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Abstract—We investigate using case-injected genetic algo-
rithms to quickly generate high quality unit micro-management
in real-time strategy game skirmishes. Good group positioning
and movement, which are part of unit micro-management, can
help win skirmishes against equal numbers and types of opponent
units or win even when outnumbered. In this paper, we use
influence maps to generate group positioning and potential fields
to guide unit movement and compare the performance of case-
injected genetic algorithms, genetic algorithms, and two types of
hill-climbing search in finding good unit behaviors for defeating
the default Starcraft Brood Wars AI. Early results showed that
our hill-climbers were quick but unreliable while the genetic
algorithm was slow but reliably found quality solutions a hundred
percent of the time. Case-injected genetic algorithms, on the other
hand were designed to learn from experience to increase problem
solving performance on similar problems. Preliminary results
with case-injected genetic algorithms indicate that they find high
quality results as reliable as genetic algorithms but up to twice
as quickly on related maps.

I. INTRODUCTION

The field of real-time strategy (RTS) game has become
a popular focus of attention for artificial intelligence (AI)
research in recent years. RTS games are a sub-genre of strategy
computer and video games where players need to gather
resources, build structures, research technologies, and conduct
simulated warfare. Understanding each of these factors and
their impact on decision making is critical for winning an
RTS game. This paper focuses on applying Case Injected
Genetic AlgoRithms (CIGARs) to generate competitive group
positioning and movement reliably and quickly as part of
building an RTS game player that can perform effective micro-
management in a skirmish scenario. In the future, we plan to
incorporate these results into the design of more complete RTS
game players.

A typical RTS game may include several skirmishes and
losing even one skirmish may eventually result in losing the
entire game. Spatial positioning, group composition, and unit
upgrades are some of the factors affecting skirmish outcomes.
Good group positioning and movement, which are part of
unit micro-management can help win skirmishes against equal
numbers and types of opponent units or win even when
outnumbered. Micro-management of units in combat aims
to maximize damage given to enemy units and minimizes
damage to friendly units. Common micro techniques in combat
include grouping units into formations, concentrating fire on
one target, and withdrawing seriously damaged units from
combat. We focus on spatial positioning decisions involving

the spatial shape of the battleground: locating the weaknesses
of the enemy’s defenses, selecting the targets to attack, and
positioning units for an engagement.

Influence Maps (IMs) have been used for handling spa-
tial problems in video games, robotics, and other areas [1].
Figure 1 shows an influence map which represents a force
of enemy Marines in Starcraft: Brood War, our simulation
environment. The grid-cell values are calculated by an IM
function, parameterized for each type of game entity - in
this case enemy Marines. In our simulation environment,
we set the weight of enemy units to be negative, therefore,
lower cell values indicate more enemy Marines in the area
and more danger to friendly units. We can use this enemy
Marines position information to guide our AI player’s spatial
positioning. IMs have traditionally been hand-coded to solve
particular problems. In this research, we use search algorithms
to find near-optimal IM parameters that help specify high
quality group positioning of our units for skirmishes on a
battlefield.

Fig. 1: Snapshot of an influence map represents enemy
Marines.

While good influence maps can tell us where to go, good
navigation can tell us how best to move there. We use Potential
Fields (PFs) to control movement behaviors for a group of
units navigating to particular locations on the map. PFs are
a technique from robotics research for coordinating multiple
units’ movement behaviors and are often used in video games
for the same purpose. A PF defines a vector force in space
that attracts or repulses entities in a game. A well-known
example of a potential field is gravitational potential. PFs have



been applied to RTS games mostly for spatial navigation and
collision avoidance. We apply PFs to coordinate units’ group
movement in our work.

Our ultimate goal is to create complete human-level RTS
game players and this paper investigates one aspect of this
problem: Finding good group positioning and movement for
winning a skirmish scenario. Several challenges have to be
handled in this research. First, how do we tune IM parameters
for each type of unit to get good spatial information? Further-
more, PF parameters and IM parameters are interdependent
if we use IM generated positioning information to guide PF
mediated navigation. To deal with these issues, we compactly
represent group behaviors as a combination of three IMs and
three PFs parameters and use a search algorithm to look for
good combinations of these parameters that lead to winning
group positioning and movement.

Early results showed that our hill-climbers quickly find
influence maps and potential fields that generate quality po-
sitioning and movement in our simulations, but they only
find quality solutions fifty to seventy percent of the time.
Genetic Algorithms (GAs) on the other hand evolve high
quality solutions a hundred percent of the time, but take signif-
icantly longer. Case-Injected Genetic AlgoRithms (CIGARs)
combine GAs with case-based reasoning to learn to increase
performance with experience. Since human players also learn
to be better with practice and experience, we are interested in
whether we can use CIGARs to learn from experience to be
quicker and still get high quality solutions (like the GA) for
winning skirmishes.

We consider a sequence of skirmishes as a sequence of
problems to be solved by CIGAR and expect that CIGAR
will learn on problems early in the sequence to improve
performance on problems later in this sequence. Different
skirmishes usually contain different unit compositions and
positions. In this paper, we look into skirmishe scenarios
with the same number of units but differently positioned.
This enables CIGAR solutions obtained for one scenario to
be injected into the evolving population of the next (similar)
scenario and help augment the population with individuals that
may contain useful information gleaned from prior scenarios.
Specifically, we defined five similar scenarios with different
enemy units’ initial positions. We applied CIGARs and GAs to
these five sequential scenarios and compared the performances
of CIGARs and GAs on each scenario. Our preliminary results
from this group of similar scenarios, show that CIGARs learn
from prior experience to reliably find quality solutions on new
scenarios in half the time taken by GAs. We expect that these
results will further our research into generating good RTS
game players.

The remainder of this paper is organized as follows.
Section II describes related work in AI research and com-
mon techniques used in RTS games. Section III describes
our simulation environment and parameter encodings for the
GA and CIGAR. Section IV presents preliminary results and
compares the quality, reliability, and the time taken to find
solutions. Finally, section V draws conclusions and discusses
future work.

II. RELATED WORK

We first consider research in case-based reasoning ap-
proaches to design a competitive RTS game player. Aha et al.
worked on a case-based plan selection method that learns to
retrieve and adapt a suitable strategy for each specific situation
during the game [2]. They built a case-base of previously
encoded strategies, and the system learned to select, or index,
the best matching strategy for different game states. They
also performed an interesting analysis on the complexity of
RTS games and showed that RTS games were difficult and
thus suitable for computational intelligence research. Ontañón
also worked on a real-time case based planning and execu-
tion techniques in RTS games and applied his technique to
WARGUS [3]. The system extracts behavioral knowledge from
expert demonstrations in the form of individual cases and
reuses the cases via a behavior generator. However, this system
needs to record the actions of an expert player which is hard
to do in closed source games. Furthermore, it requires that the
expert explicitly tell the purpose of each action which made
this method harder to scale.

Besides the research on case-based reasoning, we are also
interested in spatial reasoning and movement related work.
Previous work has been done in our lab to apply spatial rea-
soning techniques with influence maps to evolve a LagoonCraft
RTS game player [4]. Sweetser and Wiles present a game
agent designed with IMs, where the IM was used to model
the environment and help the agent in making decisions [5].
They built a flexible game agent that is able to respond
to natural phenomena while pursuing a goal. Bergsma and
Spronck used influence maps to generate adaptive AI for a
turn based strategy game [6]. Su-Hyung proposed a strategy
generation method using influence maps in a strategy game,
Conqueror. He used evolutionary neural networks to evolve
non-player characters’ strategies based on the information
provided by layered influence maps [7]. Avery and Louis
worked on co-evolving team tactics using a combination of
influence maps, guiding a group of units to move and attack
based on opponents’ positions [8]. Their method used one
influence map for each entity in the game which means that if
we have two hundred entities, the population cap for Starcraft,
we will need two hundred influence maps to be computed
every frame. This could be a heavy load for a system. Uriarte
applied influence maps for “kiting” units [9]. Raboin et al.
presented a heuristic search technique for multi-agent pursuit-
evasion games in partially observable space [10]. In this paper,
we use three IMs to gather spatial information and guide our
units for winning skirmish scenarios in RTS games.

Potential fields have also been applied to AI agents in RTS
games. Most of this work is related to spatial navigation and
collision avoidance [11]. This approach was first introduced
by Ossama Khatib in 1986 while he was looking for a real-
time obstacle avoidance method for manipulators and mobile
robots [12]. It was then widely used in avoiding obstacles and
collisions especially for multiple unit flocking [13], [14], [15].
Hagelback brought this technique into AI research within the
RTS game genre [16]. He presented a Multi-Agent Potential
Field based bot architecture in ORTS [17]. Hagelback’s paper
applied potential fields at the tactical and unit operation level
of the player AI [18]. We use three potential fields for group
navigation in our work.



Fig. 2: Solving problems in sequence with CIGAR.

CIGAR was first introduced by Louis and McDonnell, they
borrowed ideas from case-based reasoning (CBR) in which
experience from solving previous problems helps solve new
similar problems [19]. This approach augmented GAs with
a case-based memory of past problem solving experience and
was used to obtain better performance over time on sets of sim-
ilar problems. Figure 2 shows how CIGAR solves a sequence
of problems. An existing case-base is not necessary in case-
injected GAs because the GA simply starts with a randomly
initialized population to search the space. During such search,
we save good chromosomes which are cases into the case-
base for potential use in subsequent problem solving. Case-
injection enable genetic algorithms to learn from experience.
Louis and Li applied CIGAR for solving traveling salesman
problems (TSPs) and showed performance improvement on
similar TSPs [20]. Louis and Miles applied CIGAR in a
strike force asset allocation game [21]. They used the cases
from both human’s and system’s game-playing experiences
to bias CIGAR toward producing plans that contain previous
important strategic elements.

We are interested in techniques which can reliably and
quickly find high quality solutions in skirmish scenarios in RTS
games. Early results showed that hill-climbers are quick but
unreliable while genetic algorithms are slow but reliably find
good solutions. In this paper, we focus on applying CIGARs to
speed up finding high quality solutions for skirmish scenarios.

III. METHODOLOGY

The first step of this research was building an infrastructure
in which to run our AI agent in Starcraft: Brood War [22]. In
our one versus one scenarios, each player controls the same
number and types of units starting at two different places on
the map. In order to compare with our earlier work in this
area, we use the same rules which are listed below and the
same customized maps.

• The maps do not have any obstacles.

• The units are default Starcraft units so there is no
alteration of game balance.

• All the units use default Starcraft settings without
upgrades.

TABLE I: Parameters defined in Starcraft

Parameter Marine Tank Purpose
Hit-points 40 150 Entity’s health. Hit-points decrease

when hit by opponent’s unit. Entity
dies when Hit-points ≤ 0.

Size 12×20 32×32 Entity’s size in pixel.
MaxSpeed 4.0 4.0 Maximum speed of Entity.
MaxDamage 6 30 Maximum number of Hit-points

that can be subtracted from the tar-
get’s health.

Range 128 224 The maximum distance at which an
entity can fire upon target.

Cooldown 15 37 Time between weapons firing.
Score 100 700 Score gained by opponent when this

unit has been eliminated.

• Units select targets based on Starcraft’s built-in AI.

• There is no fog of war.

Our goal is to eliminate opponent units while minimizing
the loss of friendly units. We also want to minimize game
duration. In case both sides have the same number and types
of units left at the end of a game, we will get a higher score for
a shorter game. As before, our scenarios contain eight Marines
and one Tank on each side. A Marine has low hit-points and a
short attack range but can be built fast and cheaply. A Tank is
stronger than a Marine, with more hit-points and attack range
but costs more to produce. Table I shows the detailed properties
for Marines and Tanks in Starcraft. In this preliminary work,
we use the default Starcraft AI to control enemy units.

A. Influence Maps and Potential Fields

We compactly represent group behavior as a combination
of three IMs and three PFs. Enemy unit generated influence
maps tell our units where to go and our units navigate to the
indicated positions using potential fields for movement. For
the five preliminary scenarios considered in this paper, we
only used three influence maps for enemy units. Specifically,
an enemy Marine influence map, an enemy Tank influence
map, and a Sum influence map derived from the previous two,
that sums the enemy Marine and Tank influence maps. The
enemy Marine and Tank influence maps were specified by the
weights and ranges of enemy Marines and Tanks. Since
computation time depends on the number of IM cells, we used
a cell size of 64× 64 pixels on the Starcraft map.

Potential field functions used in our experiments are similar
to Equation 1, where F is the potential force to the entity, d
is the distance from the source of the force to the entity. c is
the coefficient and e is the exponent.

F = cde (1)

We use three PFs of the form described by Equation 1
to control the movement of entities in a game. Each of these
potential fields describes one type of force acting on a unit.
The three potential forces in the game world are:

• Attractor: The attraction force is inversely propor-
tional to distance squared. A typical attractor looks



TABLE II: Chromosome

Parameter Bits Description

WMarine 5 Marine Weight in IMs

RMarine 4 Marine Range in IMs

WTank 5 Tank Weight in IMs

RTank 4 Tank Range in IMs

ca 6 Attractor Coefficient

crf 6 Friendly repulsor Coefficient

cre 6 Enemy repulsor Coefficient

ea 4 Attractor Exponent

erf 4 Friendly repulsor Exponent

ere 4 Enemy repulsor Exponent

Total 48

like F = 2000
d2 . Here c = 2000 and e = −2 with

respect to Equation 1.

• Friend Repulsor: This keeps friendly units moving
towards a common goal from colliding with each
other. It is typically stronger than the attractor at
short distances and weaker at long distances. A typical
repulsor looks like F = 30000

d3 .

• Enemy Repulsor: This repels friendly units from
enemy units. It is similar to the friend replusor.

Since each potential field is determined by two parame-
ters, a coefficient and exponent of distance d, six parameters
determine a unit’s potential field:

PF = cad
ea + crfd

erf + cred
ere (2)

where ca and ea are parameters of the attractor potential
function, crf and erf for the friend repulsor, and cre and ere
for the enemy replusor. These parameters are then encoded
into a binary string which worked for both GAs and HCs,
and is the chromosome of our GAs. Specifically, we encoded
the chromosome in a 48-bit string. The detailed representation
of IMs and PFs parameters are shown in table II. Note that
the Sum IM is derived by summing the Marine and Tank
IMs and so does not need to be encoded. When the game
engine receives a chromosome, it decodes the binary string into
corresponding parameters and directs friendly units to move
and attack enemies according to Algorithm 1. The fitness of
this chromosome at the end of each match was computed as
described later and then sent back to our search algorithm.

Algorithm 1 Unit Navigation Algorithm
Initialize MarineIM, TankIM, SumIM;
while (checkAllUnitsInPosition() == false) do

targetPosition = getMinimunPositionOnSumIM();
PFMove(allUnits, targetPosition);
if (unit in targetPosition) then

setUnitInPosition(unit, targetPosition);
updateIMs();

end if
end while
enemyPosition = getEnemyPosition();
Attack(enemyPosition);

B. Fitness Evaluation

All the evaluation scores used in our fitness evaluation
function are the default built-in scores from Starcraft. The
score for eliminating a unit is based on how many resources
are used. For example, one Marine needs 50 minerals to
be produced while eliminating an enemy Marine contributes
2 × 50 = 100 to the default Starcraft score (our fitness
function). One Tank needs 150 minerals and 100 gas. Gas
counts double compared to minerals, therefore the score for
eliminating a Tank is 150× 2 + 100× 4 = 700. The detailed
evaluation function to compute fitness (F ) is:

F = (NFM −NEM )× SM + (NFT −NET )× ST

+(1− T
MaxFrame )× Stime

(3)
where fitness is calculated at the end of the each skirmish
(game). NFM represents how many enemy Marines were
killed by the friendly side, NEM is the number of friendly
Marines killed by the enemy. SM is the score for destroying
a Marine as defined above. NFT , NET and ST have the same
meaning for Tanks. The third part of the evaluation function
computes the impact of game time on score. T is the time
spent on the whole game, the longer a game lasts, the lower
is 1− T

MaxFrame . Stime in the function is the weight of time
score which was set to 100 in the experiments. Maximum game
time is 2500 frames, approximately one and a half minutes at
normal game speed. Therefore, time score being 0 means the
game used up T = 2500 frames, a time score of 100 means
that the game ended within one frame. We took game time
into our evaluation because “timing” is an important factor in
RTS game. Suppose a skirmish lasts as long as one minute,
there is enough time for the opponent to build more units
or relocate troops from other places to support this skirmish
thus increasing the chances of our player losing the skirmish.
Therefore, skirmish duration becomes a crucial issue that we
want to take it into consideration in our evaluation function.

However, especially during the early stages of evolution,
if an individual cannot guide our units to engage the enemy
units, F will be 0 and Equation 3 cannot then tell the difference
between two such individuals. Therefore, we need the fitness
evaluation to also account for scenarios without engagement.
Distance turned out to be a good indicator for evaluating F in
such cases. The smaller the average distance between our units
to enemy units the better, since this indicates that the group
moves in the right direction and should therefore get relatively
higher scores. We used Equation 4 to evaluate matches when
there is no engagement during the game.

F = (1− D

Dmax
)× Sdist (4)

where D is average distance from friendly units to enemy
units. 1 − D

Dmax
converts maximization of average distance

to average distance minimization. Dmax is a constant value
given the maximum distance in the map. Sdist is the weight
of distance score which was set to 100 in the experiments.



C. Genetic Algorithm

Our genetic algorithm used CHC elitist selection instead
of selection used in canonical genetic algorithm [23], [24].
Offspring and parents together compete for population slots
in the next generation in elitist selection. More specifically,
our genetic algorithm selects the N best individuals from
both parents and offspring to create the next generation. Early
experiments indicated that our elitist selection genetic algo-
rithm worked significantly better than the canonical genetic
algorithm on our problem. According to previous experiments
in our lab, we set the population size to 40 and ran the GA for
60 generations. The probability of crossover was 0.88 and we
used CHC selection. We also used bit-mutation with a 0.01
chance that any individual bit would flip in value. Standard
roulette wheel selection was used to select chromosomes for
crossover. CHC being strongly elitist, helped keep valuable
information from being lost if our GA produces low fitness
children.

D. Case-Injected Genetic Algorithm (CIGAR)

The CIGAR used in this paper operates on the basis
of hamming distance for solution similarity [19]. Therefore,
our solution similarity distance metric is computed by the
following formula:

D(A,B) =

l−1∑
i=0

(Ai ⊕Bi) (5)

where l is the chromosome length, ⊕ represents the exclusive
or operator (XOR), and Ai represents the ith bit of solution
A.

We use a “closest to best” injection strategy to choose
individuals from the case-base to be injected into CIGAR’s
population. We replace the four (10% of the population size)
worst individuals with the individuals retrieved by our injection
strategy. We chose the injection interval to be log2(N) where
N is the population size. Therefore, we inject four “closest
to best” cases every log2(40) ≈ 6 generations and replace the
four worst individuals. We configured the population, selection,
crossover and mutation in CIGAR to be the same as the GA.

E. Scenarios

To evaluate the performance of genetic algorithm with case
injection and without case injection, we designed five different
but similar scenarios. The difference between scenarios is the
initial positions of enemy units’. Our five scenarios are:

• Intermediate Position: Enemy units located in the
middle of the map. The maximum distance between
any two enemy units is six IM cells.

• Dispersed Position: The maximum distance between
any two enemy units is eleven IM cells. Enemy units
in this scenario have the most scattered positions and
the weakest concentrated fire power of all the five
scenarios.

• Concentrated Position: Enemy units located in the
middle of the map, and the maximum distance be-
tween any two enemy units is three IM cells. Enemy

units in this scenario have the most concentrated fire
power.

• Corner Position: Enemy units located at the northeast
corner of the map, concentrated as much as in the
previous scenario. Enemy units in this scenario have
the strongest concentrated fire power as well as the
best defensive positions.

• Split Position: Enemy units located in the middle of
the map and split into two groups. Enemy units in
this scenario have stronger concentrated fire power
than Dispersed and Intermediate positions but weaker
concentrated fire power than Concentrated and Corner
positions.

These five types of scenario can usually be found in human
player matches. Dispersed units have less concentrated fire
power but more map control and information gain. On the
other hand, concentrated units have less map control but are
harder to destroy. Since our experiments do not have fog of
war, the advantage of dispersed enemy units do not apply in
this case resulting in making the more concentrated enemy
units harder to destroy. Therefore, the first two scenarios and
the last one are relatively easy for GAs to find high quality
solutions to; scenario two and three are harder.

IV. RESULTS AND DISCUSSION

We used Starcraft’s built-in AI to test our evolving so-
lutions. However, the behavior of the default AI was set to
non-deterministic for increasing interest and unpredictability.
The Starcraft game engine added minor randomness in the
probability of hitting the target and in the amount of damage
done. For example, two Marines fighting each other might end
up with different results in two games. But the randomness
is restricted to a small range so that results are not heavily
affected. The randomness is used in ladder games as well. This
however means that in our case, evolved parameters will not
guarantee the same score every time we run. In other words,
a high fitness solution has a high probability of getting a high
score in the game.

According to the evaluation function and scenarios we
introduced before, the theoretic maximum score for eliminating
enemy forces is 1500 and maximum time score (corresponding
to minimal time) is 100, therefore, the maximum evaluation
score or fitness is 1600. Note that the first two digits in an
evaluation score represent the unit elimination score, and the
last two digits represent time score. For example, if the final
score ends up at 1357 we can infer the following:

• The score being positive means our AI player defeated
the built-in AI.

• 1300 represents the unit elimination score and com-
pared to the maximum of 1500, our AI player lost 200
which indicates that two Marines were killed by the
enemy during the game.

• The last two digits being 57 represents (1 − 57
100 ) ×

2500 = 1075 frames spent during the entire game
which is approximately 38.4 seconds converted to
standard game speed.



A. Case Injection’s Effect on Genetic Algorithms

In our experiments, we tested GAs and CIGARs running
with ten different random seeds. Each such test took 14 hours
to run the 40 × 60 × 5 = 12, 000 evaluations, where 40 is
population size, 60 is the number of generations to run, and 5
represents the five scenarios. Scenarios are tested sequentially
in the following order. Intermediate, Dispersed, Concentrated,
Corner, and Split. CIGAR extracts the best individual in
each generation and stores this individual into the case-base;
duplicates are discarded. When running on a problem, suitable
cases chosen according to the “closest to the best” strategy
from the case-base are injected into CIGAR’s population. Each
case may contain useful information about the new search
space and be a partial solution to the current problem and thus
bias the genetic algorithm to take advantage of “good” genes
found by previous search attempts. The number of cases in
the case-base usually increases with the number of problems
solved.

Fig. 3: Average maximum/average scores of GA and CIGAR
over 10 runs on Intermediate scenario. The X-axis represents
the generation and the Y-axis represents the fitness.

Fig. 4: Average maximum/average scores of GA and CIGAR
over 10 runs on Concentrated scenario. X-axis represents the
generation and Y-axis represents the fitness.

The performance of GAs and CIGARs running in the
Intermediate scenarios as shown in Figure 3 tell us that
their performance is similar. This is because the Intermediate
scenario is the first problem to be attempted and CIGAR has
no cases in its case-base when running on this problem. They

are not exactly the same because there is some randomness in
the game evaluation as explained earlier. On the other hand, the
results from the Concentrated scenario show the difference in
performance (see Figure 4). CIGAR has solved two problems
(Intermediate and Dispersed scenarios) before this scenario,
and 12.2 cases on average (over the ten runs) exist in the
case-base. We can see that CIGAR outperformed the GA
both in quality and speed in the Concentrated scenario when
CIGAR’s case-base contains cases from previous scenarios.
The curve for CIGAR’s average fitness in the Concentrated
scenario dropped a little every 6 generations because four cases
from the case-base were injected into the population. The new
cases may only contain partial solutions with lower fitness
in the population, which cause the average fitness to drop.
However, average fitness rises again quickly after the drop.
This shows the cases injected into the population may have
introduced useful information leading to better performance.

Fig. 5: Solution quality of each scenario. As more problems
are solved, CIGAR produces better solutions than genetic
algorithm. The X-axis represents 5 different scenarios. The
Y-axis represents the highest fitness. The number on top of
each bar of CIGAR shows the number of cases in case-base
when CIGAR starts.

Figure 5 compares the quality of solutions found by the
GA and CIGAR in all five scenarios. The number on top of
each bar for CIGAR shows the average number of cases when
CIGAR starts in the corresponding scenarios. The case-base
is empty on the Intermediate (first) scenario, and increases
to 27.1 on the last scenario. Therefore, CIGAR’s “experi-
ence” generated from solving problems increases scenario
by scenario. Both GA and CIGAR reliably found quality
solutions above fitness 1200 a hundred percent of the time.
The first two scenarios and the last one show that the GA and
CIGAR found similar quality solutions. The reason behind
this is that the Intermediate, Dispersed and Split scenarios
are relatively easy to solve because scattered enemy units are
easily destroyed one-by-one quickly without much damage
to the opponent. Therefore, both GA and CIGAR performed
very well. On the other hand, the Concentrated and Corner
scenarios show the difference in performance between the
GA and CIGAR. Concentrated enemy units have stronger fire
power than scattered units which leads to high quality solutions
being harder to find by GAs in the search space. In this case,
we believe CIGAR had an advantage and case-injection biased
search to more quickly find solutions with higher fitness.



Fig. 6: Number of generations to solutions found above 1100.
As more problems are solved, CIGAR took less time compared
to the GA.

We wanted techniques for finding high quality solutions
quickly and reliably for winning a skirmish in a RTS game.
Thus, we measured the number of generations our GA and
CIGAR took to produce quality solutions with fitness above
a threshold quality of 1100. Figure 6 shows the number of
generations needed to find quality solutions above 1100 from
our GA and CIGAR. The GA ran on each scenario without any
bias from injected cases and so GA performance can be used to
indicate a level of difficulty for each scenario. A low number
of generations indicates that the GA finds quality solutions
easily. A high number of generations indicates the GA has a
hard time finding quality solutions. So we can think of the GA
performance in Figure 6 as showing us the difficulty levels of
our five scenarios. In order from easy to hard, the scenarios are:
Intermediate, Dispersed, Split, Concentrated, and Corner. The
first scenario’s result shows CIGAR found quality solutions 1
generation on average slower than our GA because CIGAR’s
case-base is empty. However, after CIGAR runs on the first
scenario, on average 7.9 cases are stored into the case-base.
CIGAR only takes 4 generations to find solutions with fitness
greater than 1100 on this second scenario (Dispersed), while
our GA takes 10 generations. Having found quality solutions
for another scenario, the number of cases in our case-base
increased again. CIGAR finds quality solutions for the third
scenario in 14 generations compared to the GA which takes
30 generations. CIGAR found quality solutions 21 generations
faster for the fourth scenario (the most difficult for the GA),
and 10 generations faster for the last scenario.

B. Learned Group Behavior

From the influence maps and potential fields point of view,
we use IMs to guide friendly units’ positioning and use PFs to
navigate friendly units to move and attack opponent units. Fig-
ure 7 shows an example of generated IMs positioning. Friendly
units could take advantage of this positioning to concentrate
their fire and maximize their damage to the opponent. The
group positioning and movement that evolves first learns to
ensure that single units stay away from enemy units controlled
territory or to move outside of the map. If the enemy repulsor
force is too small, units might move into enemy territory and
be destroyed. On the other hand, if the force is too large, it will
push the units to the border of the map and lead to avoiding

the enemy altogether. Second, the parameters for the IMs were
learned to guide friendly units’ positioning. The IMs calculated
the enemy’s weak spots from the current position of enemy
units and generates attraction points to guide friendly units
in preparing for the skirmish. Different IM parameters lead
to different locations, if the RMarine and RTank are small,
the locations might be inside the enemy units’ attack range.
If they are too large, the units may spend more time on the
way and result in longer games, and low Stime. The enemy
replusor and friend attractor were learned last. This affects
detailed unit movement. Good combinations of attractors and
replusors allow the group to move and attack smoothly and
effectively. Units move to the right locations quickly and
destroy enemy units faster. At the same time friendly units
have more opportunity to survive. Therefore, our evaluation
function is biased towards short movement, more enemy units
eliminated, more friendly units survival, and shorter game
duration.

Fig. 7: Snapshot of one group’s positioning on Starcraft’s
minimap. The green dots on the map represent friendly units.
The gray dots in the middle of the map are enemy units. The
rest of the map is covered by fog of war.

Summarizing, the results indicate that CIGAR can produce
high quality solutions for skirmishes reliably and quickly.
CIGAR can learn through experience gained from previously
attempted problems and bias search to reduce the time taken
to find quality solutions to similar problems. In relatively
easy scenarios like Intermediate, Dispersed and Split, the
highest quality solutions found by GAs and CIGARs are close.
However, CIGAR found high quality solutions with fitness
above 1100 up to twice as fast as the GA. In the case of hard
problems like Concentrated and Corner scenarios, CIGAR is
not only two times as fast as the GA, but also found higher
quality solutions than the GA. We are not ready yet to apply
these results directly to the design of an RTS game player
since we need to include health, terrain, and other aspects of
the game world into our representation. Note however, that
we can choose among different sets of skirmish parameters
selecting the parameters from the scenario that best matches
the current scenario.

V. CONCLUSION AND FUTURE WORK

Our research focuses on generating group positioning and
unit movement in order to win skirmish scenarios in RTS



game. Early results showed that hill-climbers can find service-
able IM and PF parameters that can occasionally defeat the
default AI, but they are not guaranteed to find good solutions
every time. Compared to hill-climbers, the genetic algorithms
always find good combinations of IMs and PFs parameters
and produce higher quality solutions, but take much longer to
converge. Therefore, we are interested in techniques that can
reliably and quickly find high quality solutions.

In this paper, we investigated applying case injected ge-
netic algorithms to learn from “experiences” generated from
previous problems and use this information to bias our search
and speed up the process of finding high quality solutions. We
defined five similar scenarios with different difficulty levels
and you might expect to find similar scenarios in some human
player matches. We applied CIGARs to these five sequential
scenarios to assess how experience, stored as cases in a case-
base affects performance compared to a GA. GAs with exactly
the same parameters as used by CIGAR thus served as a
baseline.

The results show that CIGARs performed similar to our
GAs in the first scenario when the case-base is empty. In
scenarios with more scattered enemy units, including scenarios
one, two, and five, which are relatively easy problems, both
GAs and CIGARs found high quality solutions. However,
CIGARs find high quality solutions up to twice as fast as GAs.
Finally, in scenarios two and three, with more concentrated
enemy units, CIGARs not only find higher quality solutions
than GAs, but also doubled the speed of finding a quality
solution above 1100. This indicates that CIGARs are a suitable
technique to apply across similar problems in RTS games. In
addition, these “experiences” generated from solved problems
provided valuable information and could help to speed up
solving other similar problems.

We are also interested in applying CIGARs to more com-
plicated scenarios where we consider different terrain, unit hit-
points (health), weapon range, and other elements. In addition,
instead of evolving solutions based on a static baseline such
as the built-in Starcraft AI, we could apply co-evolutionary
techniques to produce both sides of the game AI. Furthermore,
we want to evaluate our AI player against state-of-the-art bots
from other researchers.
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