Game Networking

CS381 Spring 2012

Internet

* An Information superhighway
* A collection of pipes
* Arpanet

- Robust communication in the face of
Infrastructure breakdown

e Packets instead of stream
* Routers send packets towards destination
* Incomplete knowledge of route to destination

- Internet protocol - IP

TCP and UDP over IP

Connection based

Guaranteed and
Reliable

Automatically
packetizes

Flow control

Easy to use

No concept of
connection

No guarantee of
reliability or packet
ordering

Programmer
packetizing

Programmer flow
control

Programmer needs to
handle lost packets

Sockets

* Network programming based on sockets

- Open socket
- Send on socket

— Recelive from socket

Socket code

e Send Thread e Receive Thread
* While (true):. * While (true):.
- Get data - Recelve data

_ Send data on from socket

socket - Process data

* No blocking * Blocked on receive

Python code

TCP server example

import socket

server socket = socket.socket(socket.AF INET, socket.SOCK STREAM)
server socket.bind(("", 5000))

server socket.listen(5)

print "TCPServer Waiting for client on port 5000"

while 1:
client socket, address = server socket.accept()
print "I got a connection from ", address
while 1:
data = raw input ("SEND(TYPE gq or Q to Quit):")
if (data == 'Q' or data == 'q'):

client socket.send (data)
client socket.close()
break;

else:
client socket.send(data)

data = client socket.recv(512)

if (data == 'q' or data == 'Q'):
client socket.close()
break;

else:

print "RECIEVED:" , data

Python code (Receive)

TCP client example
import socket

client socket = socket.socket(socket.AF INET, socket.SOCK STREAM)
client socket.connect(("localhost", 5000))
while 1:
data = client socket.recv(512)
if (data == 'q' or data == 'Q'):
client socket.close()
break;
else:

print "RECIEVED:" , data
data = raw input ("SEND(TYPE q or Q to Quit):")
if (data <> 'Q' and data <> 'q'):
client socket.send(data)
else:
client socket.send(data)

client socket.close()
break;

UDP Server

UDP server example
import socket

server_socket = socket.socket(socket.AF_INET, socket. SOCK_DGRAM)
server_socket.bind(("", 5000))

print"UDPServer Waiting for client on port 5000"

while 1:

data, address = server_socket.recvfrom(256)
print "(" ,address|[0], " ", address[1] , ") said : ", data

UDP Client

UDP client example
import socket
client_socket = socket.socket(socket.AF_INET, socket. SOCK_ DGRAM)
while 1:
data = raw_input("Type something(q or Q to exit): ")
if (data <> 'g' and data <> 'Q"):
client_socket.sendto(data, ("localhost",5000))
else:
break
client_socket.close()

Action Game Networking

e TCP not suitable

- We are interested in most recent game state
more than in reliably receiving game state

- If there Is network congestion TCP/IP may
make congestion worse and worse with
lots of resending of lost packets and
acknowledgements

UDP Game networking

* Fixed sized packets

e Screen to find players and make game
- Or broadcast on local net for local net game
e Specify authoritative server

 Ensure no possibility of cheating

- Encryption
* Design Game networking protocol

381 engine

 Packet size: 65536

* Server broadcasts state every 100 ms
* NO encryption

* Protocol

— Server
- Client

Breakout

Protocol for openEcslent

e Server e Client

- Broadcast state - Receive msg
- Update state

— Send user
Interaction

every 100 ms

— Service client
requests

Server

« Sender Thread * Recelver Thread
- Broadcast state - Receilve msg
queue gueue
- Sleep 100 ms

* Network Manager — every tick

— Process receive queue

- Put requested data in send queue

Client

e Sender Thread e Recelver Thread
- Send all - Recelve
MesSsages IN message
Send Q

- Put message In
— Sleep 100 ms Receive Q

* Network Manager — every tick

- Process all messages in Receive Q

- Put new messages in Send Q

Big picture

tick

a

4 N

Gfx
Mgr

- N

Entity
Mar

Network
Mgr

g

KGame Engine/

Thread
run
loops

/

AN

Network
Sender
Thread

\

/

/

AN

Network
Receiver
Thread

\

/

Detalls

Read code!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

