Identifying Players and Predicting Actions from RTS Game
Replays

Christopher Ballinger, Siming Liu and Sushil J. Louis

Abstract— This paper investigates the problem of identifying
a Real-Time Strategy game player and predicting what a player
will do next based on previous actions in the game. Being able
to recognize a player’s playing style and their strategies helps
us learn the strengths and weaknesses of a specific player, devise
counter-strategies that beat the player, and eventually helps us
to build better game AI. We use machine learning algorithms
in the WEKA toolkit to learn how to identify a StarCraft 11
player and predict the next move of the player from features
extracted from game replays. However, StarCraft I does not
have an interface that lets us get all game state information like
the BWAPI provides for StarCraft: Broodwar, so the features
we can use are limited. Our results reveal that using a J48
decision tree correctly identifies a specific player out of forty-
one players 75% of the time. This decision tree can identify a
player within the first nine minutes of the game. Finally, we
can correctly predict what action out of fifty possible actions a
player will choose to do next 81% of the time. For a player we
have already identified, we can correctly predict the action 89 %
of the time. This work informs our research on identifying and
learning from Real-Time Strategy players and building better
game Al

I. INTRODUCTION

HE Real-Time Strategy (RTS) game genre has become

a popular focus of attention for Artificial Intelligence
(AI) research in recent years [1]. RTS games are a type of
strategy video game where players need to gather resources,
build structures, research technologies and conduct simulated
warfare. Understanding each of these factors and their impact
on decision making is critical for winning an RTS game. One
of the key challenges for RTS game designers is creating
Al opponents which are able to adapt their strategies to
different player actions. This requires Al opponents capable
of identifying a player’s strategy. Therefore, learning to
recognize a player from the way the player plays the game
could help us to build a player model, which we can use to
devise counter-strategies that beat the player. Furthermore,
if the player plays exceptionally well, we can learn strong
winning playing styles and strategies from analyzing the
player’s decision making process. In this paper, we focus on
using machine learning techniques to identify professional
StarCraft 1I players from a database of game replays. We
expect this study to help us understand decision making in
RTS gameplay and therefore build better artificial RTS game
players.

Christopher Ballinger, Siming Liu and Sushil J. Louis are with the Depart-
ment of Computer Science and Engineering, University of Nevada, Reno.
1664 N. Virginia Street, Reno Nevada, United States (email: {caballinger,
simingl, sushil} @cse.unr.edu).

This research was supported by ONR grants N00014-12-1-0860 and
N00014-12-C-0522.

StarCraft 11, seen in Figure 1, is one of the most popular
multi-player RTS games with professional player leagues and
world wide tournaments [2]. In South Korea, there are thirty
two professional StarCraft II teams with top players making
six-figure salaries and the average professional gamer making
more than the average Korean [3]. StarCraft 1I’s popularity
makes obtaining larges amounts of different combat scenarios
for our research easier, as the players themselves create large
databases of professional and amateur replays and make
them freely available on the Internet [4]. However, unlike
StarCraft: Broodwar, which has the StarCraft: Brood War
API (BWAPI) to provide detailed game state information
during a live game, StarCraft Il has no such API [5]. This
means that the information we have access to is limited to
the player actions recorded in the replay files.

Fig. 1.

Snapshot of StarCraft II.

Board games and card games have a long history of being
used for Al research, dating back as far as the early fifties
with Samuel’s work on developing a checkers player[6].
However, RTS games provide a bigger and more challenging
problem space. RTS games involve resource management,
spatial reasoning, strategic thinking, and tactical thinking.
A player has to build up an economy to obtain enough
resources to generate and support a strong military that will
defeat their opponent. Players also must adapt to only having
partial game state knowledge. In StarCraft 11, a “Fog of War”
obscures areas of the map where a player does not have any
units nearby. Players must send some units to search an area,
or “scout”, to learn where their opponent is located and what
their opponent is building, so the player can adjust their plans

accordingly. Any advances in Al approaches to learning from
RTS game players will have industrial, military, and social
applications.

A typical StarCraft 1I match takes place on a width x
height sized map which is measured in the number of 32x 32
pixel squares, also known as build tiles. The typical map size
ranges from 64 x 64 to 256 x 256 build tiles. Each player
controls an unlimited number of buildings, in addition to
many different units with a combined “Supply Cost” up to
200. Every unit in StarCraft 1l costs a certain number of
supplies to construct, and each type of unit has a different
cost. For example, a worker unit costs 1 supply to build,
while a military unit called a “Battleship” costs 8 supplies.
The supply cap is 200 by default in every one-versus-one
match. From a theoretical point of view, the state space of
StarCraft II for a given map is enormous and it is almost
impossible to do a tree search for an optimal game state.
For example, considering the location of each unit (with
64 x 64 possible positions per unit), 400 units gives us
(64 x64)400 ~ 8.8 x 101444, Therefore tree search techniques
which are widely applied on board games such as chess are
not applicable on RTS games [7].

Our overall research goal is to develop competent RTS
game players, and this paper informs our research in this
direction. We analyze game replays from professional and
amateur StarCraft Il players, in order to see if we can identify
which player is in a game and predict what action they will
take next. If we can identify a player, how much time must
pass in the game before we can make a prediction? Can
we identify the strategy that the player is using? Can we
predict the players next move based on the previous actions
the player performed? In our research, we explore the use
of supervised machine learning techniques on StarCraft I1
game replays to address these questions. Specifically, we
apply machine learning algorithms from the WEKA toolkit to
features extracted from StarCraft Il replay files, in order to
learn to identify forty-one StarCraft Il players and predict the
next action they will take at different parts of the game. Our
results show we can correctly identify a specific player out
of forty-one players 65% of the time, using mostly features
from the first nine minutes of a game. We also show that we
can predict actions out of fifty possible actions an unknown
player will choose to do next 81% of the time, while we can
correctly predict actions 89% of the time for a player we
identified beforehand.

The rest of this paper is organized as follows: Section II
describes related work in RTS games and in player modeling.
The next section introduces our methodology and features
used for player identification and action prediction. Sec-
tion IV presents preliminary results and discussion. Finally,
section V draws conclusions and discusses future work.

II. RELATED WORK

StarCraft II was released in 2010 and, being a relatively
new game, has not been used much for scientific research.
Michael Whidby implemented a Python game for studying
scouting efficiency in different leagues from one-versus-one

games in StarCraft II [8]. His results, for a specific kind of
scouting, shows that players in higher leagues scout more
than players in lower leagues.

However, StarCraft: Brood War, the predecessor to Star-
Craft II, has been used often for research in the Al com-
munity. Ji-Lung Hsieh and Chuen-Tsai Sun applied a case-
based reasoning approach for the purpose of training their
system to learn and predict player strategies [9]. Ben G.
Weber and Michael Mateas presented a data mining approach
to opponent modeling in StarCraft [10]. They applied vari-
ous machine learning algorithms to detecting an opponent’s
strategy in game replays. Then they used the learned models
to predict the opponent’s strategic actions and timing. If
you can predict what your opponent is doing, it is usually
fairly straightforward to find a good counter strategy and
defeat your opponent. Note that this is the main reason
that industrial game AI for RTS games is easy to beat.
Predictability is often a fatal weakness in these games.

Player identification research often uses other types of
games as research platforms. Jan Van Looy and Cedric
Courtois studied player identification in online games [11].
They were focused on massively multiplayer online games
(MMOGs). Their research did not use game state infor-
mation, rather, their research was based on a group of
volunteers who gathered data on the preferences of their
avatar’s appearance using survey questions. Josh McCoy
et al. present a RTS game Al architecture that integrates
multiple specialist components to play a complete game in
the RTS game Wargus [12]. Bakkes et al. worked on a novel
approach that enables the game Al to gather domain knowl-
edge automatically and immediately utilize the knowledge to
evoke effective behavior in the RTS game SPRING [13].

Hladky Stephen et al. used hidden semi-Markov models
and particle filters as a means for predicting opponent
positions in the first person shooter game Counter-Strike:
Source [14]. Their models can perform with similar or better
accuracy than the average human expert in this game. Alex
Fink et al. applied a general approach to learn the behavior
of non-player characters (NPCs) and other entities in a game
from observing just the graphical output of the game during
game play in the video game Pong [15]. They use object
tracking and situation-action pairs with the nearest-neighbor
rule, and correctly predict the next behavior of the computer
controlled opponents 9 out of 10 times.

Bayesian networks have been used for strategy recognition
in games as well. Charniak et al. proposed a method where
they first retrieve candidate explanations and assemble these
explanations into a plan recognition Bayesian network [16].
Then they perform Bayesian updating to choose the most
likely interpretation for the set of observed actions. David W.
Albrecht presented an approach to keyhole plan recognition
which uses a Bayesian network to represent features of the
domain that are needed to identify users’ plans and goals in
a Multi-User Dungeon adventure game [17].

Some work has been done in extracting features from
replay files. SC2Gears provides a StarCraft II replay parsing

service to convert a binary replay file to an XML structured
file which we can easily understand [4]. Gabriel Synnaeve
and Pierre Bessiere worked on extracting the complete game
state from a recorded StarCraft: Broodwar replay file by
rerunning the replay file and recording the complete game
state through the BWAPI. This approach enables access to the
complete game state for every frame in the game. However,
StarCraft Il does not have such an interface yet so we
cannot access its complete game state. We therefore only
use the data from player actions in StarCraft II replay files
as parsed by the SC2Gear parsing service. To the best of our
knowledge, this is the first work to use data from StarCraft
II to identify players and predict player actions.

III. METHODOLOGY

The first step of this research was collecting enough game
replays from several specific players. A StarCraft Il replay
file stores all user action events in a game match. These
lists of user-actions reflect the players’ thinking and decision
making during a game, and we therefore believe that we
can infer the players’ playing style and find useful strategic
patterns from replays.

A. Data Collection

There are many websites dedicated to collecting and shar-
ing user and team contributed game replays. Many of these
replays are from pro-leagues and professional tournaments
such as Major League Gaming, IGN Pro League, Global
StarCraft Il League, and StarCraft Il Pro League [18], [19],
[20], [21]. Therefore, we are able to collect a representative
set of replays for specific professional players. We only
focus on the one-versus-one type of match because it is
the most popular game type for professional matches. Three
different races (Terran, Protoss, and Zerg) are available for
players to choose from at the beginning of each match. Each
race is significantly different from others in terms of units,
structures, technologies, and playing styles. In our previous
paper, we limited our focus to Protoss players versus other
races and got high accuracy for identifying a single player.
In this paper, we cover all three races against other races.

We collected 3671 replays from SC2Rep.com and
GameReplays.org [22], [23]. This dataset covered 41 differ-
ent players against other random players. Since all the replays
are uploaded by StarCraft Il fans, there is no validation
during their upload that the players in the replay are who
they say they are, so the data can be noisy. For example,
a Terran versus Protoss match may be mislabeled as Terran
versus Zerg, or Player A may be mislabeled as Player B. We
had to clean up the noisy data manually, and finally ended up
with 2110 replays. The dataset is still noisy after the clean up,
but it is much better than the original dataset. The breakdown
of these games among the races is shown in Table 1.

StarCraft 1I replay files are stored in a binary format
and record all player actions during the game. The data
in the file is not stored in a human readable format. We
need to parse the replay file to a format that we can
understand and use. Several websites provide a StarCraft

TABLE I
GAME DISTRIBUTION IN REPLAY FILES

Replay Types Number of Replays
Terran versus Terran 281
Terran versus Protoss 453
Terran versus Zerg 498
Protoss versus Protoss 208
Protoss versus Zerg 300
Zerg versus Zerg 370
Total replays 2110
TABLE I
REPLAY LOGS

Frame(Time) Player | Action Object
3296 Player 1 | Build Pylon
3588 Player 2 | Build Supply Depot
3625 Player 1 | Train Probe
4804 Player 2 | Train SCV
5638 Player 1 | Select Hotkey 1
6208 Player 2 | Build Barracks
7543 Player 1 | Attack | Target position

II replay parsing service. We used SC2Gears to convert
raw replays to XML structured files. Therefore, we get all
player performed actions from the parsed replay files and
know exactly what players did in the match. Note that when
the replay file is used by the game engine to replay the
match, all game states must be recalculated in real time using
the user input for all players stored in the replay file, the
replay file doesn’t contain any game state information. This
limits our knowledge extraction from replay files. A player’s
current units, structures, and resources at a particular time
in the game are not available in replay files. In contrast,
BWAPI for StarCraft: Broodwar could get complete game
state information by running replay files and recording the
game states with user plug-ins, but StarCraft II does not have
this interface yet. Table II shows a sample of an arbitrarily
selected parsed game replay of a Protoss player and a Terran
opponent.

B. Feature Extraction

The goal of our feature extraction is to maximize the
capture of game information and aspects that expose player-
specific traits, so we can identify each player from other
players based on their unique characteristics. We create and
use a feature vector composed of three parts. The first part
is general game information which includes game length,
winner, and actions per minute (APM). The second part
represents the changing state of the game and covers how
many units or structures are built in three minute time slices.
The last part records the time (as a frame number) for the
first build or use of each building, unit, and unit ability.

Formally, our features are represented by Equation 1 where
x 1s units, structures, upgrades, or abilities, and ¢ is the index

TABLE III
SAMPLE BUILD ORDER

Player 1 (Zerg)

Player 2 (Terran)

Train Drone Train SCV
Train Drone Train SCV
Train Overlord Train SCV

Build Spawning Pool | Build Supply Depot
Build Barracks
Train SCV

Train Marine

Train Drone

Train Drone

Train Zergling

of a three minutes time slice with ¢ < 10.
F={a,5.0,))

Here, ?, the feature vector is made up of three parts. First,
G represents general game information and contains game
length, winner, map name, game version, etc. Second, S;
represents the number of x produced in time slice ¢. And
third, O, is given by Equation 2.

[
o.-{ 1

In the end, we collected 230 features from each replay file.

frame that x was first produced
: (2)
if x was never produced

C. Strategy Extraction

In addition to player identification, we are also interested
in strategy recognition. However, the features extracted with
the previous time-based approach is more related to players’
playing statistics. Generally speaking, a strategy used by a
player is how the player prioritizes building structures, train-
ing units, researching technologies, and launching attacks. A
player’s build-order contains most of the above information,
especially at the early stage of the game. For example, the
6 Pool Rush strategy used by Zerg players is building no
workers at all at the beginning of the game, and instead
saving resources to build Spawning Pool to launch an attack
as soon as possible. For a Fast Expansion strategy, the player
will build large numbers of workers early to maximize their
economy as fast as possible, and build more military units
at the middle or late stages of the game. In our research, we
extract build-order as our second feature vector and use it to
represent a strategy.

D. Evaluation

Various classification and prediction techniques in the
WEKA toolkit from the University of Waikato were applied
to identify a player out of forty-one players [24]. WEKA is
a powerful machine learning software that includes several
classification and prediction algorithms, as well as prepro-
cessing and regression techniques and tools for statistical
analysis. In our previous study we applied the following
techniques:

e J48 - C4.5 Decision Tree

o ANN - Artificial Neural Networks

o AdaBoost - Adaptive Boosting
o Random Forest - Ensemble classifier that consists of
many decision trees

J48 and ANN use default parameters provided by WEKA.
AdaBoost was configured to use the J48 decision tree with
default settings. Random Forest was configured to use 10
random trees with nine random features. In this study, we use
primarily J48 and Random Forests since those methods had
very similar results to ANN and AdaBoost in our previous
study, and because our large feature vector in this study did
not always work with ANN and AdaBoost.

IV. RESULTS AND DISCUSSION

Several machine learning techniques were applied to get
high identification and prediction performance with the
WEKA toolkit. We used ten fold cross validation during the
training and all accuracy results are on the testing set. In
our previous paper, we identified whether or not a particular
Protoss player was in a game. Our identification performance
was as high as 87.6% by using AdaBoost in all PVP games,
which revealed that we can reliably and precisely identify a
professional player among other professional players based
only actions during the game. Figure 2 from our previous
work compares the identification accuracies of using all
attributes for each algorithm and race. The results also
indicate that a professional gamer seems to have a unique
playing style. The features we extracted from replays kept a
player’s unique characteristics.

mJ48 RandomForest
W Boost | ANN
100
90
g 80
E 70
O
2 60
7 50
L)
5 40
5 30
5 20
10
0
PP Pz Pyl
Fig. 2. Accuracy of identifying our Target Player using time-based

attributes from our previous paper.

The decision tree algorithm used by J48 is not only fast,
but allows easy conversion from a tree to a set of rules;
rules which may be better understood by people. On the
other hand, the representations used by ANNs, AdaBoosted
trees, and Random Forests are harder to understand. We thus
analyzed rules generated by high performing decision trees
generated by J48. Below is an example of a single rule
from PVP games generated by the decision tree. If a game’s

features matched this rule, then we know it is our target
Protoss player, otherwise, it is not.

o Worker count built in first 3 minutes greater than 24,
and

o First Gateway was built before frame 6320, and

e Blink was used less than 12 times between 6 to 9
minutes, and

o First Chrono Boost was used after frame 4692.

In this paper, we identify which player out of forty-one
possible players is in a game, and predict what actions they
will take at different points in the game.

A. Performance of Player Identification Out of Forty-one

In our current experiments, we extend our player identi-
fication focus from a specific Protoss player to 41 different
players. All the replays covered both professional players and
high ranked amateur players. Figure 3 shows the average
accuracy of identify a player out of 41 players, both with
APM and without APM. This shows that APM is a strong
indicator of the player, and allows us to correctly identify
the player 75% of the time out of 41 possible players with
Boosted J48. Considering a player we are trying to identify
in a game could be incorrectly identified as any of the 41
different players in out dataset, 75% is surprisingly good.
Without APM and basing our identifications only on player
actions, we can correctly identify players 43% of the time,
which is still much better than the probability of guessing
at random. This proves that a professional players APM is
relatively consistent in tournaments and that APM is a strong
feature for identifying a player.

100

Without APV e
With AP e
80 1
g 60 1
=
=}
o
@
2 o4t i
20 4
0
RandomForest Jas BoostedJ48
Method
Fig. 3. Precision of identifying our Target Player out of 41 players using

time-based attributes.

The results also show that when a player is misidentified,
most misidentifications are allocated to two or three different
players, and not randomly spread among all players. This
may indicate that all these players share similar or common
strategies and playing style. For example, two thirds of
misclassification on Player 17" are misclassified as Player P

and Player F'. This is because Player 7', Player P, and Player
F' are known to have a similar playing style.

We are also interested in how a specific player performed
in our experiments. We chose a player in our dataset to be
our Target player. For this specific player, our identification
accuracy is 75% with APM and 44% without. Figure 4
shows the performance of identifying the Target player with
time based attributes and build-order attributes without APM.
It also compares the performance of identifying the Target
player with the average performance of all players.

100

All Players - Tirhe-Based Attrib m—

All Players - Build-Order Attrib s

Target Player Only - Time-Based Attrib s
Target Player Only - Build-Order Attrib m—

80

Precision (%)

RandomForest J4s
Method

Fig. 4. Precision of identifying players out of 41 players based on different
sets of attributes.

From Figure 4, we can see that in general the prediction
accuracy based on time-based attributes is better than the
prediction accuracy on build-order attributes. This is because
time-based attributes generalize strategies more than the
build-order attributes. For example, how many unit X were
built in first three minutes? How many structure Y were
built 6-9 minutes into the game? The build sequence does
not matter in time-based attributes. However, build-order
attributes are exactly what a player built in the game, and
the order the units were built shows the different strategy
used in the game. Therefore, the prediction on time-based
attributes (first column) is much better than the prediction
on build-order attributes (second column). However, the
accuracy of identifying our Target player based on time-based
attributes is worse than the accuracy based on build-order
attributes. build-order attributes precisely present the order
players build their units. If a player consistently builds units
in precisely the same order, the build-order will becomes
a strong indicator to identify a player. For example, some
players are famous for using the Two Bases All In strategy.
In which, the player can safely transit to a second base, build
a huge amount of units, and launch the all in attack while
his opponent is not strong enough to defend. In such a case,
a consistent build-order is a strong indicator for a specific
player. The results in Figure 4 showed that the prediction
performance on build-order attributes of our Target player
is better than generalized time-based attributes. However,

for players whose playing style is versatile, and do not
build units in precisely the same order for the same overall
strategy, the outcome might be different. There are several
professional players whose playing styles are well known as
being inconsistent, making it hard for other players to predict
what they will do.

100

40 Player Categories’ mmmm
2 Player Categories (All Samples)
2 Player Categories (Even Samples)
80 1
g 60 1
c
=}
o
@
5 40 1
20 1
0
RandomForest J4s BoostedJ48
Method
Fig. 5. Precision of identifying Target player out of different groups of

players using time-based attributes.

We also worked on identifying our Target player out
of different groups of players using time-based attributes.
Figure 5 shows the accuracy of identifying our Target player
out of different groups of players. First we try to identify
our Target player with an even number of samples, meaning
we have 155 positive cases which were played by our
Target player and 155 negative cases classified as “NotTarget
Player” taken from a random sample of all other players. All
three techniques performed almost the same. Random Forest
accuracy is 80%, J48 accuracy is 81%, and Boosted J48
accuracy is 82%. However, we also try identifying our Target
player based on all samples, which contains 155 positive
cases and 1955 negative cases. The green bars shows the
results of this on all three techniques. The Random Forest
accuracy is 67%, J48 accuracy is 36%, and Boosted J48
accuracy is 39%. J48 and Boosted J48 do worse than random,
while the Random Forest does a little better than random. The
reason is that the number of samples is so unbalanced that by
constantly identifying the player as a non-Target player, we
will get accuracy as high as (2110 — 155)/2110 = 92.7%.
This indicates that we should not use unbalanced sample to
predict a specific target player. However, the first column
shows that the average accuracy of player identification on
all 41 player categories is around 36%, the Boosted J48 gets
the highest accuracy of 39%. Which is surprisingly good for
predicting one player out of 41 possibilities.

B. Action Prediction

In addition to identifying players, we want to predict what
a player will do in the game. We extract exact build-orders
from replays, train our model with a list of actions that the

100

All Playefs - All Aftributes i

All Players - 20 Atfributes

Target Player Only - All Attributes m—
Target Player Only - 20 Attributes

80

£
e 60
?‘u_f’
w
©
o]
>
S 40 +
<
S
8]

20 +

0
Action 50 Action 150 Action 250
Action
Fig. 6. Correctly predicted actions using build-order attributes.

player already performed, and predict what the player will
build at different points in the game. Figure 6 shows the
correctly predicted actions using our build-order attributes.
We can see that our accuracy for predicting action 50, which
is on early of the game, is 59%. As the game goes on, the
accuracy on predicting action 150 increased to 68% accuracy.
On late game predictions, the accuracy of predicting action
250 climbed to 81% accuracy. This means the strategy is
not consistent as consistent earlier in the game. Players may
change their build-order based on their opponent’s strategy.
However, if a player chose a strategy on early game, it is
less likely to change to a different strategy later on. Later in
the game, their strategy is more consistent and it is easier to
predict.

We looked into the mis-predicted actions and one inter-
esting finding is that our mis-predicted actions are usually
predictions of a worker unit being built. This is because
at the early stage of the game, most players heavily focus
on training workers to maximize their economy for middle
or late games. For the middle and late stages of the game,
professional players still needs to train workers. In StarCraft
II, destroying your opponents economy is one of the most
important winning tactics, and professional players are good
at harassment by attacking their opponents workers. There-
fore, training workers can occur at any point in the game
as a response the opponents harassment tactics, and not the
players planned strategy. Our mis-predictions then usually
mis-predict worker instead of the correct unit.

Figure 6 also shows that if we have already identified a
player and try to predict the next move, our accuracy is much
higher than predicting moves based on all players in general.
We correctly predicted action 50 of our Target player 77%
of the time, while we only make correct predictions 59%
on all players. We got 82% accuracy on action 150, and
89% on action 250. We are also interested in optimizing our
methods. For a certain action, more recent previous actions
are much more important than actions performed long ago.
If we can train our model with less data, it might improve

the speed to get the same accuracy. We then trained only
previous 20 attributes on our model instead of all previous
actions. The results in Figure 6 shows that the prediction on
only 20 previous moves is the same accuracy as all attributes.
This results could save memory resources and computational
time to get the same accuracy as applying all previous moves.
These results also show the benefit quickly identifying a
player has when we need to predict the players strategy and
create a counter-strategy.

V. CONCLUSIONS

Our research focuses on applying machine learning tech-
niques to identifying Real-Time Strategy players and pre-
dicting their actions from game replay history. Our dataset
consists of 2110 StarCraft II replays including 41 profes-
sional and high rank amateur players. We then used two
types of feature extraction approaches and extracted two
feature vectors. The first one is a time generalized feature
vector which includes general game information, units and
structures that are built in each three minutes time slice,
and the time snapshot of when each type of units and
structures were first built. The second feature vector includes
only player build-orders, which precisely represent strategies
of players used in the games. With these two types of
feature vectors, we attempt to identify which player out of
41 possible players is in each game replay. We are also
interested in recognizing the strategy a player used in a
game. We use build-orders to represent a strategy and tried
to predict the next action the player will build at different
times in the game based on his previous actions.

In our previous study, we identified whether or not a
known professional player participated in a game or not. Our
results showed that we could correctly identify if our player
was in a game 87.6% of the time. The J48 tree that was
produced showed rules that differentiated our selected player
from most other players based on the actions the players took.
From these rules, we could see basic strategies the player
uses, which betters our understanding of how he plays and
helps us to find counter-strategies that disrupt the players
usual style of playing.

Our current results show that without looking at the
player’s Actions Per Minute, we can identify a player out
of 41 possible players with an accuracy up to 43% using
AdaBoost and J48. If we take the players APM into account,
the identification accuracy was as high as 75%. This reveals
that we can reliably identify a professional player among
many other player based on actions taken during a game. We
also see that APM is a strong characteristic for indicating a
player’s identity. In both cases, samples that are misidentified
are mostly misidentified as one or two different players out of
all 41 possible players. This indicates that the correct player
identity and the identities the sample was misclassified as
may belong to players with very similar strategies.

We then use the feature vector which contains only build-
orders to predict the next action the player will take based on
their previous actions. Our results show that 59% of the time
we can correctly predict what unit will be built at the early

stage of the game, 68% of the time at the middle stage of
the game, and 81% of the time later in the game. Our results
also show that the accuracy goes up if we correctly identify
or narrow down the possibilities of who the current player
is. Similar to our player identification results, most mis-
predictions were caused by a single source. Often instead of
predicting the correct unit, a worker unit would be predicted
instead. This is due to players responding to having their
worker units destroyed by their opponent’s strategy, instead
of being apart of the players planned strategy.

In our future work, we are interested in automatically
classifying different “types” of strategies. Build-orders that
accomplish that same goals, but slightly change the order of
a couple units can be considered the same type of strategy.
Strategies that attempt to accomplish the same goals in
a similar manner can often be defeated using the same
counter-strategy. Furthermore, we want to predict what type
of strategy a player, rather than predict all their actions.

REFERENCES

[1] M. Buro, “Real-time strategy games: A new ai research challenge,”
Proceedings of the 18th International Joint Conference on Artificial
Intelligence. International Joint Conferences on Artificial Intelligence,
pp. 1534-1535, 2003.

[2] Blizzard. (2014) Blizzard
http://www.starcraft2.com

[3] T. Liquid. (2014) Category: Korean teams. [Online]. Available:
http://wiki.teamliquid.net/starcraft2/Category:Korean_Teams

[4] A. Belicza. (2012) The SC2Gear website. [Online]. Available:
https://sites.google. com/site/sc2gears/

[5] M. Buro and D. Churchill, “Real-time strategy game competitions.”
Al Magazine, vol. 33, no. 3, pp. 106-108, 2012.

[6] A. L. Samuel, “Some studies in machine learning using the game of
checkers,” IBM Journal of Research and Development, vol. 44, no.
1.2, pp. 206 —226, jan. 2000.

[7]1 S. Ontandn, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and
M. Preuss, “A survey of real-time strategy game ai research and
competition in starcraft,” 2013.

[8] M. Whidby and S. C.-B. Bederson, “Sacovie-zerg scouting game for
starcraft ii,” CHI, may, 2012.

[9] J.-L. Hsieh and C.-T. Sun, “Building a player strategy model by ana-
lyzing replays of real-time strategy games,” in Neural Networks, 2008.
IJCNN 2008. (IEEE World Congress on Computational Intelligence).
IEEE International Joint Conference on, june 2008, pp. 3106 -3111.

[10] B. Weber and M. Mateas, “A data mining approach to strategy
prediction,” in Computational Intelligence and Games, 2009. CIG
2009. IEEE Symposium on, sept. 2009, pp. 140 —147.

[11] J. Van Looy, C. Courtois, M. De Vocht, and L. De Marez, “Player
identification in online games: Validation of a scale for measuring
identification in mmogs,” Media Psychology, vol. 15, no. 2, pp. 197—

entertainment. [Online]. Available:

221, 2012.
[12] J. McCoy and M. Mateas, “An integrated agent for playing
real-time strategy games,” in Proceedings of the 23rd

national conference on Artificial intelligence - Volume 3, ser.
AAAT08. AAAI Press, 2008, pp. 1313-1318. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1620270.1620278

[13] S. Bakkes, P. Spronck, and J. van den Herik, “Rapid adaptation of
video game ai,” in Computational Intelligence and Games, 2008.
CIG’08. IEEE Symposium On. 1EEE, 2008, pp. 79-86.

[14] S. Hladky and V. Bulitko, “An evaluation of models for predicting
opponent positions in first-person shooter video games,” in Computa-
tional Intelligence and Games, 2008. CIG’08. IEEE Symposium On.
IEEE, 2008, pp. 39-46.

[15] A. Fink, J. Denzinger, and J. Aycock, “Extracting npc behavior
from computer games using computer vision and machine learning
techniques,” in Computational Intelligence and Games, 2007. CIG
2007. IEEE Symposium on. 1EEE, 2007, pp. 24-31.

[16] E. Charniak and R. P. Goldman, “A bayesian model of plan recogni-
tion,” Artificial Intelligence, vol. 64, no. 1, pp. 53-79, 1993.

[17]

[18]
[19]
[20]
[21]
[22]
[23]

[24]

D. W. Albrecht, I. Zukerman, and A. E. Nicholson, “Bayesian models
for keyhole plan recognition in an adventure game,” User modeling
and user-adapted interaction, vol. 8, no. 1-2, pp. 547, 1998.

I. Major League Gaming. (2014) Major league gaming. [Online].
Available: http://www.majorleaguegaming.com

I. IGN Entertainment. (2014) Ign entertainment. [Online]. Available:
http://www.ign.com/ipl

GOMTYV. (2014) Global starcraft ii league. [Online]. Available:
http://www.gomtv.net

KeSPA. (2014) Starcraft ii proleague. [Online]. Available: http://e-
sports.or.kr/proleague2014/

(2010) The SC2Rep website. [Online]. Available:
http://www.sc2rep.com/

(2012) The GameReplays website. [Online]. Available:
http://www.gamereplays.org /starcraft2/replays.php?game=33

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
1. H. Witten, “The weka data mining software: an update,” SIGKDD
Explor. Newsl., vol. 11, no. 1, pp. 10-18, Nov. 2009. [Online].
Available: http://doi.acm.org/10.1145/1656274.1656278

