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Abstract—Sybil attacks are known form of denial-of-service
attacks that are common-place in Dynamic Spectrum Access
networks. In this paper, we formulate novel threat and defense
mechanisms for the Sybil attack problem in Cognitive Radio Net-
works (CRN). We present potential identity sampling strategies
that a malicious Sybil attacker can use to enhance its attack
capability and impact without being detected. We investigate
how a Sybil attacker can leverage reinforced learning to improve
its performance. We also formulate a novel dynamic reputation
mechanism to defend against such threat that relies on the nodes’
reporting in an intelligent and adaptive manner. Results obtained
shows that a Sybil attacker can improve its performance using
RL learning technique. It also demonstrates that the use of
the dynamic reputation mechanism can considerably reduces
the effectiveness of Sybil attacks and improve the accuracy of
spectrum decisions.

I. INTRODUCTION

Dynamic Spectrum Access (DSA) offered through cognitive
radios (CR) is one of the most promising frameworks for
alleviating the crunching pressure put forth on the FCC by
many of the wireless providers. In contrast to the legacy
fixed spectrum allocation policies, DSA allows license-exempt
secondary-users (SUs) to access the licensed spectrum bands
when not in use by the licensed owners, also known as
primary users (PUs). DSA is expected to enable more efficient
use of frequency channels without impacting the primary
licensees [1].

One of the major challenges to DSA’s success is the
provision of security for CR networks. The “open access” phi-
losophy of the FCC-proposed DSA paradigm makes cognitive
radio networks susceptible to various unforeseen attacks by
smart malicious societies. The effect of malicious disruptions
can be even more fatal as there is no way to understand
whether the disruptions are unintentional or intentional. The
motivation for such shadow-disruptive attack behavior can
be either monopolism – to capture as much spectrum as
possible for themselves without maintaining any spectrum
sharing etiquettes and make other secondaries starve [2]; or
adversarial – to disrupt other secondaries’ communications
and shut them down (particularly applicable in environments
filled with adversary users/networks) [3], [4]. The current DSA
paradigm lacks the protocols to handle most of the security
issues arising in a CR network [5]. The Sybil attack, which
is classified as an identity spoofing attack, is one of the
most common security issues in CR network. During a Sybil
attack, a malicious attacker operates with multiple identities,
pretending to be multiple distinct entities [6]. The sybil threats
using malicious cognitive radio(s) in DSA networks are even

more prevalent and dangerous for several reasons:
1) They are highly “mobile” in every possible aspect due

to the characteristics of software reconfigurability;
2) DSA networks are susceptible to attacks ranging from

passive eavesdropping to active interfering, frequent
break-ins by adversaries due to their open, ubiquitous
and interoperable nature [7];

3) Due to the open source nature of DSA networks, it is
practically impossible to establish a standard database
to record the identity information of every CR node [8].

In this paper, we explore the dynamic behavior of the Sybil
attacker which operates in a CR network where CR nodes
conduct spectrum sensing in a local and distributed manner
and report the results to a centralized Fusion Center (FC)
which in turn take decision of spectrum availability based
on all the spectrum usage reports. Each node has a unique
identity associated with every sensing report it makes to the FC
about the spectrum state. The attacker is capable of generating
multiple false sensing reports directed at the FC with the help
of its multiple Sybil identities. We implement a number of
identity sampling strategies that an attacker can use to select
the number of identities k to be used for false reporting. Based
on feedback from the FC and with the help of reinforced
learning (RL), the Sybil dynamically adjusts k for the next
stage of attack.

As a defense mechanism against Sybil attacks, we introduce
an adaptive Fusion Center that implements a dynamic reputa-
tion mechanism for spectrum decision making. The dynamic
reputation mechanism uses a non-linear reputation function to
compute the reputation of an identity, which reflects to a great
extent the integrity of its sensing reports.

The rest of this paper is organized as follows: Section
II presents the system model of a potential Sybil attacker
and FC. In section III, we discuss about the Sybil attacker,
the learning strategy, identity ranking algorithm and identity
sampling strategies used in attacks. Section IV is dedicated to
the FC’s dynamic reputation system. Section V shows the nu-
merical and simulation results obtained from our experiments.
Conclusions are finally drawn in the last section of this paper.

II. SYSTEM MODEL

We consider a CR network, comprising of N honest sec-
ondary nodes and malicious Sybil attacker(s). The malicious
node as well as the honest secondary nodes have the capability
of sensing the spectrum periodically and reporting their results
to the FC. Sensing reports indicates either primary user’s



absence or presence in the spectrum, which can be interpreted
as 0 or 1 respectively.

After reporting, all nodes await FC’s decision before com-
mencing activity in the spectrum. The aim of the Sybil attacker
is to maximally corrupt sensing result, thereby forcing the
FC into wrong conclusions. Wrong conclusions drawn by
the FC are costly and leads to either under-exploitation of
the spectrum or conflict with the primary user. The attacker
derives its utility by successfully causing a disruption in the
activities of the honest nodes. In this model, FC is capable
of verifying its conclusions and computing reputation of
identities based on its verification results. However, there is
an error probability associated with FC’s verifications, which
we refer to as verification error probability ξ. The verification
process can be conducted with the help of policy nodes [9] or
simply by “listening” on the channels to detect contentions or
white spaces.

III. THE SYBIL ATTACKER

We assume that Sybil attacker can generate up to M iden-
tities. For example, in our experimental testbed setup, Soekris
Net-5501 boards enabled with Atheros chipsets based Wireless
NIC and programmable Madwifi device driver, we are able to
support up to 64 identities for one physical device [2]. The
attacker is aware of FC’s vigilance on relegating suspicious
identities by assigning low reputation to those identities. At
every stage of reporting, it uses k ∈ [0 · · ·M ] to report falsely
and M−k to report truly the spectrum state. A greedy attacker
would use k = M identities to report falsely to the fusion
center but this approach will expose the Sybil identities to
the fusion center in a very short time. The best strategy to
avoid detection would be to find the optima k that would have
maximum impact on the fusion center decision. Since the main
objective of the attacker is to avoid detection which reduces
its reputation, it should selectively choose the k identities used
for the attack. The selection is done such that the frequency
of use of each identity in reporting to the FC is kept under
control. Later on, we shall consider various identity sampling
strategies including the identity hopping strategy used by the
attacker.
A. Sybil Attacker Learning Strategy

The Sybil attacker’s goal is to maximize the effectiveness
of its attacks (i.e. its performance) on the FC. The attacks
have to be unpredictable and in such a manner that the
Sybil identities are not compromised. Given a system of CR
networks, characterized by several characteristics(parameters)
such as arrival rate of primary users, sensing error probability
of CRs and verification error probability of the FC, the Sybil
attacker can learn the system to know the optimal strategy or
policy to implement in order to corrupt FC’s decision.

In considering the optimality of k, the Sybil attacker has
to consider its level of success in the previous stages of
attacks. The knowledge of its previous attack strategies that
were successful will enhance the decision making process of
the attacker in ascertaining the right number of identities to
use in embarking on an attack. It must be noted that since
the cumulative number of successful attacks varies in each
time slot, k needs to be kept dynamic. Another reason why k

should be varied is to accommodate the mechanism that allow
identities to recover their reputation after a period of intensive
attacks. Keeping k constant could reveal the periodicity or the
distribution used in sampling the identities.

Given the complexity and dynamism of the wireless envi-
ronment, reinforcement learning (RL) can provide the Sybil
attacker the context awareness and intelligence to conduct
its attack efficiently in the system. RL have been applied in
many aspect of wireless network such as routing, resource
management and dynamic channel selection. We adopt the Q-
learning algorithm in learning the Sybil attacker on the best k
to use at any level of performance measure.

When making false reports with k of its identities, the
goal of an attacker is to get the FC agree with whatever
those identities reported. Let Z(t) ∈ {0, 1} be an indicator
function of time that shows whether FC concluded in favor
of the attacker. While using the k identities, the attacker risks
exposing them. The attacker associates a cost K(t)/M with the
exposure, where K(t) is a function that returns the value of k at
time t. An attacker can have a variable belief µ ∈ [0, 1] which
represents the level of it conviction that the identities will be
penalized by the FC for false reporting. So after tc stages
of attacks, attacker’s perceived performance P (tc) ∈ [0, 1] is
expressed as follows

P (tc) =
1

M · tc
·

tc∑
t=1

[M · Z(t)− µ · K(t)] (1)

In a case where µ = 0, which indicates attacker’s utmost
confidence that its identities would not be discovered by FC,
equation 1 simplifies to

P (tc) =
1

tc
·

tc∑
t=1

Z(t) (2)

With µ = 1, which indicates that the attacker is certain of the
risk of exposure, we can observe the dependency of P (tc) on
the value of k used at each stage of the attack. There is no
gain for the attacker using k = M in all the stages of the
attack, even if all attacks were successful. So it is not in the
best interest of the attacker to use all its identities but rather
intelligently choose k of best fit for an attack.

For the purpose of implementing RL based Sybil attack, we
need to clearly define the terms: state and action. We define a
state st of an attacker as an indicator of its performance level
at time t. The attacker defines an arbitrary finite number of
states η solely to differentiate its performances level and learn
the best action to take at each level. As result, the range of
P (tc) ∈ [0, 1] is partitioned into η possible intervals and each
interval is associated with a unique state. Assuming η = 4 and
P (tc) is uniformly partitioned, then the state st of an attacker
can be determined using the following rules:

st =


1 0.0 ≤ P (t) < 0.25
2 0.25 ≤ P (t) < 0.5
3 0.5 ≤ P (t) < 0.75
4 0.75 ≤ P (t) < 1.0

Worst performance of attacker is therefore associated with
state st = 1, and the best performance, with the state st = 4.



For a uniformly partitioned interval, st can be expressed
concisely as

st = dP (t) · ηe, st ∈ Z>0 (3)
An action, however, is defined by the number of identities

k that is used by attacker in making false report to FC. For
example in state st = 3, an attacker can choose to use k = 4
identities, where k ∈ [1,M ], to make false report. Using Q-
learning, some other important parameters include learning
rate denoted by α and discount factor denoted by γ. The
reward r is dependent on the success of an attack and k. In the
case of success the reward assigned is inversely proportional to
the k but in case of failure, the reward is negative and directly
proportional to k. The reward is designed in such a manner
to discourage any tendency to “greedy attack” i.e. k → M .
The Q-learning algorithm uses the function Q : S × A → R
to compute the quality of a state s ∈ S after performing an
action a ∈ A. S is a set of possible of states and A is a set
of possible actions. After carrying out an attack at time t, the
attacker updates the value of the state-action pair (st, at) in
its Q-table as follows:
Qt+1(st, at) = Qt(st, at)

+ α ·
[
r(at) + γ ·max

at+1

Qt(st+1, at+1)−Qt(st, at)
]

(4)

where st+1 and at+1 are the new state (after performing action
at) and the best action in the new state respectively. The
iterative nature of the algorithm uncovers the best action to
be taken given a certain state of performance. The best action
a∗, given the current state st, is the action a ∈ A with the
maximum Q-value which is given by the equation

a∗ = max
a∈A

Q(st, a) (5)

B. Identity Ranking Algorithm
An identity i used by the Sybil attacker is characterized

by the number of successful attacks zi and the number of
exposures ei. The attackers in order to maintain a balance
between the effectiveness of its attacks and its reputation with
the FC has to select identities that have been less exposed but
with high success per exposure. So the first criterion ensures
that the least exposed identities are used in attack. The second
criterion further ensures that the least exposed identities have
been effective in previous attacks.

The attacker can use the following algorithm to rank the
identities, before selecting the best k candidate identities for
an attack. Let us assume that the attacker has a set of identities
I = {(zi, ei)|i ∈ M} to rank. We can decide to use a
sorting algorithm (merge sort) with an optimal complexity of
O(nlogn) to rank the identities in ascending order. In that
case the merge function is modified as follows. Two identities
i and j are compared based on the ratios zi/ei and zj/ej . The
identity with the least ratio is appended first. If the ratios of
the identities are equal, then ei and ej are compared. Since ei
and ej are measures of exposure, the identity with the least
exposure is appended first. It is obvious that the complexity
algorithm is not affected by the modification. The outcome of
the modified sorting algorithm is a set I∗ of ordered (ranked)
identities.

C. Identity Sampling Strategies
The identity sampling strategy adopted by the Sybil attacker

is targeted towards evading discovery by the FC. So the
attacker can choose to sample its identities in a particular order
that reduces the frequency of their appearance in attacks. Some
of the strategies that we considered are as follows: sliding
window, best performing k, and identity hopping.
1) Sliding Window Strategy

The sliding window (SW) strategy selects identities based
on specified window, whose size is controlled by k. The
identities are arranged in such an order that they form a loop
(see Figure). In each round, the window slides fixed number
of position(s) to the right. The identities that falls within the
window are used to conduct the attack. The identities are
arranged to form a loop such that the window simply wraps
around. As we can see, the strategy ensures that in every
round, one new identity is featured and one old identity is
withdrawn. The sliding window strategy exhibits periodicity
which is dependent on the number of positions it slides across.
As a result, the identities are periodically sampled for the
attack. An illustration of the sliding window identity sampling
strategy can be seen in Figure 1.

Fig. 1. Sliding Window Identity Sampling Strategy
2) Best Performing k Strategy

In best performing k (BP) strategy, the attacker samples
those identities obtained from the identity ranking algorithm
described. The criteria of the algorithm, which favors identities
with relatively better performance with minimum exposure,
ensures no identity with high failure is repeated frequently.
The best performing k strategies leverages this approach to
inject some sort of balance between success of an attack and
the reputation of identities.
3) Identity Hopping Strategy

Inspired by the concept of frequency hopping mecha-
nism [10], the identity hopping algorithm is targeted towards
generating a pseudo-random sequence of identities. It involves
ranking of the identities, which is carried out using the
IR algorithm described. The ranking process is followed by
the generation of a pseudo-random sequence which relies
on ranking results obtained. The sequence generated allows
some bias towards identities with higher ranking. Using a
decreasing linear function, the number of occurrence yi of
each identity in the sequence is determined using the ex-
pression: yi = M − ri + 1, where ri is the identity’s rank.
A decreasing parabolic function can also be used instead,
defined as yi = (M − ri + 1)2. In this paper, we assume
that linear function is used in the pseudo-random sequence
generation. Consider the following example of the pseudo-
random sequence generation. Assuming that the identities are
ranked as follows {1, 4, 2, 5, 3}, then identity 1 occurs 5 times
in the sequence, 4 occurs 4 times, 2 occurs 3 times etc.

The k identities used in the attack are selected from the
sequence with replacement. It is obvious that the probability



of selecting the highest ranked identity is high given that
the length of the sequence is M(M + 1)/2. But we cannot
ignore that it is still probable to pick an identity other than
highest ranked identity. The randomness associated with this
strategy makes it difficult for the FC to learn the sampling
pattern of the Sybil attacker. The attacker achieves a dual goal
here: increasing the chances of selecting the best performing
k identities and randomizing its choices.

IV. THE FUSION CENTER AND REPUTATION SYSTEM

Most reputation mechanisms are implemented using a lin-
ear reputation function that is dependent on nodes’ perfor-
mance [9]. The problem with linear reputation system is that
it penalizes every node equally, even the honest nodes. There
is no mechanism to deal with each node separately based on
its performance.

Here, we introduce a reputation mechanism that relies on
a non-linear reputation function to compute the reputation of
nodes. The reputation function is a non-decreasing exponen-
tial function that converges to 1. It implies that using this
reputation mechanism, reputation values of identities can only
vary between 0 to 1. The reputation value is assigned by a
reputation function ri(x,m) that is given by the following
expression:

ri(x,m) =

 m∑
j=0

xj

j!

 /ex (6)

where x is the parameter that controls the shape of the function
and m is the parameter that indicates the number of correct
reports made by using i-th identity. Depending on the value x,
the reputation function converges quickly or slowly to value of
1. Increasing x leads to a slower convergence and decreasing x
leads to a faster convergence. The parameter m is a measure of
performance of an identity. It is important in the computation
of the reputation of an identity and control of the reputation
function’s dynamics. The parameter m is updated as follows:

m =

{
m+ 1 correct report
m− 1 false report (7)

The dynamics of the reputation function is illustrated in
Figure 2. We introduce a new parameter δx that determines
by how much x is updated. By increasing x by δx, the shape of
the reputation function changes. Using Figure 2 and assuming
x = 7, an increase by δx = 3 makes the shape of the
reputation function to become more concave (with respect to
x-axis), indicating slower growth of reputation with increasing
m. Likewise, a reduction in x by δx = 2, assuming x = 2
makes the shape of the function to be more convex, indicating
faster growth of reputation with continued correct reporting.

Fig. 2. Reputation function curves with different values of x.

The fusion center can implement a strategy such that new
nodes are assigned a slow converging reputation function.
Based on a node’s performance over time, its reputation
function would be tuned to allow for better growth rate of
its reputation with the fusion center. A node is also penalized
for reporting incorrectly by assigning it a reputation function
that has a slow reputation growth rate. On the other hand, if
a node’s performance is satisfactory, it will be rewarded by
improving its reputation function with a faster growth rate.

Depending on fusion center’s priorities a tolerance threshold
can be determined for both good and bad reporting. The
tolerance threshold for good reporting τG determines when
x should be decreased to improve the reputation function.
For an FC with high standard, τG would be set high enough
to ensure that a node’s overall performance has significantly
improved before its x is reduced. The same applies in the case
of determining the tolerance threshold for bad reporting τB . A
strict FC would chose a significantly low τB to tolerate fewer
cases of false reporting. Therefore, τB = 0 would indicate
zero tolerance for false reporting.

The fusion center decides on primary user presence or
absence using the computed reputation values of identities.
Each identity makes a report θ ∈ {0, 1} to fusion center. Based
on θ the identities are separated into two groups: group G0

where θ = 0 and group G1, where θ = 1. The reputation
values of members of a group are added up. The reputation
rθ(t) of identities belonging to Gθ at time t is given as

rθ(t) =

|Gθ|∑
i

rθ,i(t) (8)

where i ∈ Gθ is the i-th identity that reported θ. Based on the
accumulated reputation the fusion reaches the final decision.
The final decision θ∗ is given by the expression:

θ∗ = argmax
θ∈{0,1}

{rθ(t)} (9)

In a case where both groups’ cumulative reputations are equal
or sums up to zero reputation, the majority rule is used in
breaking the tie.

V. NUMERICAL AND EXPERIMENTAL RESULTS
We conducted simulation experiments to evaluate the perfor-

mances of the RL based Sybil attacker and the adaptive Fusion
Center. In all experimental setups, we focused on scenarios
where M ≥ N , that is the number of Sybil identities exceeded
or is equivalent to the number of honest identities. We assume
for the sybil attack implementation using RL, γ = 0.1 and
α = 0.8. We kept the number of possible states and actions
respectively as η = |S| = 10 and |A| = M . For the FC,
we assumed that τB = 0.2, τG = 0.85 and δx = 0.05 for
simulation purpose.

The main intent behind the experiments is to underscore
the importance of RL in the effectiveness of Sybil attacks
and show that FC is capable of improving the accuracy of its
decisions by implementing a dynamic reputation mechanism
(DRM). The performance of non-linear DRM is compared
against the static linear reputation mechanism (SRM) men-
tioned in [9]. We also intend to make a comparison of the



performances of Sybil identity sampling strategies that could
be used in a Sybil attack to mitigate exposure.
A. Performance of RL based Sybil Attack

In this paper, we discussed how the Sybil attacker can
leverage the RL technique to determine the best k to use
in attacking the FC. We carried out some experiments to
determine how the use of RL can enhance the performance
of the Sybil attacker. To do this, we considered two different
methods employed by FC in making decision about spectrum
availability: static reputation mechanism (SRM) and dynamic
reputation mechanism (DRM). In order to demonstrate the
benefit of employing RL in the attack, we further embark
on comparing the performances of a RL based attack and a
random attack. Random attack involves the attacker randomly
selecting the number of identities k to use for false reporting
in each stage of the attacks. It is comparable to an RL based
attack with ε = 1 i.e. 100% exploration.

Using the SRM mechanism, we consider the following cases
where an attacker implements: random attack, RL based attack
with ε = 0.3 and RL based attack with ε = 0.8. The results
obtained for the cases just stated are illustrated in Figure3. In
general, we observe that the effectiveness of the Sybil attacks
improves with increased verification error ξ of the FC. This
trend is expected as an increase in ξ indicates that FC cannot
correctly identify the false-reporting identities and penalize
them. The figure further reveals the benefits of using an RL
technique (Q-learning) in conducting Sybil attacks. It can be
seen that it is more effective if RL technique is employed in
the attacks with small ε. In Figure 3, it is obvious that best
performance was mostly attained with varying ξ when ε = 0.3.
This implies that the attacker explores the possible actions less
frequently and exploit the Q-table often to determine the best
action to take in each stage, which eventually leads to a better
performance.

Fig. 3. Comparison of the Performance of RL based Sybil attack and Random
action based Sybil attack using SRM mechanism.

The same experiment was repeated using the settings as
described above but now with FC implementing our proposed
DRM mechanism. Due to the effectiveness of the DRM
method, the performance of the Sybil attacker remains very
low. Despite Sybil attacker’s use of RL, it was not capable
of “fooling” the FC into concluding in its favor. Irrespective
of the attack strategy adopted by the attacker, the DRM
mechanism was capable of isolating the Sybil identities and
assigning them low reputations. The low reputations of the
identities account for the very poor performance of the attacker
which is shown in Figure 6. DRM, in comparison with SRM,
is a better reputation mechanism to counteract the impact of
Sybil attackers on spectrum decisions.

Fig. 4. Comparison of the Performance of RL based Sybil attack and Random
action based Sybil attack using DRM mechanism.

B. Comparison of Identity Sampling Strategies
In the next set of experiments, we compare the performances

of the Sybil identity sampling strategies discussed in section
III C. To test their various performances we implement SRM
decision making mechanism for the FC. In the first simulation
setting we kept ε = 0.3. The result of the experiment is
illustrated in Figure 5. From the illustration above, it can be

Fig. 5. Comparison of the Sybil identity sampling strategies based on their
Performance with varying ξ, ε = 0.3.

seen vividly that BP outperforms other sampling strategies
employed by the attacker. As seen in previous experiments, an
attacker experiences performance improvement as ξ increases
which reflects FC’s increasing inability to accurately verify its
decisions. Among the identity sampling strategies, BP shows
the best performance. BP strategy which involves selecting
highly successfully but less frequently used identities, accounts
for the improvement performance. The poor performance of
the IH strategy can be attributed to the low ε, which actually
reduces the randomness associated with attacker’s exploration
of possible actions with different k.

A different result was obtained in the second experiment
(Figure 6), where exploration probability was increased to
ε = 0.8. BP still gives a better performance compared to other
sampling strategies. However, an interesting trend is observed
for IH at ξ = 0.65 in Figure 6, where its performance over-
takes that of SW. This trend can be attributed to the increased
exploration which allows the attacker to explore most of time.
The increased exploratory activity of the attacker adds to the
randomness that is already inherent in IH, thereby boosting its
performance. We can also recall that IH is randomized BP and
that explains why BP always does better than it. It can also
be observed in Figure 6 that the curves produced by IH and
BP are congruent. The difference between the two strategies
is induced by the random selection of identities that is biased
towards the best candidate identities.
C. Comparison of Decision Making Mechanisms

The performance of FC is of paramount importance in con-
trolling the effectiveness of Sybil attacks. The goal, therefore,
would be minimize the effectiveness of the Sybil attacks, de-



Fig. 6. Comparison of the Sybil identity sampling strategies based on their
Performance with varying ξ, ε = 0.8.

spite the strategy used by the attacker. FC assigns reputation to
identities of nodes used in sensing reports and the reputation of
an identity reflect the importance of its report. The reputations
are used as weights to arrive at the right conclusion about the
state of the spectrum.

Here we compare the performances of the static reputation
mechanism (SRM) and our newly proposed dynamic rep-
utation mechanism (DRM). The performance of a decision
making mechanism is computed from the perspective of Sybil
attacker’s performance. Better performance of the attacker
indicates a weaker mechanism to mitigate against successful
attacks. Therefore we expect that the better mechanism would
reduce the performance of the Sybil attacker i.e. the number
of successful attacks. For experimental purpose, we kept the
verification error ξ of the FC between 0 and 0.45.

The result of the first experiment with ε = 0.3 is illustrated
in Figure 7. In general, we can observe that the performance

Fig. 7. Comparison of the Decision Making Mechanisms based on their
performance with varying ξ, ε = 0.3.

of the attacker increases as ξ increases in Figure8. But we
can make clear distinction as to which reputation mechanism
is best in maintaining control over Sybil identities. DRM
mechanism presents a clear choice to control false reporting
from the Sybil identities.

The results obtained with ε = 0.8 (see Figure 8) does not
differ much from the results described above. For the SRM
mechanism, we observe a decrease in the performance rate as
ξ increases but DRM mechanism is more effective in keeping
this rate low. We also observe that the trend for the attacker’s
performance using DRM mechanism is practically the same,
proving the robustness of the DRM in reputation management.

The better performance of DRM mechanism can be at-
tributed to the approach used in computing reputation for iden-
tities. The non-linear reputation function assigned separately
to each identity is dynamically adjusted based on an identity’s
performance over the period of reporting. It is not as static
and linear as implemented in the SRM mechanism. This gives
the DRM mechanism an edge to control false-reporting highly
effectively.

Fig. 8. Comparison of the Decision Making Methods based on their
performance with varying ξ, ε = 0.8.

VI. CONCLUSION
In this paper, we presented identity sampling strategies

that can be employed by the Sybil attacker in choosing
identities used in false reporting. The main aim of the identity
sampling strategies is to minimize exposure of the identities
and enhance their reputation with the FC. We demonstrated
also that an attacker can improve the effectiveness of its attacks
by employing RL techniques. The attacker implements Q-
learning algorithm and relies on the Q-table to determine the
optimal action (k identities) to perform based on its perfor-
mance state. We also presented a novel dynamic reputation
mechanism implemented by FC and used in keeping false
reporting under control. The reputation function is robust and
effective in assigning the appropriate reputation to nodes based
on their performances. Our experimental findings reveal the
effectiveness of the dynamic reputation mechanism making the
proposed mechanism a clear defense choice against intelligent
Sybil attacks.
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