2D Vector Math for Games

Transformation

- We are talking about planar spaces
- 3d spaces need to be transformed
- For instance, <x,y> = <-a,0,b>
- There are infinite numbers of possible transformations
- May include rotations
- May include scaling
- Probably won’t require translations

Planar Coordinates

- We will use the following planar coordinate system:

Basic 2d Vector Operations

- Vector Addition (and implicitly subtraction)
- Scalar Multiplication (division, negation)
- Magnitude (vector length)
- Unit Vectors (magnitude, division)
- Vector Comparison (FP precision errors)
- Angle Conversion (to/from radians)
- Dot Product

Variables

- Uppercase: Vector Lowercase: Scalar
- <x,y>-A Vector comprised of Scalar x and y
- Vectors- P: Point, V: Velocity
- Scalars- h: Heading, s: Speed
- $D=P_{2}-P_{1}$
$-D$ is a vector from P_{1} to P_{2}
- $|D|=$ Distance between P_{1} and P_{2}

Angle Conversion

- Basic Trigonometry - RADIANS!
- From Angle to Vector:
$x=\cos (h) \quad y=\sin (h)$
$\langle x, y\rangle$ is a unit vector, say $V_{U}: V=V_{U}$ s for Velocity
- From Vector to Angle
$\begin{aligned} & \mathbf{h}=\operatorname{atan} 2(\mathbf{y}, \mathbf{x}) \\ & \mathbf{S}=\operatorname{length}(<\mathbf{x}, \mathrm{y}\rangle)\end{aligned} \operatorname{atan} 2(y, x)= \begin{cases}\arctan \left(\frac{y}{x}\right) & x>0 \\ \pi+\arctan \left(\frac{y}{x}\right) & y \geq 0, x<0 \\ -\pi+\arctan \left(\frac{y}{x}\right) & y<0, x<0 \\ \frac{\pi}{2} & y>0, x=0 \\ -\frac{\pi}{2} & y<0, x=0 \\ \text { undefined } & y=0, x=0\end{cases}$

Dot Product

- Analogous to the Law of Cosines $c^{2}=a^{2}+b^{2}-2 a b \cos ($ angle)
- Dot Product

$$
\mathrm{A} \cdot \mathrm{~B}=|\mathrm{A}||\mathrm{B}| \cos (\text { angle })
$$

- Rearranged

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C
\end{aligned}
$$

$\cos ($ angle $)=(\mathrm{A} \cdot \mathrm{B}) /(|\mathrm{A}||\mathrm{B}|)$
angle $=\cos ^{-1}((A \cdot B) /(|A||B|))$

- Very useful for Interception of Mouing Objects

Interception of Moving Objects

- Things We Know about Coyote and Roadrunner
$P_{C}, P_{R}, V_{R}, s_{c}$: Positions, Tgt Velocity and My Speed $t=$ time, $s_{R}=\left|V_{R}\right|, D=P_{R}-P_{C}, d=|D|$ $\mathrm{P}_{1}=$ Point of Interception $\cos \theta=(\mathrm{V} \cdot \mathrm{D}) /\left(\mathrm{ds}_{\mathrm{R}}\right)$
- Law of Cosines tells us:
$\left(s_{\mathrm{C}} t\right)^{2}=\left(s_{\mathrm{R}}\right)^{2}+\mathrm{d}^{2}-2 \mathrm{~s}_{\mathrm{R}} \mathrm{td} \cos \theta$

This reduces to a Zuadratic Equation in ' t '

