
GAME NETWORKING

What every programmer needs to know

Peer to Peer Lockstep

 No client, no server

 Fully connected mesh topology
 Easiest

 First developed for RTS

 Turns and commands

 Common initial state (starting in a game lobby)
 Beginning of each TURN

 Send all commands to all machines

 All machines run commands

 End Turn

Peer to Peer lockstep

 Simple, elegant. But…

 Non-linearity
 Ensuring complete determinism is hard. Slight

differences amplify with time

 Latency
 All commands must be received before simulating

that turn. Latency = max latency over all players!

 Command and Conquer, Age of Empire,
Starcraft
 Best over LANs

Client/Server

 Lockstep not good for action games like DOOM over
internet.

 Each player is now a client and they all communicate with a
server.

 Server ran the game simulation, dumb clients interpolated
between states received from the server

 All input goes from clients to server
 Keypresses, mouse movement, presses
 Server simulates, changes entity states
 Client gets new entity states, interpolates between old and new

states

 Players could come and go in the middle of the game.
Quality of connection depends on client server connection

Client server problems

 Latency is still the big problem

Client-side prediction

 Client-side prediction

 Latency compensation

 Interpolation

 John Carmack on QuakeWorld
 I am now allowing the client to guess at the results of the users

movement until the authoritative response from the server comes
through. This is a biiiig architectural change. The client now needs to
know about solidity of objects, friction, gravity, etc. I am sad to see the
elegant client-as-terminal setup go away, but I am practical above
idealistic.

Client-side prediction

 All machines are the same and run the same
code no dumb clients

 One machine is still the authority server

 So
 Client simulates the movement of your entity

locally and immediately in response to your input
 No latency issue. Immediate movement

 How do I synchronize with all the other players?
 Communicate with server and correct your movement

in response to server state messages

Client-side prediction

 But server state is past-state

 If it takes 200 ms for round trip message between
client and server, then server correction for the
player character position will be 200 ms in the
past, .relative to now

Client

Server

000 100 200 300 400 500 600 700 800

Move

Move

Moved 200 ms

Moved 100 ms

Client-side prediction soln
 Keep a buffer of past local state (and input) for each entity

 When client gets correction from server
 Discard state older than server state

 Simulate from server state to now
 This is your (client entity) new predicted position using latest info from

server

 Look at the difference in position
 Between the predicted position and your current position pDiff

 Note network latency

 Keep simulating forward from current position, but interpolate to
eliminate pDiff within latency amount of time

 By the time you next get a correction from server, your predicted
position should be your current position!

Test on Monday, April 7

 Physics, AI, Networking

 Game Engine Architecture

 Start finding partners (Wednesday)

 Prepare a short description of what you want to do

 Larry Dailey will help you brainstorm a game idea
next Wednesday, April 9

 Assignment 6, AI, (pairs possible) due April 14

 April project proposal, deliverables, schedule to be
posted

