
Game Engines

381

Game Engines

Game Engines are composed from

Entities – A collection of game entities
GFX – a graphics engine to display entities
PHX – a physics engine to move entities
UI – to select, command, and describe entities
AI – an AI engine to carry out commands
Net – to connect to other game engines

We will study how to integrate
Entities, GFX, PHX, UI, AI and perhaps Net in this class

We are using python-ogre because
Python-ogre is cross-platform and open source
Python is much quicker for prototyping than C/C++
Python-ogre is under active development
With a little effort, you can create a windows, mac, and
linux executables for distribution

Framework

import ogre.renderer.OGRE as ogre
import SampleFramework as sf

class TutorialApplication(sf.Application):

 def _createScene(self):
 pass

if __name__ == '__main__':
 ta = TutorialApplication()
 ta.go()

GFX basics: Scene Managers

Scene managers manage your display and are optimized
for types of scenes. Terrain scene managers may not be
best suited for first person shooters but may be well suited
for RTS games
Scene is an abstract representation of what is displayed on
the screen

Static geometry like terrain or building
Models – trees, boats, monsters, …
Light sources – let there be light
Cameras – so users can have a point of view

Movable Objects

Renderable (displayable) and Movable
Python Ogre Entity is a subclass of MovableObject

3D Mesh
No location or orientation

SceneNode is a class that contains location and orientation
information
To display an entity object, attach object to a scene node
object
Lights, Particles, Cameras are not Entities but are
MovableObjects

Renderables and Scene Nodes

Attach an entity (3D mesh) to a scene node (position,
orientation) to render (make it appear) it on screen (in the
scene)
The scene manager gives you root scene node. This root
scene node forms the root of a tree of scene nodes

Scene Nodes

Position and orientation of a scene node N are relative to
that of N's parent.
In general

Attach independently moving entities to scene nodes
that are children of the root scene node
Example: Attach Ferrari's mesh to node1, child of root
scene node. Attach Ferrari's wheel's meshes to node1

You will usually create a shallow hierarchy of scene nodes

Code for _createScene

sceneManager = self.sceneManager sceneManager.ambientLight = ogre.
ColourValue (1, 1, 1)
 sceneManager is created for us by the SampleFramework. We will continue to use the SampleFramework
for a couple of assignments.

ent1 = sceneManager.createEntity ("Robot", "robot.mesh")
First parameter must be a UNIQUE name
Second parameter must be the name of a file that contains the 3D robot’s mesh in Ogre’s
3D mesh format. This file has been found and loaded by the SampleFramework

node1 = sceneManager.getRootSceneNode().createChildSceneNode ("RobotNode“)
Create a scene node that is a child of the root scene node. Scene node name must also be
UNIQUE

node1.attachObject (ent1)
Now you can run your code

Coordinate axes!

X – Z horizontal plane
Y vertical axis
-X left, +X right
-Y down, +Y up
-Z into screen, +Z out of screen towards you
Meshes that you load can face any direction. It is up to you
and your modeling program (blender) to orient your meshes

Vectors - ogre.Vector3(x, y, z)

Vector3
ogre.Vector3(0, 50, 0) or
(0, 50, 0)

ogre.ColorValue(1, 1, 1) or
(1, 1, 1)

node2 = sceneManager.getRootSceneNode().
createChildSceneNode ("RobotNode2", ogre.Vector3 (50, 0, 0)) OR
node2 = sceneManager.getRootSceneNode().
createChildSceneNode ("RobotNode2", (50, 0, 0))

Framework

import ogre.renderer.OGRE as ogre
import SampleFramework as sf

class TutorialApplication(sf.Application):

 def _createScene(self):
 pass

if __name__ == '__main__':
 ta = TutorialApplication()
 ta.go()

