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Abstract—We investigate using genetic algorithms to generate
high quality micro management in combat scenarios for real-
time strategy games. Macro and micro management are two key
aspects of real-time strategy games. While good macro helps a
player collect more resources and build more units, good micro
helps a player win skirmishes against equal numbers and types
of opponent units or win even when outnumbered. In this paper,
we use influence maps and potential fields to generate micro
management positioning and movement tactics. Micro behaviors
are compactly encoded into fourteen parameters and we use
genetic algorithms to search for effective micro management
tactics for the given units. We tested the performance of our
ECSLBot (the evolved player), obtained in this way against
the default StarCraft AI, and two other state of the art bots,
UAlbertaBot and Nova on several skirmish scenarios. The results
show that the ECSLBot tuned by genetic algorithms outperforms
the UAlbertaBot and Nova in kiting efficiency, target selection,
and knowing when to flee to survive. We believe our approach is
easy to extend to other types of units and can be easily adopted
by other AI bots.

I. INTRODUCTION

Real-Time Strategy (RTS) games have become a popular
platform for computational and artificial intelligence (CI and
AI) research in recent years. RTS Players need to gather
resources, build structures, train military units, research tech-
nologies, conduct simulated warfare, and finally defeat their
opponent. All of these factors and their impact on decision
making are critical for a player to win a RTS game. In
RTS communities, RTS players usually divide their decision
making into two separate levels of tasks called macro and
micro management as shown in Figure 1. Macro is long
term planning, like strategies conducted in the early game,
technology upgrading, and scouting. Good macro management
helps a player to build a larger army or a better economy or
both. On the other hand, micro management is the ability to
control a group of units in combat or other skirmish scenarios
to minimize unit loss and maximize damage to opponents.
We decompose micro management into two parts: tactical
and reactive control. Tactical control is concerned with the
overall positioning and movement of a squad of units. Reactive
control focuses on controlling a specific unit and moving,
firing, fleeing during a battle. This paper focuses on using
Genetic Algorithms (GAs) to find winning tactical and reactive
control for combat scenarios. This focus is indicated by the
dotted square in Figure 1. Micro management of units in
combat aims to maximize damage given to enemy units and
minimize damage to friendly units. Common micro techniques
in combat include concentrating fire on a target, withdrawing
seriously damaged units from the front of the battle, and kiting

an enemy unit with shorter attack range. This paper focuses
on applying GAs to generate competitive micro management
as part of a RTS game player that can outperform an opponent
with the same or greater number of enemy units. We plan to
incorporate these results into the design of more complete RTS
game players in our future work.

Fig. 1: Typical RTS AI levels of abstraction. Inspired by a
figure from [1].

Spatial maneuvering being an important component of
combat in RTS games, we applied a commonly used technique
called Influence Maps (IMs) to represent terrain and enemy
spatial information. IMs have been widely used to attack
spatial problems in video games, robotics, and other fields. An
IM is a grid placed over a virtual world with values assigned
to each square by an IM function. Figure 2 shows an IM
which represents a force of enemy units and the surrounding
terrain in StarCraft: Brood War, our simulation environment.
A unit IM is computed by all enemy units in the game. In our
experiments, greater cell values indicate more enemy units in
this area and more danger to friendly units. In addition to the
position of enemy units, terrain is another critical factor for
micro behaviors. For example, kiting enemy units near a wall is
not a wise move. We then use another IM to represent terrain in
the game world to assist micro management. We combined the
two IMs and use this battlefield spatial information to guide our
AI players positioning and reaction control. In this research, we
use search algorithms to find optimal IM parameters that help
specify high quality micro behaviors of our units for combat
scenarios.

While good IMs can tell us where to go, good unit
navigation can tell our units how best to move there. Potential



Fig. 2: IM representing the game world with enemy units and
terrain. The light area on the bottom right represents enemy
units. The light area surrounding the map represents a wall.

Fields (PFs) are used in our research to control a group of units
navigating to particular locations on the map. PFs are used
widely in robotics research for coordinating multiple entities
movement and are often applied in video games for the same
purpose. In our research, we apply two PFs to coordinate units’
movement and use two parameters to specify each PF.

The goal of our research is to create a complete human-
level RTS game player and this paper attacks one aspect of
this problem: Finding effective micro management for winning
small combat scenarios. Several challenges need to be resolved
in this research. First, how do we represent reaction control
like kiting, target selection, and fleeing? Furthermore, since
the parameters for IM, PF, and reaction control are related,
how do we tune these variables on different types of units and
scenarios? To deal with these issues, we compactly represent
micro behaviors as a combination of two IMs, two PFs,
and a set of reaction control variables. We then use GAs
to seek and find good combinations of these parameters that
lead to winning micro behaviors. Since StarCraft: Brood War
API (BWAPI) framework has become a popular platform for
RTS AI research, we created three small battle scenarios
in StarCraft and applied our GAs to search for optimal or
near-optimal micro behaviors in these scenarios [2]. We then
compared the performance of micro behaviors produced by our
GAs with two state of the art StarCraft bots: UAlbertaBot [3]
and Nova [4].

The remainder of this paper is organized as follows.
Section II describes related work in RTS AI research and
common techniques used in RTS micro research. The next
section describes our simulation environment, design of our
AI player, and our representation of micro for the GA. Sec-
tion IV presents preliminary results and compares the solutions
produced by our methods with two state of the art StarCraft
bots. Finally, the last section draws conclusions and discusses
future work.

II. RELATED WORK

Much work has been done in applying different techniques
to designing RTS AI players [5]. Let’s first look at the work
related to spatial reasoning and unit movement. Previous work
has been done in our lab on applying IMs to evolve a Lagoon-
Craft RTS game player [6]. Sweetser et. al. developed a game

agent designed with IMs and cellular automata, where the IM
was used to model the environment and help the agent in mak-
ing decisions in their EmerGEnt game [7]. They built a flexible
game agent that is able to respond to natural phenomena and
user actions while pursuing a goal. Bergsma et. al. used IMs
to generate adaptive AI for a turn based strategy game [8]. Su-
Hyung et. al. proposed a strategy generation method using IMs
in a strategy game Conqueror. He applied evolutionary neural
networks to evolve non-player characters’ strategies based on
the information provided by layered IMs [9]. Avery et. al.
worked on co-evolving team tactics using a set of influence
maps, guiding a group of friendly units to move and attack
enemy units based on opponent’s position [10]. Their approach
used one IM for each entity in the game to generate different
unit movement in a game. This method however, does not
scale well to large numbers of units. For example, if we have
two hundred entities, the population cap for StarCraft, we will
need two hundred IMs to be computed every update. This
could be a heavy load for our system. Preuss et. al. used a
flocking based and IM-based path finding algorithm to enhance
group movement in the RTS game Glest [11], [12]. Raboin
et. al. presented a heuristic search technique for multi-agent
pursuit-evasion games in partially observable space [13]. In
this paper, we use enemy units IM combined with terrain IM
to gather spatial information and guide our units for winning
micro management in RTS games.

Potential fields have also been applied to AI research in
RTS games [14], [15]. Most of the work is related to unit
movement for spatial navigation and collision avoidance [16].
This approach was first introduced by Ossama Khatib in 1986
while he was working on real time obstacle avoidance for
mobile robots [17]. The technique was then widely used in
avoiding obstacles and collisions especially in multiple unit
scenarios with flocking [18], [19], [20]. Hagelbäck et. al.
applied this technique to AI research within a RTS game [21].
They presented a Multi-Agent Potential Field based bot ar-
chitecture in the RTS game ORTS [22] and incorporate PFs
into their AI player at both tactical and unit reaction control
level [23]. We use two PFs for group navigation in our work.

Reactive control, including individual unit movement and
behaviors, aims at maximizing damage output to enemy units
and minimizing the loss of friendly units. Common micro
techniques in combat include fire concentration, target se-
lection, fleeing, and kiting. Uriarte et. al. applied IMs for
kiting, frequently used by human players, and incorporated
the kiting behavior into their StarCraft bot Nova [4]. Gunnerud
et. al. introduced a CBR/RL hybrid system for learning target
selection in given situations during a battle [24]. Wender et. al.
evaluated the suitability of reinforcement learning algorithms
to perform the task of micro managing combat units in RTS
games [25]. The results showed that their AI player was able to
learn selected tasks like “Fight”, “Retreat”, and “Idle” during
combat. However, the baseline of their evaluation is the default
StarCraft AI and the tasks are limited. We scripted our reactive
control behaviors with a list of unit features represented by six
parameters. Each set of parameters influences reactive control
behaviors including kiting, targeting, fleeing, and movement.

In this paper, we focus on coordinated group behaviors and
effective reactive controls in a skirmish scenario and apply
GAs to search for high performance micro behaviors against



TABLE I: Unit properties defined in StarCraft

Parameter Vulture Zealot Purpose
Hit-points 80 160 Entity’s health. Entity dies when Hit-

points ≤ 0.
MaxSpeed 6.4 4.0 Maximum move speed of Entity.
Damage 20 8×2 Number of Hit-points that can be re-

moved from the target’s health by
each hit.

Weapon Ranged Melee The distance range within which an
entity can fire upon target.

Cooldown 30 22 Time between weapons firing.
Destroy
Score

150 200 Score gained by opponent when this
unit has been killed.

different types of enemy units. IMs and PFs are used in our AI
player to analyze the battlefield situation and generate group
positioning. Reactive control behaviors are represented by six
parameters and used by our micro agent to defeat enemy units.

III. METHODOLOGY

The first step of this research was building an infrastructure
within which to run our AI player called a “bot”. In our first
set of scenarios, a bot controls a small group of units to fight
against different numbers and types of enemy units. We list
the basic rules of our scenarios below.

• No obstacles except a wall surrounding the map.

• Default StarCraft units.

• Perfect information of the map and the enemy units.

The primary objective is to defeat the opponent by eliminat-
ing their units while minimizing the loss of friendly units. The
second objective is minimizing game duration. Our scenarios
contains five Vultures against different types of enemy units.
A Vulture is a Terran unit with ranged attack weapon, low
hit-points, and fast movement. Table I shows the detailed
parameters for Vulture and another Protoss unit Zealot which
is used in our experiments later.

A. Influence Maps and Potential Fields

We compactly represent micro behaviors as a combination
of two IMs, two PFs, and a set of reactive control parameters.
The IM generated from enemy units combined with the terrain
IM tells our units where to go and PFs are used for unit
navigation. The unit IM and the terrain IM are functions of
the weights and ranges of enemy units and unwalkable terrain
(walls). Since computation time depends on the number of IM
cells, we use a cell size of 32× 32 pixels.

A typical PF function is similar to equation 1, where F
is the potential force on the unit, d is the distance from the
source of the force to the unit. c is the coefficient and e is the
exponent applied to distance and used to adjust the strength
and direction of the vector force.

F = cde (1)

We use two PFs of the form described by Equation 1 to
control the movement of units. Each of the PF calculates one

force acting on a unit. The two potential forces in our game
world are:

• Attractor: The attraction force is generated by the
destination where the unit is moving toward. It is
inversely proportional to distance. A typical attractor
looks like F = 2500

d2.1 . Here c = 2500 and e = −2.1
with respect to Equation 1.

• Repulsor: This keeps friendly units moving to the
destination from colliding with each other. It is usually
stronger than the attractor force at short distances and
weaker at long distances. A typical repulsor looks like
F = 32000

d3.2 .

Each PF is determined by two parameters, a coefficient
c and an exponent e. Therefore, we use four parameters to
determine a unit’s PFs:

PF = cad
ea + crd

er (2)

where ca and ea are parameters of the attractor force, cr and
er for the friend repulsor force. These parameters are then
encoded into a binary string for the GA.

B. Reactive Control

Besides the group positioning and unit movement, reactive
control behaviors have to be represented in a way that our
GAs can evolve. In our research, we considered frequently
used reactive control behaviors: kiting, target selection, and
fleeing which are usually used in real games by human players.
Figure 3 shows the six variables used in our micro scripting
logic. Table II explains the details and purposes of each
variable.

Fig. 3: Variables used to represent reactive control behaviors.
The Vultures on the left side of map are friendly units. Two
Vultures on the right are enemy units.

• Kiting: Also known as “hit and run”. This behavior
is especially useful in combat where the attack range
of our units is larger than the attack range of enemy
units. The variables used in kiting are St, Dk, Dkb.

• Target Selection: Concentrating fire on one target, or
switching to a new target if there is an enemy with low
hit-points nearby. The variables used in target selection
are Rnt, HPef .



TABLE II: Chromosome

Variable Bits Description

WU 5 Enemy unit weight in IMs.

RU 4 Enemy unit influence range in IMs.

WT 5 Terrain weight in IMs.

RT 4 Terrain influence range in IMs.

ca 6 Attractor coefficient.

cf 6 Repulsor coefficient.

ea 4 Attractor exponent.

ef 4 Repulsor exponent.

St 4 The stand still time after each firing. Used for kiting.

Dk 5 The distance from the target that our unit start to kite.

Rnt 4 The radius around current target. Other enemy units
within this range will be considered to be a new target.

Dkb 3 The distance for our unit to move backward during
kiting.

HPef 3 The hit-points of nearby enemy units, under which
target will be assigned.

HPfb 3 The hit-points of our units, under which unit will flee.

Total 60

• Flee: Fleeing from the front of the battle when our
units have low hit-points. HPfb was used to trigger
this behavior.

Specifically, we encoded the chromosome into a 60-bit
string. The detailed representation of IMs, PFs, and micro
parameters are shown in Table II. Note that the sum IM is
derived by summing the enemy unit IM and terrain IM so it
does not need to be encoded. When the game engine receives
a chromosome from our GA, it decodes the binary string into
corresponding parameters according to the rule in Table II
and directs friendly units to move to the position according to
Algorithm 1 and then attack enemy units. Algorithm 1 shows
the logic to locate an enemy target, an enemy unit with the
lowest value in the IM before a battle. This algorithm also
finds a weak spot to move toward before the fight through
recursively calculating the lowest surrounding IM cell starting
at the selected target until the cell value equals to 0. The fitness
of this chromosome at the end of each match is then computed
and sent back to our GA.

Algorithm 1 Targeting and Positioning Algorithm
Initialize TerrainIM, EnemyUnitIM, SumIM;
Target = MinIMValueUnit on SumIM;
movePos = Target.getPosition();
while (getIMValue(movePos) > 0) do

movePos = minSurroundingPos();
end while
moveTo(movePos);
attack(Target);

C. Fitness Evaluation

The objective of our first fitness evaluation is maximizing
the damage to enemy units, minimizing the damage to friendly
units, and minimizing the game duration in given scenarios. In
this case, a unit remaining at the end of game will contribute

100 to its own side. The fitness of an individual will be
determined by the difference in the number of units remaining
on both sides at the end of each game. For example, suppose
three friendly Vultures and one enemy Vulture remains at the
end of the game, the score will be (3 − 1) ∗ 100 = 200 as
shown in the first term of Equation 3. The detailed evaluation
function to compute fitness (F ) is:

F = (NF −NE)× Su + (1− T
MaxT )× St (3)

where NF represents how many friendly units remained, NE

is the number of enemy units remaining. Su is the score
for saving a unit as defined above. The second term of the
evaluation function computes the impact of game time on
score. T is the time spent on the whole game, the longer a
game lasts, the lower is 1 − T

MaxT . St in the function is the
weight of time score which was set to 100 in the experiments.
Maximum game time is 2500 frames, approximately one and
a half minutes at normal game speed. We took game time
into our evaluation because “timing” is an important factor in
RTS games. Suppose combat lasts one minute. This might be
enough time for the opponent to relocate backup troops from
other places to support the ongoing skirmish thus increasing
the chances of our player losing the battle. Therefore, combat
duration becomes a crucial factor that we want to take into
consideration in our evaluation function.

Minimizing the loss of friendly units may not be the
primary objective in some scenarios. In some cases, we want
to destroy as many enemy units as possible in a short time
duration. For example, we want to test how many Zealots can
be eliminated by 5 Vultures during 2500 frames. Killing one
Zealot will add 200 to the score, while losing one Vultures
will deduct only 150, therefore, the second fitness function is:

F = NE ×DSET −NF ×DSFT (4)

where NF represents how many enemy units were killed, NE

is the number of friendly units being killed. DSET and DSFT

are the destroy scores for the types of unit being killed as show
in Table I. We apply this fitness function on scenarios in which
we want to evaluate how fast our bots can eliminate enemy
units.

D. Genetic Algorithm

We used GAs to search for effective micro behaviors in
combat scenarios against different types of enemy units. We
used CHC elitist selection in which offspring compete with
their parents as well as each other for population slots in
the next generation [26], [27]. CHC selection being strongly
elitist keeps high fitness individuals from being lost. Early
experiments indicated that our CHC GAs worked significantly
better than the canonical GAs on our problem. According to
our previous experiments, we set the size of population to
20 and run the GA for 30 generations. The probability of
crossover was 0.88 and the probability of bit-mutation was
0.01. Roulette wheel selection was used to select chromosomes
for crossover.

E. StarCraft Bots

Thanks to recent StarCraft AI tournament competitions,
several groups have been working on AI players for StarCraft.



In our research, we apply GAs to search for effective micro
behaviors and compare the micro performance of our ECSLBot
with two other state of the art bots: UAlbertaBot and Nova.
UAlbertaBot was developed by D. Churchill from the Uni-
versity of Alberta and is the champion of the AIIDE 2013
StarCraft competition1. The micro logic of the UAlbertaBot is
handled by MeleeManager and RangedManager for all types
of units rather than each specific unit type. This abstraction
makes it easy to adapt the micro managers to different types
of military units. However, the UAlbertaBot implementation
ignores the difference between units. For example, both Vul-
ture and Dragoon are range attackers and can “kite” or “hit
and run” against melee units, but they should kite differently
based on weapon cool down time and target selection. Nova is
another bot developed by A. Uriate. Nova was ranked number
7 on the AIIDE 2013 StarCraft competition. Nova uses IMs to
control the navigation of multiple units and applied this idea to
kiting behavior. The default StarCraft AI (SCAI) was used as
one baseline in evaluating the performance of other bots. We
encoded IMs, PFs, and reactive control behaviors to represent
micro behaviors and apply GAs to search for optimal solutions
against SCAI on different scenarios. We then compare the
micro performance with UAlbertaBot and Nova on the same
scenarios.

TABLE III: Snapshots of three scenarios.

Scenarios Description Bots

5 Vultures versus
25 Zealots.

Evaluating
the efficiency of
kiting behaviors.

UAlbertaBot

Nova

ECSLBot

SCAI

5 Vultures versus
6 Vultures.

Evaluating
the efficiency of
target selection
and hiding.

UAlbertaBot

Nova

ECSLBot

SCAI

5 Vultures versus
5 Vultures.

Comparing the
performance of
each bot’s micro
behaviors by
fighting against
each other.

UAlbertaBot

Nova

ECSLBot

F. Scenarios

To evaluate the performance of ECSLBot’s micro manage-
ment from different perspectives, we designed three scenarios
as shown in Table III. In the first scenario, GAs evolve

1http://www.StarCraftAICompetition.com

high performance micro behaviors against melee attack enemy
units. Kiting efficiency is extremely important in this type of
battle. In the second scenario, GAs search for optimal solutions
to fighting against ranged attack enemy units. Positioning and
target selection become key contributors in these scenarios.
The third scenario is created for our three bots to fight against
each other in a fair environment. Instead of comparing bot
performance against SCAI, the bots directly control equal
numbers and types of units to fight each other and we compare
the performance of each bot’s micro.

IV. RESULTS AND DISCUSSION

We used StarCraft’s game engine to evaluate our evolving
solutions. In order to increase the difficulty and unpredictabil-
ity of the game play, the behavior of the game engine was
set to non-deterministic for each game. In this case, some
randomness is added by the game engine affecting the prob-
ability of hitting the target and the amount of damage done.
This randomness is restricted to a small range so that results
are not heavily affected. These non-deterministic settings are
used in ladder games and professional tournaments as well.
This does not impact some scenarios such as Vultures against
Zealots too much, because theoretically Vultures can “kite”
Zealots to death without losing even one hit-point. But the
randomness may have amplified effect on other scenarios. For
example, 5 Vultures fighting with 5 Vultures may end up with
upto a 3 units difference at the end in fitness. To mitigate
the influence of this non-determinism, individual fitness is
computed from the average scores in 5 games. Furthermore,
our GAs’ results are collected from averaged scores over ten
runs each with a different random seed. Early experiments
showed that the speed of game play affects outcomes as well.
Therefore, instead of using the fastest game speed possible: 0,
we set our games to a slower speed of 10 to reduce the effect
of the randomness 2. Each game lasts 25 seconds on average,
therefore, each evaluation will take 25 × 5 = 125 seconds to
run. With the population size of 20 and run for 30 generations,
we need 20×30×125

60×60 ≈ 21 hours for each run of our GA.

Fig. 4: Average score of bots versus generations on the 5
Vultures versus 25 Zealots scenario. X-axis represents time
and Y-axis represents fitness.

2Human players play StarCraft at game speed 24.



TABLE IV: 5 Vultures vs 25 Zealots over 30 matches.

Avg Score Avg Killed Avg Lost
UAlbertaBot vs SCAI -83.33 3.33 5
Nova vs SCAI 3506.67 17.53 0.27
ECSLBot vs SCAI 3566.67 17.83 0.20

A. Scenario 1: 5 Vultures vs 25 Zealots

Kiting is one of the most frequent reactive control behav-
iors used by professional human players. We designed a kiting
scenario in which a bot has to control 5 Vultures against 25
Zealots within 2500 frames3. Theoretically 5 Vultures cannot
eliminate all 25 Zealots within 2500 frames because of their
low damage output. Therefore, the purpose of this scenario
is evaluating the efficiency of kiting behavior on destroying
melee attack units. Equation 4 is used as our evaluation
function in this scenario. Figure 4 shows the average scores
of GAs running on this kiting scenario. We can see that
the maximum fitness in the initial population is as high as
3217, which means our bot eliminated 16 Zealots within 2500
frames. However, the average of maximum fitness increases
slowly to 3660 at generation 30, which is 18 Zealots. This
results tell us that our GAs can easily find a kiting behavior to
perform “hit and run” against melee attack units while trading
off damage output. Our ECSLBot trades off well between
kiting for safety and kiting for attack (damage).

We are interested in the performance differences among
our ECSLBot (the best bot evolved by the GA) and the
UAlbertaBot and Nova. We applied the UAlbertaBot and Nova
to control the same number of Vultures (5) against 25 Zealots
in the identical scenario. Table IV shows the results for all three
bots versus the baseline SCAI over 30 runs. We can see that the
UAlertaBot performed poorly against melee attack units in this
scenario. This is mainly because UAlbertaBot uses the same
micro logic for all its units. It eliminated only 3.33 Zealots on
average in each game, while losing all of its Vultures. On the
other hand, Nova’s performance is surprisingly good. It killed
17.53 Zealots and lost only 0.27 Vultures on average in each
game. This is because Nova hard coded and tuned micro logic
specifically for Vulture and optimized Nova controlled Vulture
kiting behavior against melee attack units. We then tested
ECSLBot on this scenario. The results show that ECSLBot
got the highest score on average over 30 runs. 17.83 Zealots
being killed in one match on average, while losing only 0.20
Vultures. ECSLBot and Nova seem to have very similar kiting
behavior and performance.

B. Scenario 2: 5 Vultures vs 6 Vultures

Besides performance against melee attack units, we are also
interested in bot performance against ranged attack units. In
this case, positioning and target selection become more impor-
tant than kiting because the additional movement from kiting
behavior will waste damage output while avoiding enemy’s
attack. We applied our GAs to search for effective micro
behaviors using the same representation as in the previous
scenario. However, we changed our fitness evaluation function

390 seconds with game speed 24.

TABLE V: 5 Vultures vs 6 Vultures over 30 matches.

Win Draw Lose Killed Remain
UAlbertaBot vs SCAI 0 0 30 2.67 0
Nova vs SCAI 1 0 29 3.13 0.13
ECSLBot vs SCAI 18 2 10 5.2 1.8

to Equation 3 to maximize killing of enemy units, minimize
the loss of friendly units, and minimize combat duration.

Fig. 5: Average score of ECSLBot over generations on the
5 Vultures versus 6 Vultures scenario. X-axis represents time
and Y-axis represents fitness.

Figure 5 shows the average score of GAs in 5 Vultures
versus 6 Vultures scenario. The average maximum fitness
found by GAs is 336, which means 3 friendly units remained
at the end of the game and all enemy units were eliminated.
Considering that the Vulture is a vulnerable unit and easily
dies, 3 Vultures saved after the battle is, we believe, high
performance. Table V shows the results from all of our three
bots tested in this scenario. All the bots run 30 times against the
default SCAI. This time, both UAlbertaBot and Nova perform
poorly. UAlbertaBot loses all 30 games against 6 Vultures,
killing 2.67 enemy Vultures on average in each game, while
losing all of its units. Nova performed slightly better than
UAlbertaBot with 1 win and lost 29 out of 30 games. However,
our ECSLBot evolved from GAs outperformed both of the
other two bots with 18 wins, 2 draws, and 10 loses. 5.2 enemy
Vultures are eliminated and 1.8 friendly Vultures survived on
average in each match. This result indicates that in scenarios
against ranged attack units, certain micro behaviors like kiting
are not as effective versus melee attack units. Positioning
and target selection become more important than kiting in
such scenarios. UAlbertaBot and Nova did not optimize micro
behaviors in all scenarios and performed poorly in these
cases. Note that ECSLBot needs to adapt to new scenarios by
evolving good values for the set of 14 parameters. However,
this is simply a matter of running the algorithm for another 21
hours - this is low cost compared to AI programmer time.

C. Scenario 3: 5 Vultures vs 5 Vultures

We have compared the performance of three bots playing
against SCAI on two different scenarios and the results show
that ECSLBots outperformed both other bots using two dif-
ferent sets of parameters. However, what are the results when



TABLE VI: 5 Vultures vs 5 Vultures over 30 matches.

Win Draw Lose Units Remaining
UAlbertaBot vs Nova 24 5 1 2.33
ECSLBot vs Nova 30 0 0 3.37
ECSLBot vs UAlbertaBot 17 1 12 0.30

they play each other? To answer this question, we set up our
third set of experiments on a 5 Vultures versus 5 Vultures
scenario. Each bot plays against both of the other two bots 30
times with identical units. We applied the set of parameters
evolved against 6 Vultures to play against UAlbertaBot and
Nova. The result is that ECSLBot beats Nova but is defeated
by UAlbertaBot. The replays show that the positioning of
ECSLBot is too specific to static opponents controlled by SCAI
and failed to beat UAlbertaBot. Therefore, we evolved another
set of parameters directly against UAlbertaBot and applied
ECSLBot with this set of parameters against UAlbertaBot
and Nova. Table VI shows the detailed results among all the
bots. We can see UAlbertaBot wins 24 matches, draws 5,
and loses 1 against Nova. After examining game replays for
these games, we found that Nova’s micro kites against any
type of opponent units. However, as our experiments with the
second scenarios showed, kiting too much against the same
ranged attack units actually decreased micro performance.
UAlbertaBot on the other hand, disabled kiting when fighting
against the equal weapon range units and defeated Nova easily.
Similarly, ECSLBot defeated Nova on all 30 games without a
loss or draw. Average units surviving was 3.37 which is higher
than UAlbertaBot’s 2.33. The final comparison was between
ECSLBot versus UAlbertaBot. The results show that ECSLBot
wins 17 matches, draws 1 match, and loses 12 matches out of
30. ECSLBot performed quite well on this scenario against the
other bots.

D. Learned Micro Behaviors

We are interested in the differences in evolved parameters
for the scenarios - against melee attack units and ranged attack
units. Table VI lists the details of optimal solutions in different
scenarios. Videos of all learned micro behaviors can be seen
online 4. There are two interesting findings in these results. The
first concerns the learned optimal attack route in the scenario
against 6 Vultures as shown in Figure 6. A gathering location
at the left side of the map was learned by our ECSLBot to
move toward before the battle. Our ECSLBot then controls
5 Vultures who follow this route to attack enemy units. The
result is that only three of the enemy units were triggered in
the fight against our 5 Vultures at the beginning of the fight.
This group positioning helped ECSLBot minimize the damage
taken from enemy units while maximizing damage output from
outnumbered friendly units.

The second interesting finding is that different micro behav-
iors are learned by ECSLBot in different scenarios. Figure 7
shows that our ECSLBot kited heavily against Zealots as
shown on the left side, but seldom move backward against
ranged attack units as shown on the right side. The values of
our parameters indicate the same thing. Table VII shows the

4http://www.cse.unr.edu/∼simingl/publications.html

Fig. 6: Learned optimal attacking route against 6 Vultures.

TABLE VII: Parameter values of best evolved individuals.

Opponent IMs PFs Reactive control
25 Zealots 3 9 15 8 43 55 6 2 1 5 6 7 7 0
6 Vultures 16 13 20 10 50 26 13 4 12 9 1 7 6 7
5 Vultures 23 10 22 7 40 11 14 4 10 14 1 6 3 0

parameter values found by our GAs in three scenarios. We can
see that St (the first parameter in reactive control section) is
1 frames in scenarios against melee attack units, which means
a Vulture starts to move backward right after every shot. On
the other hand, St is much bigger (12 and 10 frames) against
ranged attack units. This is because our units will gain more
benefit after each weapon fire by standing still rather than
moving backward immediately against ranged attack units.

Fig. 7: Learned kiting behaviors against Zealots and Vultures.
The left side of the figure shows that our Vultures are moving
backward to kite enemy Zealots. The right side shows that our
Vultures are facing the enemy Vultures with only one friendly
Vulture moving backward to dodge.

V. CONCLUSION AND FUTURE WORK

Our research focuses on generating effective micro man-
agement: group positioning, unit movement, kiting, target
selection, and fleeing in order to win skirmishes in RTS games.
We compactly represented micro behaviors as a combination
of IMs, PFs, and reactive control parameters in a 60 length
bit-string. GAs are applied to different scenarios to search
for parameter values that lead to high performance micro.
These micro behaviors are then adopted by our ECSLBot and
compared with the default StarCraft AI and two state of the
art StarCraft bots: UAlbertaBot and Nova.



We designed three scenarios in which bots need to control
5 Vultures against different types of enemies to evaluate
micro performance. The results show that a genetic algorithm
quickly evolves good micro for each scenario. With good
scenario selection, we can then switch between parameter
values according to opponent and scenario type and obtain
good micro performance. Results show that Nova is highly
effective at kiting against melee attack units but performs
poorly against ranged attack units. UAlbertaBot, the AIIDE
2013 champion, performs poorly against melee attack units
but is excellent against ranged attack units. Compared to the
UAlbertaBot, we generate unit specific micro behaviors instead
of a common logic for all units. With the right parameters, our
ECSLBot beats both UAlbertaBot and Nova on all scenarios.

Our method used on the Terran unit Vulture can be quickly
applied to other types of units. Unlike Nova, we do not hard
code the micro behaviors for each individual unit type. What
ECSLbot needs for developing new micro behaviors against a
new type of unit is the values of another set of 14 parameters.
Our GA can do this in about 21 hours. For example, our
experiments with a ranged Protoss unit call the Dragoon
instead of the Terran Vulture leads to similar results. We
believe complete player bots using evolved ECSLBot micro
parameters retrieved by an IM representing the battlefield will
be harder to beat.

We are also interested in micro management with mixed
unit types - which is still an open research question. In
addition, we want to integrate the usage of unit abilities like
the Terran Ghost’s EMP pulse, into our micro behaviors.
Furthermore, we want to be able to recognize and evolve
terrain specific parameters to use terrain and sight to best
advantage.
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