
GAME NETWORKING 

What every programmer needs to know 



Peer to Peer Lockstep 

 No client, no server 

 Fully connected mesh topology 
 Easiest 

 First developed for RTS 

 Turns and commands 

 Common initial state (starting in a game lobby) 
 Beginning of each TURN 

 Send all commands to all machines 

 All machines run commands 

 End Turn 



Peer to Peer lockstep 

 Simple, elegant.                                                 But… 

 Non-linearity 
 Ensuring complete determinism is hard. Slight 

differences amplify with time 

 Latency 
 All commands must be received before simulating 

that turn. Latency = max latency over all players! 

 Command and Conquer, Age of Empire, 
Starcraft 
 Best over LANs 



Client/Server  

 Lockstep not good for action games like DOOM over 
internet. 

 Each player is now a client and they all communicate with a 
server. 

 Server ran the game simulation, dumb clients interpolated 
between states received from the server 

 All input goes from clients to server 
 Keypresses, mouse movement, presses 
 Server simulates, changes entity states 
 Client gets new entity states, interpolates between old and new 

states 

 Players could come and go in the middle of the game. 
Quality of connection depends on client server connection 

 



Client server problems 

 Latency is still the big problem 



Client-side prediction 

 Client-side prediction 

 Latency compensation 

 Interpolation 

 John Carmack on QuakeWorld 
 I am now allowing the client to guess at the results of the users 

movement until the authoritative response from the server comes 
through. This is a biiiig architectural change. The client now needs to 
know about solidity of objects, friction, gravity, etc. I am sad to see the 
elegant client-as-terminal setup go away, but I am practical above 
idealistic. 



Client-side prediction 

 All machines are the same and run the same 
code  no dumb clients 

 One machine is still the authority  server 

 So 
 Client simulates the movement of your entity 

locally and immediately in response to your input 
 No latency issue. Immediate movement  

 How do I synchronize with all the other players? 
 Communicate with server and correct your movement 

in response to server state messages 



Client-side prediction 

 But server state is past-state 

 If it takes 200 ms for round trip message between 
client and server, then server correction for the 
player character position will be 200 ms in the 
past, .relative to now 
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Client-side prediction soln 
 Keep a buffer of past local state (and input) for each entity 

 When client gets correction from server 
 Discard state older than server state 

 Simulate from server state to now 
 This is your (client entity) new predicted position using latest info from 

server 

 Look at the difference in position 
 Between the predicted position and your current position  pDiff 

 Note network latency  

 Keep simulating forward from current position, but interpolate to 
eliminate pDiff within latency amount of time 

 By the time you next get a correction from server, your predicted 
position should be your current position! 



Test on Monday, April 7  

 Physics, AI, Networking 

 Game Engine Architecture 

 Start finding partners (Wednesday) 

 Prepare a short description of what you want to do 

 Larry Dailey will help you brainstorm a game idea 
next Wednesday, April 9 

 Assignment 6, AI, (pairs possible) due April 14 

 April project proposal, deliverables, schedule to be 
posted 


