
Game Physics

A quick introduction to discrete time 
physics



The (discrete) laws of Physics

● Newton's equations of Motion
○ f = ma                Force = Mass * Acceleration

● To display or render on screen, we need to know position 
and orientation, so

● Let's do some simple math physics. rewrite 2nd law as:
●  
●                        a = f/m
●  
● We know acceleration is change in velocity with time, ie.
●  
●                        a = dv/dt 
● so
●                       dv/dt = a = f/m



Discrete physics      numerical integration

                                    dv/dt = a = f/m

Velocity is change in position over time, so

                                    dp/dt = v

This means, that if we know the current position, the current 
velocity, and the forces applied to an object, we can compute 
(simulate) future positions, velocities, and accelerations of the 
object. This same logic applies to the orientation as well.

In discrete physics, we do not solve differential equations!
   we solve difference equations through numerical integration.



Euler Integration is easy!

 Suppose we want to predict the position of a game entity (ent) 
at time 1, 2, 3, 4, and we know 

● Position (p) of ent at time 0
● Force (f) on ent

Then
      a = f/m
If we know acceleration, then we know velocity is change in 
acceleration. If we want to know velocity at time t = 1
then
       dt = 1 - 0 = 1  (let's keep the math simple)
and we know
       dv/dt = a
so 
       dv = a * dt                   so, we know the change in velocity



Computing change in position

Knowing velocity, we can compute the change in position 
because

              dp/dt = v

so, change in position dp is

              dp = v * dt



Simple Example
Let's do an example:

● One dimension
● Initial position, p is 0. Initial velocity v = 0
● Mass, m is 100 
● Force, f is 50
● time, t = 0.0

To get position at time t = 1.0
    dt = 1.0 - 0.0 = 1.0
    a  = f/m = 50/100 = 0.5
    dv = a * dt = 0.5 * 1.0 = 0.5
    newVelocity = v + dv = 0 + 0.5 = 0.5
    dp = newVelocity * dt = 0.5 * 1.0 = 0.5
This is change in position, so the new position is p + dp
    newPosition = p + dp = 0 + 0.5 = 0.5



New position at time t = 2

      p = 0.5  and v = 0.5                  (from last step)
      dt = 2.0 - 1.0 = 1.0
      a = f/m = 50/100 = 0.5              (constant acceleration)
      dv = a * dt = 0.5 * 1.0 = 0.5
      newVelocity = v + dv = 0.5 + 0.5 = 1.0
      dp = v * dt = 1.0 * 1.0 = 1.0

newPosition = p + dp = 0.5 + 1.0 = 1.5

This was a simple example, with dt = 1. Just to see how it 
works, let's try dt = 2, that is we want to know the position of ent 
at time t = 2, t = 4, t = 6, and so on.



Example 2, dt = 2

      p = 0, v = 0 (initial position = 0, initial velocity = 0)
      m = 100
       f = 50
      dt = 2.0
so
      a = f/m = 50/100 = 0.5
      dv = a * dt = 0.5 * 2.0 = 1.0
      newVelocity = v + dv = 0 + 1.0 = 1.0
      dp = v * dt = 1.0 * 2  = 2.0

newPosition = p + dp = 0 + 2.0 = 2.0 !!!!
This is not the same as the newPosition you calculated using 
dt = 1?    Why not ?



Exact

 p = 0.5 a t^2

 at t = 2:
 
      p = 0.5 * a * t^2
      p = 0.5 * 0.5 * 2^2
      p = 0.5 * 0.5 * 4
      p = 0.5 * 2
      p = 1.0



Euler Python code. Try different dt 
valuest = 0.0
dt = 1.0

vel = 0.0
pos = 0.0
force = 50.0
mass = 100.0

while (t <= 10):
    pos = pos + vel * dt;
    vel = vel + (force/mass) * dt;
    t = t + dt;
    print "Time: ", t, "Position: ", pos, " Velocity: ", vel



Euler integration works for very small dt

- Euler assumes the rate of change is constant over dt. 
- But velocity is changing over our dt, and the larger the dt, the 
larger the change, so our system violates Euler's assumptions

The error between Euler and exact (p = 0.5 a t^2) gets larger 
over time!

                                  What do we do?



Typically, we don't need exact physics!

 So, either
● Use simple Euler and know that the simulated physics in 

your game is not "real"
○ Your game is not real anyway
○ Simple code is easier to debug
○ Simple Euler integration code is FAST

Or
● Use Runge Kutta order 4 (RK4) integrator. Sufficiently 

accurate for the kind of timesteps used in our games
● Works by 

○ Sampling the derivative at several different points in the 
timestep to detect change in (for example) velocity. 

○ Combines these derivatives using a weighted average



The difference (starting pos = 100.0)

● dt = 0.1
○ Euler: Time: 10.0     Pos: 124.75     Vel:  5.00
○ RK4  : Time: 10.0     Pos: 125.00     Vel:  5.00
○ Exact:                        Pos: 125.00

● dt = 1.0
○ Euler: Time: 10.0     Pos: 122.50     Vel:  5.00
○ Rk4  : Time: 10.0     Pos: 125.00     Vel:  5.00
○ Exact:                       Pos: 125.00

● dt = 2.0
○ Euler: Time: 10.0     Pos: 120.00     Vel:  5.00
○ Rk4  : Time: 10.0     Pos: 125.00     Vel:  5.00
○ Exact:                       Pos: 125.00

Here's how RK4 works...



State and Derivative

class State:
    x = 0
    v = 0

class Derivative:
    dx = 0;
    dv = 0

Storage for position (x), velocity (v), dx/dt and dv/dt



RK4 integration
def integrate(state, t, dt):
    a = evaluateInitial(state, t)
    b = evaluate(state, t+dt*0.05, dt*0.5, a)
    c = evaluate(state, t+dt*0.05, dt*0.5, b)
    d = evaluate(state, t+dt, dt, c)

    dxdt = 1.0/6.0 * (a.dx + 2.0*(b.dx + c.dx) + d.dx)
    dvdt = 1.0/6.0 * (a.dv + 2.0*(b.dv + c.dv) + d.dv)

    state.x = state.x + dxdt * dt
    state.v = state.v + dvdt * dt

evaluate - evaluates the derivative at multiple points in time
The key is that derivative a is used to evaluate b, which feeds 
into the evaluation of c, which feeds into d
The constants in the weighted average come from Lagrange's 
expansion of the Taylor series.

Sampling the 
derivative at several 
different points in the 
timestep to detect 
change in (for 
example) velocity.



Position and velocity integration 
simultaneously
def evaluate(initialState, t, dt, d):
    state = State();
    state.x = initialState.x + d.dx * dt
    state.v = initialState.v + d.dv * dt

    output = Derivative()
    output.dx = state.v
    output.dv = acceleration(state, t+dt)
    return output

def acceleration(state, t):
    return force/mass         # constant acceleration



The difference (again)

● dt = 0.1
○ Euler: Time: 10.0     Pos: 124.75     Vel:  5.00
○ RK4  : Time: 10.0     Pos: 125.00     Vel:  5.00
○ Exact:                      Pos: 125.00

● dt = 1.0
○ Euler: Time: 10.0     Pos: 122.50     Vel:  5.00
○ Rk4  : Time: 10.0     Pos: 125.00     Vel:  5.00
○ Exact:                      Pos: 125.00

● dt = 2.0
○ Euler: Time: 10.0     Pos: 120.00     Vel:  5.00
○ Rk4  : Time: 10.0     Pos: 125.00     Vel:  5.00
○ Exact:                      Pos: 125.00

● Errors accumulate, so smaller errors accumulate slower. 
● RK4 has lower error especially if you have larger dt
● Still simple enough to code
● Not very hard to understand, and modify, and extend to 3D


