

Game Networking

CS381 Spring 2012

Internet

● An information superhighway
● A collection of pipes
● Arpanet

– Robust communication in the face of
infrastructure breakdown

● Packets instead of stream
● Routers send packets towards destination
● Incomplete knowledge of route to destination

– Internet protocol - IP

IP

TCP and UDP over IP
● Connection based

● Guaranteed and
Reliable

● Automatically
packetizes

● Flow control

● Easy to use

● No concept of
connection

● No guarantee of
reliability or packet
ordering

● Programmer
packetizing

● Programmer flow
control

● Programmer needs to
handle lost packets

Sockets

● Network programming based on sockets
– Open socket

– Send on socket

– Receive from socket

●

Socket code

● Send Thread
● While (true):

– Get data

– Send data on
socket

● No blocking

● Receive Thread
● While (true):

– Receive data
from socket

– Process data

● Blocked on receive

Python code
TCP server example
import socket
server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server_socket.bind(("", 5000))
server_socket.listen(5)
print "TCPServer Waiting for client on port 5000"
while 1:
 client_socket, address = server_socket.accept()
 print "I got a connection from ", address
 while 1:
 data = raw_input ("SEND(TYPE q or Q to Quit):")
 if (data == 'Q' or data == 'q'):
 client_socket.send (data)
 client_socket.close()
 break;
 else:
 client_socket.send(data)

 data = client_socket.recv(512)
 if (data == 'q' or data == 'Q'):
 client_socket.close()
 break;
 else:
 print "RECIEVED:" , data

Python code (Receive)
TCP client example
import socket
client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
client_socket.connect(("localhost", 5000))
while 1:
 data = client_socket.recv(512)
 if (data == 'q' or data == 'Q'):
 client_socket.close()
 break;
 else:
 print "RECIEVED:" , data
 data = raw_input ("SEND(TYPE q or Q to Quit):")
 if (data <> 'Q' and data <> 'q'):
 client_socket.send(data)
 else:
 client_socket.send(data)
 client_socket.close()
 break;

UDP Server

UDP server example
import socket
server_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
server_socket.bind(("", 5000))

print"UDPServer Waiting for client on port 5000"

while 1:
data, address = server_socket.recvfrom(256)
print "(" ,address[0], " " , address[1] , ") said : ", data

UDP Client

UDP client example
import socket
client_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
while 1:

data = raw_input("Type something(q or Q to exit): ")
if (data <> 'q' and data <> 'Q'):

client_socket.sendto(data, ("localhost",5000))
else:

break
client_socket.close()

Action Game Networking

● TCP not suitable
– We are interested in most recent game state

more than in reliably receiving game state

– If there is network congestion TCP/IP may
make congestion worse and worse with
lots of resending of lost packets and
acknowledgements

UDP Game networking

● Fixed sized packets
● Screen to find players and make game

– Or broadcast on local net for local net game

● Specify authoritative server
● Ensure no possibility of cheating

– Encryption

● Design Game networking protocol

381 engine

● Packet size: 65536
● Server broadcasts state every 100 ms
● No encryption
● Protocol

– Server

– Client

Breakout

Protocol for openEcslent

● Server
– Broadcast state

every 100 ms

– Service client
requests

● Client
– Receive msg

– Update state

– Send user
interaction

Server
● Sender Thread

– Broadcast state

– Broadcast send
queue

– Sleep 100 ms

● Receiver Thread
– Receive msg

– Store in receive
queue

● Network Manager – every tick
– Process receive queue

– Put requested data in send queue

Client

● Sender Thread
– Send all

messages in
Send Q

– Sleep 100 ms

● Receiver Thread
– Receive

message

– Put message in
Receive Q

● Network Manager – every tick
– Process all messages in Receive Q

– Put new messages in Send Q

Big picture

Game Engine

Gfx
Mgr

Entity
Mgr

Network
Mgr

Network
Sender
Thread

Network
Receiver
Thread

tick
Thread
run
loops

Details

Read code!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

