
Comparing Two Representations for Evolving Micro
in 3D RTS Games

Siming Liu, Sushil J. Louis
Evolutionary Computing Systems Lab (ECSL)

Department of Computer Science and Engineering
University of Nevada, Reno, NV, USA
{simingl, sushil}@cse.unr.edu

Abstract—We are interested in using genetic algorithms to
generate winning maneuvering behaviors (or micro) in skirmish
scenarios for three dimensional Real-Time Strategy games. In
prior work, we encoded parameterized 3D micro behaviors like
target selection and kiting into an algorithm for controlling
friendly units in battle. Genetic algorithms then tuned these
parameters to guide unit maneuvering in order to win skirmishes.
In this study, we investigate a new representation for micro
behaviors that uses only an influence map and a combination of
thirteen potential fields. Genetic algorithms then tune influence
map and potential field parameters to evolve winning micro
behaviors. We compare the performance of both representations
on identical scenarios against identical opponents in a full 3D RTS
game environment called FastEcslent. The results show that the
genetic algorithm using our new representation using less domain
knowledge, reliably evolved high quality 3D micro behaviors that
slightly, but significantly, outperformed behaviors from our prior
work. Our work thus provides evidence for the viability of using
potential fields for generating high quality, complex, micro for
three dimensional RTS games.

I. INTRODUCTION

The Real-Time Strategy (RTS) game genre has become
a popular research platform for the study of Computational
and Artificial Intelligence (CI and AI). In RTS games, players
need to establish bases, collect resources, and train military
units with the aim of eliminating their opponents. RTS games
incorporate elements of long term planning and short term de-
cision making that adds complexity to game play thus bringing
many research challenges in the RTS game domain [1], [2].
First, the dynamic environment of RTS games requires real-
time planning on several levels - strategic, tactical, and reac-
tive. Second, players have to make decisions with incomplete
information in the game world due to the existence of “fog
of war”. Third, players must adapt to their opponents’ playing
“style” in order to gain the advantage in later games. Fourth,
players must employ spatial and temporal reasoning to exploit
complex terrain and time-sensitive actions on a tactical and
strategic level. All of the challenges described above and their
impact on decision making are crucial for winning RTS games.

We usually divide the decision makings in RTS game
into two categories, macro and micro. Macro refers to long
term planning while micro focuses on short term operations.
Good macro helps players to build a stronger army or develop
good counter strategies to beat their opponents. On the other
hand, good micro minimizes friendly unit loss and maximizes
damage to opponents in a fight. Better micro can beat a
numerically superior opponent and ensure decisive victories.

This research focuses on using Genetic Algorithms (GAs) to
generate high quality micro behaviors in skirmish scenarios
for 3D RTS games.

In prior work, we used influence maps (IMs), potential
fields (PFs), and reactive control scripts for spatial reasoning
and unit maneuvering both in 2D and 3D RTS games [3], [4],
[5]. We used 3D influence maps extended from the original
2D implementation to represent spatial information within a
three-axis (x, y, z) cartesian coordinate space in [6]. Since
other available RTS game research environments are 2D, we
used a 3D open-source RTS game and simulation environment,
FastEcslent, to enable work in a full 3D RTS game environ-
ment. FastEcslent not only provides us 3D game-physics, but
also enables easy changes to physics, control, and graphics so
that we can investigate the application of more realistic physics
on the generation of 3D “micro” performance for real-world
unmanned aerial vehicles. Figure 1 shows combat between two
opposing teams in a 3D game world within FastEcslent.

Fig. 1: Units are able to fly and fight in a full 3D environment
within FastEcslent. Note that although the IM appears 2D,
only the bottom layer of IM cells is shown to provide an
unobstructed view of the skirmish.

Prior results show that GAs are able to evolve high quality
micro behaviors in both 2D and 3D RTS games with our
original parameterized algorithm approach. This meta-search
approach which essentially searches a space of algorithms
evolved micro for Vultures, a type of game unit with a ranged
weapon. By finding the right parameter values, corresponding
to the right micro algorithm, the GA enabled Vultures to learn
three broad types of behaviors. First, Vultures learned to kite



(hit and run) against a type of melee unit called a Zealot.
This is very effective since the close-in melee units (Zealots)
find it difficult to get in range to use their melee weapon
against the longer ranged and faster Vultures. Second, Vultures
learned to split enemy units into small groups to avoid being
surrounded and to spread their own firepower. Finally, Vultures
also evolved conservative behaviors that preserve hit-points
and not get over aggressive.

However, the meta-search approach used in this earlier
work depended on our hard coded algorithm which used much
domain knowledge gleaned from human RTS game players.
Kiting, target selection, and fleeing behaviors were hard coded
and the GA simple tuned parameters to optimize the behavior
to the speed, range, and health of the maneuvering unit.
The search space of parameters was 251. This search space
cannot be exhaustively searched but the genetic algorithm finds
good solutions in reasonable time. However, possible behaviors
are limited by our hard coded meta-algorithm. Moreover, the
quality of the algorithm is also limited by the code-author’s
domain.

In this paper, we replace the rich domain knowledge pa-
rameterized algorithm with a combination of an influence map
and potential fields to control friendly units’ micro in battle.
We call the AI player using this new micro representation the
PPFBot1. The PPFBot adopts three types of attractive and
repulsive forces represented by potential fields that depend
on distance, weapon cooldown, and unit hit-points for both
friendly and enemy units. The combined forces determine
unit maneuvering during a skirmish. We then use GAs to
evolve the PPFBot for high quality micro behaviors in a
3D skirmish scenario. However, the new micro representation
requires our GAs to search in a much larger space (2226) which
is 2226/251 ≈ 4.8×1052 larger than the meta-search approach.
Despite the size and without other domain knowledge, our
results show that our PPFBot learned good target selection
and kiting without such behaviors being explicityly encoded.
Comparing PPFBot with MSBot (which uses our prior meta-
search approach) on identical scenarios and against identical
opponents, results show that our PPFBot slightly, but statisti-
cally significantly, outperformed MSBot. Since PPFBot does
not incorporate any predefined algorithms, we believe the pure
potential field approach holds more promise than the meta-
search approach.

The remainder of this paper is organized as follows.
Section II discusses related work in RTS AI research and
common approaches to micro. The next section describes our
3D simulation platform, FastEcslent, and the scenario used in
our experiments. Section IV introduces the pure potential field
representation for PPFBot and the parallel GA used in our
research. Section V presents preliminary results and compares
the solutions produced by PPFBot and MSBot. Finally, the last
section draws conclusions and discusses future work.

II. RELATED WORK

A large amount of work has been done in applying various
AI techniques towards RTS games. Very early work in our lab
used influence maps for spatial reasoning to evolve a Lagoon-
Craft RTS game player [7]. Sweetser et al. worked on an AI

1Bot is a generic term for a control algorithm in the game AI community

player designed with an influence map and cellular automata,
where the influence map was used to model the game world
and help the AI player in making decisions in their RTS game
EmerGEnt [3]. Their AI player is flexible and able to respond
to natural phenomena and user actions while chasing a target.
Bergsma et al. proposed a game AI architecture for performing
tactical AI by using influence maps for a turn based strategy
game [4]. Preuss et al. introduced a flocking and influence map
based path finding algorithm for group movement in the RTS
game Glest [8], [9]. Su-Hyung et al. used evolutionary neural
networks to evolve non-player characters’ strategies based on
the information provided by a layered influence map algorithm
in the RTS game Conqueror. Uriarte et al. used influence
maps for generating kiting behavior and used this for their
StarCraft2 bot Nova [10]. Avery et al. used a set of influence
maps for guiding a group of friendly entities to maneuver and
attack enemy entities based on opponent’s position [11]. Their
method generated an influence map for each entity in order
to produce different unit movement in a game. This method
however, does not scale well to large numbers of units due to
its computationally intensive calculation in real time. Raboin
et al. presented a heuristic search method for multi-agent
pursuit-evasion games in a partially observable space [12]. In
this paper, we use a unit influence map to represent spatial
information and guide our units for winning skirmishes in RTS
games.

Potential fields have also been found to be a useful
technique in RTS AI research [13], [5]. Most of the work
is related to unit navigation and collision avoidance [14].
The potential fields approach was first introduced by Ossama
Khatib in 1986 for real time obstacle avoidance in mobile
robots [15]. The technique was then widely applied to avoid
obstacles and collisions especially in multiple unit scenarios
with flocking [16], [17], [18]. Hagelbäck et al. presented a
Multi-Agent Potential Field based bot architecture in the RTS
game ORTS [19] and integrated potential fields into their AI
player at both tactical and unit reaction control levels [20].
In this research, we use thirteen potential fields considering
not only the distance but also unit status including hit-points
and weapon cooldown from both friendly and enemy units to
represent micro behaviors in 3D RTS games. More details of
thirteen potential fields can be found in Section IV-B.

Other techniques are also used in micro AI research.
Gunnerud et al. presented a hybrid system using case based
reasoning and reinforcement learning for learning to select a
target in given situations during a battle [21]. Wender et al.
studied the application of reinforcement learning algorithms to
learning micro during combat in RTS games [22]. The results
showed that their reinforcement learning algorithms were able
to learn selected tasks like “Fight”, “Retreat”, and “Idle” dur-
ing combat. In this work, we introduce a new representation for
3D micro behaviors by using a combination of one influence
map and thirteen potential fields without encoding any domain
knowledge. We then apply genetic algorithms to search for
high performance micro behaviors in a full 3D RTS game
FastEcslent.

2A popular RTS game and research platform



III. SIMULATION ENVIRONMENT

In the RTS AI research community, StarCraft is a popular
research platform due to the emergence of the StarCraft: Brood
War Application Programming Interface (BWAPI) framework
and the AIIDE3 and CIG4 StarCraft AI tournaments [1].
BWAPI allows AI programs to play StarCraft games through
code. However, StarCraft is a 2D RTS game and was designed
for human players back in 1998. Since we are interested
in micro behaviors in 3D RTS games, we are not able to
conduct our experiments on the StarCraft platform as we
cannot change the physics of motion within proprietary code.
In addition, choosing an open-source 3D RTS game enables
us to investigate the application of more realistic physics
on evolved “micro” performance for real-world unmanned
aerial vehicles. In this study, we run our experiments in
a full open-source 3D RTS game environment, FastEclsent,
that we developed for scientific research. FastEcslent was
developed at the Evolutionary Computing Systems (ECSL) lab
for evolutionary algorithms research in games, simulations, and
other applications.

Fig. 2: A screenshot of a game play in FastEcslent.

FastEcslent is built on top of the popular open-source
3D graphics engine, OGRE [23] and supports both 2D and
3D game physics, enabling our research on evolving micro
behaviors in both two and three dimensional coordinate spaces.
It is open source and modular, so you can easily implement
your own physics and AI control. We modeled the game play
in FastEcslent to be similar to StarCraft to make comparisons
easier. In FastEcslent, players are able to control several types
of units to construct their bases and fight their opponents.
FastEcslent can run without graphics (a seperate thread) thus
providing easier integration with parallel genetic algorithms
and other evolutionary computing algorithms. Figure 2 shows
a screenshot of game play in FastEcslent.

Figure 1 shows a screenshot of a FastEcslent skirmish
scenario with two opposing sides. In our scenario, each player
controls a group of units initially spawned in different locations
on a map with no obstacles. The entities used in FastEcslent
reflect those in StarCraft, more specifically, Vultures and
Zealots. A Vulture is a vulnerable unit with low hit-points
but high movement speed, a ranged weapon, and considered

3http://www.StarCraftAICompetition.com
4http://cilab.sejong.ac.kr/sc competition/

TABLE I: Unit properties defined in FastEcslent

Property Vulture Zealot

Hit-points 80 160

MaxSpeed 64 40

MaxDamage 20 16× 2

Weapon’s Range 256 224

Weapon’s Cooldown 1.1 1.24

effective when outmaneuvering slower melee units. A Zealot
is a melee unit with short attack range and low movement
speed but has high hit-points. Table I shows the details of these
properties for both Vultures and Zealots which are used in our
experiments. Since our research focuses on micro behaviors in
skirmishes, we disabled “fog of war” in our scenario.

In order to evaluate the micro performance of PPFBot
and MSBot during evolution we need a baseline opponent
AI that controls the enemy Zealots to fight against our bots
which control Vultures. We implemented a baseline AI named
Maintain AI that behaves similar to the default StarCraft AI.
A Zealot controlled by the Maintain AI selects the closest
opponent unit as the current target to move toward and
attack until the target is eliminated. We evolve our 3D micro
behaviors for PPFBot and MSBot against a group of Zealots
controlled by the Maintain AI in the given skirmish scenario.
We limited the running time for our scenario to 6000 time
steps (graphics frames) which is approximately 75 seconds at
normal game speed.

IV. METHODOLOGY

With the availability of the 3D RTS research platform, the
predefined skirmish scenario, and the baseline Maintain AI, we
are able to create our bots to control a small group of Vultures
to fight against a large group of melee units, Zealots, controlled
by the Maintain AI for evaluating our 3D micro behaviors. In
prior work, we used domain knowledge and encoded behaviors
like target selection and kiting into an algorithm and used
GAs to tune the micro script for each type of units to win
skirmish scenarios. This study however, uses a different micro
behavior representation which adopts little domain knowledge
and combines only one influence map with a set of potential
fields for group behavior representation.

A. Three Dimensional Influence Maps

We use a three dimensional unit influence map to generate
a 3D spatial representation to tell our units where to move.
The unit IM provides possible locations to move toward and
the combined PFs control movement to locations provided by
the IM. A typical IM is a grid defining the spatial information
in a game world, with values assigned to each grid-cell by
an IMFunction. An IMFunction is usually specified by two
parameters, a weight, the value at the location of the entity and
a range of influence in a 3D game world. The grid-cell value
for each entity linearly decreases to zero as range increases.
In this research, we extend our IMFunction from using two
parameters (weight and range) to five parameters in order to
represent more complicated spatial information as shown in
Equation 1.



To calculate any grid-cell value Vc, we add the influence
from each of the units within the range r from the cell. The
influence of a unit is a weight calculated by the sum of the
hit-points rate Rh scaled by w1, the weapon cooldown rate Rc

scaled by w2, and a default weight w3. We then compute the
influence of the grid-cell from the unit based on the distance
d by removing d · ∆f from the base weight of the unit. We
can see that our IMFunction not only considers the units’
positions in the game world but also includes the hit-points and
weapon cooldown of each unit. For example, an enemy unit
with low hit-points or its weapon in cooldown can generate a
high influence map value. PPFBot always select the maximum
IM value location as the target attack location, so our units
(Vultures) will move towards and attack the damaged unit (low
hitpoints) that cannot fire until the weapon cooldown period
is over. In essence, changes in the five parameters (w1, w2,
w3, r, ∆f ) of the IMFunction determines target selection for
friendly units. “Attack maximum IM value location” as our
target selection algorithm can be contrasted against the more
complex hard coded logic in our MSBot’s target selection
algorithm.

Vc =
∑
u∈R

((w1 ·Rh + w2 ·Rc + w3)− d ·∆f) (1)

B. Three Dimensional Potential Fields

The unit IM provides possible locations to move toward
and we use PFs to control unit movement to locations provided
by the IM. Equation 2 shows a standard potential field function,
where ~F is the potential force applied to the unit, with D being
the distance from another unit. The direction of the 3D force
is in the direction of the vector difference from the other unit.
C and E are evolvable parameters.

~F = C ·DE (2)

Since our pure potential field approach encodes little do-
main knowledge, we want to incorporate as many factors as
we can in order to enable PPFBot to evolve complex micro
behaviors. Equation 3 shows our overall potential field ( ~PF )
at a location composed from four different types of potential
fields: PFs generated by distance ( ~PF d), PFs generated by
unit hit-point ( ~PFh), PFs generated by unit weapon cooldown
( ~PF c), and a PF generated by the current target ( ~PF t). Note
that both friendly and enemy units generate potential fields
~PF d, ~PFh, and ~PF c and we have both attractive forces and

repulsive forces. Therefore, each of ~PF d, ~PFh, and ~PF c

contains four PFs. Considering one attractive PF from ~PF t, the
overall potential fields ~PF consists of thirteen potential fields
in total. ~PF will then provide the desired heading and desired
speed, which are used by the game physics in FastEcslent to
control the unit’s navigation. We apply GAs to evolve the two
parameters C and E from Equation 2 for each potential force.

~PF = ~PF d + ~PFh + ~PF c + ~PF t (3)

~PF d is typical potential fields generated by the distance
from a unit to the PF location as shown in Equation 4. Cad, Crd

are the coefficients and Ead, Ead are the exponents of attractive
and repulsive force of ~PF d accordingly. D represents the
distance from an enemy unit’s location to the our unit’s
location.

~PF d = CadD
Ead + CrdD

Erd (4)

~PFh is potential fields generated by the health of a unit
represented by the current hitpoints of that unit. When fired
upon, the unit takes damage which reduces hitpoints and thus
the health of the unit. This is shown in Equation 5. Cah,
Crh are the coefficients and Eah, Eah are the exponents of
attractive and repulsive force of ~PFh accordingly. Rh is a
fraction between 0 and 1 representing the health level of the
unit calculated by healthcur/healthmax.

~PFh = CahR
Eah

h + CrdR
Erh

h (5)

~PF c is potential fields generated by the cooldown rate of a
unit as shown in Equation 6. Cac, Crc are the coefficients and
Eac, Eac are the exponents of attractive and repulsive force of
~PF c accordingly. Rc is a fraction between 0 and 1 representing

the cooldown level of the unit calculated by cdcur/cdmax.

~PF c = CacR
Eac
c + CrcR

Erc
c (6)

~PF t is a potential field generated by the current target
location, as determined by the maximum IM value, shown in
Equation 7. Cta and Eta are the coefficient and exponent of
the attractive force of ~PF t accordingly. D is the distance from
the target location to our unit’s location. Note that there is no
repulsive potential force from the target location.

~PF t = CtaD
Eta (7)

All the potential field parameters used in the above equa-
tions are then encoded into a 226 bit-length binary string
as a chromosome for our GAs. When FastEcslent receives a
chromosome, it decodes the binary string into corresponding
parameters accordingly and directs friendly units to move and
attack enemy units in battle. The fitness of this chromosome
is then computed and sent back to our GAs at the end of each
match.

C. Fitness Evaluation

The goal of our predefined scenario is to maximize damage
to enemy units while minimizing friendly unit damage received
within a limited time duration. The fitness is calculated by the
evaluation function shown in Equation 8 at the end of each
game.

Fitness = TDe + (HPf × 400) (8)

where TDe is the total damage dealt from friendly units to
enemy units. HPf represents the total remaining hit-points
of all friendly units. According to our prior experiments, we
scaled HPf with a value 400 to give friendly unit hit-points
more weight than enemy unit damage in order to encourage
conservative moves in battle. The fitness function shown in
Equation 8 is used by our parallel genetic algorithms to bias
the evolutionary process for all experiments.

Note first, that we used this fairly arbitrary and exper-
imentally determined 400 scaling factor in these and prior



experiments to compute fitness. An alternative approach being
explored in our current research is to apply multi-objective
genetic algorithms and treat damage done and damage received
as two criteria in a pareto-optimization setting.

Second, note that the same fitness can be generated in
multiple ways. For example, a fitness of 8000 can be from
50 enemy units eliminated with no friendly units surviving or
from 45 enemy units eliminated and three friendly units alive
whose hit-points sum to 800.

D. Parallel Genetic Algorithm

Parallel Genetic Algorithms (PGAs) are extensions of
canonical GAs and the well-known advantage of PGAs is their
ability to speed up the evaluation process. We implemented
our PGA as a single population master-slave PGA where
there is only a single panmictic population on the master
node. However, unlike the canonical GA, all individuals in
the population are distributed to multiple slave nodes and
evaluate in parallel. Since evaluation involves running the
game engine to simulate a skirmish, this is the computationally
expensive and time consuming part of the evolutionary search
process. Parallel evaluation on n slave nodes usually results in
linear speedup for genetic algorithms and we take advantage
of this in our experiments. The evaluation of the population
is distributed on a first come first served basis. Unevaluated
individuals in a population are distributed to any unoccupied
slave node from the master node. We use Open-MPI as our
inter-processor communication backbone [24]. We also used
CHC elitist selection in which offspring compete with their
parents as well as each other for population slots in the next
generation [25], [26]. CHC selection being strongly elitist
preserves high fitness individuals from being eliminated during
search. Early experiments showed that our CHC selection
worked significantly better than the canonical roulette wheel
selection on our study. In accordance with our prior experi-
ments, we set the size of population to 50 and run the PGA
for 60 generations. The probability of 4-point crossover was
set to 0.88 and the probability of bit-mutation was 0.01.

V. RESULTS AND DISCUSSION

FastEcslent is a deterministic RTS game environment
which means that running a skirmish with a given set of
parameters leads to identical fitness in every run. Unlike
some other game engines, the FastEcslent game engine does
not introduce any noise or randomness to the game such as
probability of missing the target or the amount of damage
by a shot. We ran our scenarios with 30 random seeds for
both MSBot and PPFBot. Each skirmish lasts a maximum of
1.2 minutes on average although if one side is eliminated,
skirmishes can be much shorter. With the population size of 50
run for 60 generations, we need upto 50×60×1.2

60 = 60 hours for
each run of a canonical GA. Since we run our GA in parallel
on eight cores with one master node and seven slave nodes,
each run lasts on average 8.57 hours for 3000 evaluations.

A. Genetic Algorithm Results

The first set of experiments evaluated the performance
of MSBot using the previous meta-search approach in our
scenario as a baseline for comparison. Our skirmish scenario

on the map described earlier has 8 friendly Vultures versus
100 enemy Zealots. These uneven numbers are necessary so
that slow, short-ranged Zealots stand some chance against
the longer ranged and faster Vultures. In line with our prior
research, MSBot is able to evolve high fitness 3D micro
behaviors within 3000 evaluations. The micro behavior of the
MSBot tuned by our GAs for the ranged Vultures successfully
destroyed a large number of enemy Zealots while avoiding
damage. According to the fitness function, the theoretical
maximum score for our scenario is 19200. This is obtained
when eliminating all of the enemy Zealots (16000) with no
friendly Vultures receiving damage (3200). Fig. 3 shows the
average fitness from 30 PGA runs of MSBot.

Fig. 3: Average performance of PGA on MSBot with 30 dif-
ferent random seeds. X-axis represents number of generations
and Y-axis shows the average fitness over 30 runs.

Generation 0 in Figure 3 shows a large diversity of fitnesses
over 30 runs from 792.5 to 14901.9, the difference between
the average minumum and average maximum at the start. Since
the initial population is generated randomly based on the given
random seed, the large diversity of the first generation and
the high initial maximum fitness shows that MSBot is able to
perform fairly well simply by sampling 50 (population size)
different parameter sets. That is, by randomly generating 50
sets of parameters and selecting the highest fitness individual
may lead to a high fitness of 14901.9 corresponding to MSBot
destroying maximum 93 Zealots out of 100 in the given time
duration. The likely reason for the recurring high fitness in
the first generation is that our MSBot encoded much domain
knowledge in the micro control algorithm and there are many
different parameter sets that result in high fitness. In such case,
large population size of 50 used in this experiments greatly
increased the possibility of generating high fitness solutions
at random. As the evolutionary process goes on, fitness does
increase and the very best solution found by the PGA is 18600
which is only 600 less than the theoretical maximum fitness
of 19200. This indicates that the MSBot controlled 8 Vultures
killed most of the Zealots with only a little damage received
in the given time duration. The average of maximum fitness
(the average best solution) over 30 runs of MSBot is 17975.0.



Fig. 4: Average performance of PGA on PPFBot with 30
different random seeds. X-axis is the number of generations
and Y-axis shows the average fitnesses over 30 runs.

The average fitness curves of PPFBot shown in Figure 4
shows that the fitness of the initial population is between
1129.0 and 5227.1. We can see that the diversity of the
fitness in the initial population of PPFBot is only one third
compared to MSBot and the average maximum initial fitness
is only 5227.1. Unlike with the MSBot, a small sample of
30 does not do well with the PPFBot. The fitness of 5227.1
means that the best solution in a randomly generated initial
generation killed a maximum of 32 Zealots. However, the
performance curves for PPFBot rise smoothly and the very
best fitness over all 30 runs climbed up to 19120 which is
only 80 less than the theoretical maximum fitness of 19200
and 720 higher than the best solution of MSBot (18600). The
average over 30 runs of the maximum fitness in the PGA
population (GA Max) is 18706.5 which is 731.5 higher than
the average maximum fitness of MSBot. The higher fitness
solutions show shows that even without domain knowledge
about target selection, kiting, and fleeing explicityly encoded
in the PPF representation, our search algorithms are able to
evolve higher performance solution than the best solution
of MSBot. Since MSBot heavily depends on rich domain
knowledge, limitations on expert knowledge would also restrict
the theoretical maximum performance of MSBot. On the other
hand, PPFBot with fewer restriction imposed by encoded
domain knowledge was able to find effective combinations of
IM and PFs parameters leading to winning micro behaviors in
our scenario.

Since both MSBot and PPFBot are able to find high
performance solutions by the end of each run of the search
algorithm, we are interested in the reliability of the two
representations. Figure 5 shows the average of the maximum
fitness over 30 runs of both MSBot and PPFBot with the
standard deviation shown as error bars. We can see that our
PGA reliably found a high fitness around 18000 on both
MSBot and PPFBot. The standard deviation of MSBot’s final
fitnesses is 562.6, whereas the standard deviation of the PPF’s
final fitnesses is 647.3. Considering the average fitness to be as

Fig. 5: PPFBot produced higher fitness than MSBot on average
of 30 runs.

high as 18000, the low standard deviations of both MSBot and
PPFBot provide evidence that the PGA reliably produces high
quality 3D micro behaviors for both micro representations.
The difference in performance between MSBot and PFFBot
is small but statistically significant with a P = 3.29 × 10−7

using the t-test.

B. Evolved 3D Micro Behavior

We are also interested in the highest fitness 3D micro
behaviors generated by both MSBot and PPFBot. The highest
fitness found by MSBot is 18600. The behaviors created by this
solution enabled friendly Vultures to spread across the map and
split enemy units into smaller subgroups, thus decreasing the
concentrated fire power of the more numerous enemy groups
so that our units do not become overwhelmed. Figure 6 shows
a screenshot of the skirmish that illustrates our Vulture’s 3D
micro behaviors evolved by MSBot. The best solution shows
that our units were strongly attracted towards enemy units
with small repulsion, leading friendly units to fight closely but
remain out of the enemy unit’s reach. A low freeze time (St)
also encourages our units to move and kite more frequently to
avoid being overwhelmed by the enemy units. A large value
of the HPef parameter demonstrates that the evolved Vultures
prefer to target closest enemy units instead of the damaged
enemy units in our scenario, preventing potentially dangerous
chases through enemy territory and kiting in quick intervals.
Videos of evolved micro behaviors of MSBot can be found
online at http://www.cse.unr.edu/∼simingl/.

The best solution found by PPFBot is slightly better than
MSBot. Without the limitation of the hard coded algorithm,
PPFBot evolved different behaviors. All Vultures controlled by
PPFBot move together to maximize their fire power. Therefore,
8 Vultures can kill 1 Zealot in a single round of shooting.
Furthermore, without any hard coded kiting logic, PPFBot
evolved a “hit and run” behavior which is essentially a “kiting”
movement against Zealots. This indicates that with the general
rule representation of influence maps and potential fields, kit-
ing behavior which is effective for ranged units against melee

http://www.cse.unr.edu/~simingl/


Fig. 6: The best solution evolved by MSBot with Vultures fight
smaller fragments of the enemy group for a higher chance of
survival.

attack units, emerges over time. With evolved PF parameter
values, when a Vulture’s weapon is in cooldown and can
not fire, the Vulture is repelled away to keep a safe distance
from enemy units. After the weapon becomes ready to fire,
Vultures are attracted back towards Zealots to fight in battle.
Figure 7 shows a screenshot of a fight that illustrates our
Vulture’s 3D micro behavior evolved by PPFBot. The videos at
http://www.cse.unr.edu/∼simingl/ also illustrate this emergent
behavior and far better than a static screenshot.

Fig. 7: The best solution evolved by PPFBot with Vultures stay
together to concentrate fire powers.

C. Generalizability of Evolved 3D Micro Behaviors

We tested the generalizability of our evolved set of param-
eters for both MSBot and PPFBot by applying them to control
the same amount of units in new scenarios with randomized
initial unit positions. For each game, we randomly generate
one location for each side in a 3D space with the limit of
x ⊂ (0, 1940), y ⊂ (100, 1940), and z ⊂ (0, 1940). The
units of each side will spawn around the randomly generated
location at the beginning of each game. We run 1000 games
each with a different random seed leading to different initial
unit locations. Figure 8 shows the average fitness and the
standard deviations of 1000 runs for both MSBot and PPFBot.
The average fitness over 1000 runs of MSBot is 15853.7 which

is 80.02% of the highest fitness evolved in the original scenario
(18600). The standard deviation of 1000 runs is 1449.1 which
means MSBot generalizes fairly well with low variation when
the initial position changes. However, the average fitness over
1000 runs of PPFBot is only 7902.0 which is 30.02% of the
highest fitness evolved in the original scenario (19120). The
standard deviation of 1000 runs is 3847.5 which means the best
solution of PPFBot works well only on the training scenario
and generalizes poorly to other scenarios with different initial
positions.

Fig. 8: The average fitness over 1000 runs on the best solutions
of MSBot and PPFBot with random initial positions.

We hypothesize that the PPFBot overspecialized or prema-
turely converged to a sceanrio specific set of PF parameters
and believe this lower generalizability can be mitigated by
using multiple scenarios for each evaluation of the PPFBot.
We are currently exploring this hypothesis by evolving the
PPFBot using three scenarios per evaluation with encouraging
results. In our case, on the one hand, it seems that too much
domain knowledge (more contraints) can restrict solutions
but can also ensure more generalizable results. On the other
hand, less domain knowledge (fewer constraints) can lead to
more exploration but may tend to find and converge on less
generalizable results.

VI. CONCLUSION AND FUTURE WORK

Our research focuses on generating effective micro be-
haviors including target selection, unit movement, and kit-
ing in order to win skirmishes in 3D Real-Time Strategy
games. We represented three dimensional micro behaviors as
a combination of an IM and thirteen PFs in a 226 length
bit-string without encoding any domain knowledge of 3D
micro behaviors. Parallel genetic algorithms are applied to
search for parameter values that lead to high quality micro
on our scenario. These micro behaviors are then adopted by
our PPFBot and compared with MSBot which uses the meta-
search approach developed in our prior research. Since the
chromosome length used by MSBot is only 51, the search
space of PPFBot is 2175 ≈ 4.8 × 1052 times larger than the
search space of MSBot.

We designed a scenario in which bots need to control 8
Vultures that fight against 100 Zealots to evaluate 3D micro
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performance in an open-source 3D RTS game, FastEcslent.
The results show that parallel genetic algorithms quickly
evolve high quality 3D micro for PPFBot although we encoded
little domain knowledge in this representation. We ran the
same experiments on MSBot with the meta-search approach
developed in our prior research. Results show that our parallel
genetic algorithms converge fast and evolve high quality 3D
micro at the end of each run. The results also show that the
fitness of the best solution evolved by PPFBot is slightly, but
significantly, higher than MSBot. Considering that the PPFBot
is representing 3D micro behaviors using only an influence
map with thirteen potential fields, the higher fitness of PPFBot
provides evidence that the pure potential field representation
is a viable approach for evolving micro behaviors in full 3D
RTS games. The Vultures evolved by MSBot exploit opposing
Zealots by separating enemy units into smaller subgroups to
avoid being surrounded and then kiting (hit and run behavior)
till game time runs out. On the contrary, Vultures evolved
by PPFBot stay together for concentrating their fire power
to eliminate enemy Zealots while performing also kiting.
Results also demonstrate that the best evolved solution of
the MSBot generalizes well to new scenarios with different
random unit initial positions. The best solution of PPFBot does
not generalize as well.

We are interested in co-evolving 3D micro behaviors for
both ranged units against melee units with our new pure poten-
tial field representation. We are also investigating replacing our
simplified fitness function with a multi-objective formulation
and using multi-objective evolutionary algorithms in a pareto-
optimization setting. More techniques such as case-injected
genetic algorithms or other knowledge-based systems can be
applied to our approach to further investigate generalizability,
speed, quality, and reliability of our micro representation and
evolved solutions.
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