2D Vector Math for Games

Transformation

- We are talking about planar spaces
- 3d spaces need to be transformed
 - For instance, <x,y> = <-a,0,b>
 - There are infinite numbers of possible transformations
 - May include rotations
 - May include scaling
 - Probably won't require translations

Planar Coordinates

• We will use the following planar coordinate system:

Basic 2d Vector Operations

- Vector Addition (and implicitly subtraction)
- Scalar Multiplication (division, negation)
- Magnitude (vector length)
- Unit Vectors (magnitude, division)
- Vector Comparison (FP precision errors)
- Angle Conversion (to/from radians)
- Dot Product

Variables

- Uppercase: Vector Lowercase: Scalar
- <x,y> A Vector comprised of Scalar x and y
- Vectors- P: Point, V: Velocity
- Scalars- h: Heading, s: Speed
- $D = P_2 P_1$
 - D is a vector from P_1 to P_2
 - $-|D|=Distance between P_1 and P_2$

Angle Conversion

- Basic Trigonometry RADIANS!
- From Angle to Vector:
 x = cos(h) y = sin(h)
 <x,y> is a unit vector, say V_u: V = V_u *s for Velocity
- From Vector to Angle $h = \operatorname{atan2}(y, x)$ $s = \operatorname{length}(\langle x, y \rangle) \quad \operatorname{atan2}(y, x) = \begin{cases} \operatorname{arctan}(\frac{y}{x}) & x > 0 \\ \pi + \operatorname{arctan}(\frac{y}{x}) & y \ge 0, x < 0 \\ -\pi + \operatorname{arctan}(\frac{y}{x}) & y < 0, x < 0 \\ \frac{\pi}{2} & y > 0, x = 0 \\ -\frac{\pi}{2} & y < 0, x = 0 \end{cases}$
 - y = 0, x = 0

Dot Product

- Analogous to the Law of Cosines
 c² = a² + b² 2abcos(angle)
- Dot Product $A \cdot B = |A||B|cos(angle)$
- Rearranged
 cos(angle) = (A·B) / (|A||B|)
 angle = cos⁻¹((A·B) / (|A||B|))

• Very useful for Interception of Moving Objects

Interception of Moving Objects

- Things We Know about Coyote and Roadrunner P_{c} , P_{R} , V_{R} , s_{c} : Positions, Tgt Velocity and My Speed t = time, $s_R = |V_R|$, D = $P_R - P_C$, d=|D| P_1 = Point of Interception S_ct $cos \Theta = (V \cdot D) / (ds_R)$
- Law of Cosines tells us: $(s_{C}t)^{2} = (s_{R}t)^{2} + d^{2} - 2s_{R}tdcos\theta$

This reduces to a Quadratic Equation in 't'