nov- 2018].

[17] Cuckoo Foundation. ’Cuckoo GitHub
Repository’, 2016. [Online]. Available:
https://github.com/cuckoosandbox/cuckoo/issues/732#issuecomment-
174168657. [Accessed 10- Nov- 2018].

