
GAME NETWORKING

What every programmer needs to know

Peer to Peer Lockstep

 No client, no server

 Fully connected mesh topology
 Easiest

 First developed for RTS

 Turns and commands

 Common initial state (starting in a game lobby)
 Beginning of each TURN

 Send all commands to all machines

 All machines run commands

 End Turn

Peer to Peer lockstep

 Simple, elegant. But…

 Non-linearity
 Ensuring complete determinism is hard. Slight

differences amplify with time

 Latency
 All commands must be received before simulating

that turn. Latency = max latency over all players!

 Command and Conquer, Age of Empire,
Starcraft
 Best over LANs

Client/Server

 Lockstep not good for action games like DOOM over
internet.

 Each player is now a client and they all communicate with a
server.

 Server ran the game simulation, dumb clients interpolated
between states received from the server

 All input goes from clients to server
 Keypresses, mouse movement, presses
 Server simulates, changes entity states
 Client gets new entity states, interpolates between old and new

states

 Players could come and go in the middle of the game.
Quality of connection depends on client server connection

Client server problems

 Latency is still the big problem

Client-side prediction

 Client-side prediction

 Latency compensation

 Interpolation

 John Carmack on QuakeWorld
 I am now allowing the client to guess at the results of the users

movement until the authoritative response from the server comes
through. This is a biiiig architectural change. The client now needs to
know about solidity of objects, friction, gravity, etc. I am sad to see the
elegant client-as-terminal setup go away, but I am practical above
idealistic.

Client-side prediction

 All machines are the same and run the same
code  no dumb clients

 One machine is still the authority  server

 So
 Client simulates the movement of your entity

locally and immediately in response to your input
 No latency issue. Immediate movement

 How do I synchronize with all the other players?
 Communicate with server and correct your movement

in response to server state messages

Client-side prediction

 But server state is past-state

 If it takes 200 ms for round trip message between
client and server, then server correction for the
player character position will be 200 ms in the
past, .relative to now

Client

Server

000 100 200 300 400 500 600 700 800

Move

Move

Moved 200 ms

Moved 100 ms

Client-side prediction soln
 Keep a buffer of past local state (and input) for each entity

 When client gets correction from server
 Discard state older than server state

 Simulate from server state to now
 This is your (client entity) new predicted position using latest info from

server

 Look at the difference in position
 Between the predicted position and your current position  pDiff

 Note network latency

 Keep simulating forward from current position, but interpolate to
eliminate pDiff within latency amount of time

 By the time you next get a correction from server, your predicted
position should be your current position!

Test on Monday, April 7

 Physics, AI, Networking

 Game Engine Architecture

 Start finding partners (Wednesday)

 Prepare a short description of what you want to do

 Larry Dailey will help you brainstorm a game idea
next Wednesday, April 9

 Assignment 6, AI, (pairs possible) due April 14

 April project proposal, deliverables, schedule to be
posted

