1

INTRODUCTION

INTELLIGENT AGENTS

function TABLE-DRIVEN-AGENT(percept) returnsan action
persistent: percepts, a sequence, initially empty
table, a table of actions, indexed by percept sequences, iifidly specified
appendpercept to the end ofercepts

action <— LOOKUR percepts, table)
return action

Figure2.3 The TaBLE-DRIVEN-AGENT program is invoked for each new percept and returns a
action each time. It retains the complete percept sequenceinory.

function REFLEX-VACUUM-AGENT([location,status]) returnsan action

if status = Dirty then return Suck
eseif location = A then return Right
eseif location = B then return Left

Figure2.4 The agent program for a simple reflex agent in the two-statawa environment. This
program implements the agent function tabulated in Figa@re

function SIMPLE-REFLEX-AGENT(percept) returnsan action
persistent: rules, a set of condition—action rules

state < INTERPREFINPUT(percept)
rule < RULE-MATCH(state, rules)
action «— rule.ACTION

return action

Figure2.6 A simple reflex agent. It acts according to a rule whose c@mitnatches the current
state, as defined by the percept.

function MODEL-BASED-REFLEX-AGENT(percept) returnsan action
persistent: state, the agent’s current conception of the world state
model, a description of how the next state depends on current atataction
rules, a set of condition—action rules
action, the most recent action, initially none

state « UPDATE-STATE(state, action, percept, model)
rule <— RULE-MATCH(state, rules)

action < rule.ACTION

return action

Figure2.8 A model-based reflex agent. It keeps track of the currene sththe world, using an
internal model. It then chooses an action in the same wayea®flex agent.

SOLVING PROBLEMS BY
SEARCHING

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returnsan action
persistent: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state «— UPDATE-STATE(state, percept)
if seq is emptythen
goal — FORMULATE-GOAL(state)
problem «— FORMULATE-PROBLEM(state, goal)
seq < SEARCH(problem,)
if seq = failure then return a null action
action «— FIRST(seq)
seq — REST(seq)
return action

Figure3.1 A simple problem-solving agent. It first formulates a goadl aproblem, searches for a
sequence of actions that would solve the problem, and thecugas the actions one at a time. When
this is complete, it formulates another goal and starts.over

function TREE-SEARCH(problem) returnsa solution, or failure
initialize the frontier using the initial state @froblem
loop do
if the frontier is emptyhen return failure
choose a leaf node and remove it from the frontier
if the node contains a goal staben return the corresponding solution
expand the chosen node, adding the resulting nodes to thigefro

function GRAPH-SEARCH(problem) returnsa solution, or failure

initialize the frontier using the initial state @foblem

initialize the explored set to be empty

loop do
if the frontier is emptyhen return failure
choose a leaf node and remove it from the frontier
if the node contains a goal staken return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to thigefro

onlyif not in thefrontier or explored set

Figure 3.7 An informal description of the general tree-search and lgisgarch algorithms. The
parts of GRAPH-SEARCHmMarked in bold italic are the additions needed to handleatsgestates.

function BREADTH-FIRST-SEARCH problem) returnsa solution, or failure

node < a node with SATE = problem.INITIAL -STATE, PATH-COST=0
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
frontier — a FIFO queue witode as the only element
ezplored «— an empty set
loop do
if EMPTY?(frontier) then return failure
node < POP(frontier) [* chooses the shallowest nodefirontier */
addnode.STATE to explored
for each action in problem.ACTIONS(node.STATE) do
child < CHILD-NODE(problem, node, action)
if child.STATE is not inexplored or frontier then
if problem.GOAL-TEST(child.STATE) then return SOLUTION(child)
frontier <— INSERT(child, frontier)

Figure3.11 Breadth-first search on a graph.

Chapter 3. Solving Problems by Searching

function UNIFORM-COST-SEARCH problem) returnsa solution, or failure

node < a node with SATE = problem.INITIAL -STATE, PATH-COST=0
frontier — a priority queue ordered byAPH-COST, with node as the only element
explored < an empty set
loop do
if EMPTY?(frontier) then return failure
node < POP(frontier) [* chooses the lowest-cost nodefimntier */
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
addnode.STATE to explored
for each action in problem.ACTIONS(node.STATE) do
child < CHILD-NODE(problem, node, action)
if child.STATE is not inexplored or frontier then
frontier < INSERT(child, frontier)
elseif child.STATE is in frontier with higher RTH-CosTthen
replace thafrontier node withchild

Figure3.13 Uniform-cost search on a graph. The algorithm is identiodahe general graph search
algorithm in Figure??, except for the use of a priority queue and the addition obdraeheck in case

a shorter path to a frontier state is discovered. The datatsire forfrontier needs to support efficient
membership testing, so it should combine the capabilitiespriority queue and a hash table.

function DEPTH-LIMITED-SEARCH problem, limit) returnsa solution, or failure/cutoff
return RECURSIVEDLS(MAKE-NODE(problem.INITIAL -STATE), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns a solution, or failure/cutoff
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
dseif lsmit = Othen return cutoff
else
cutoff_occurred? < false
for each action in problem.ACTIONS(node.STATE) do
child <— CHILD-NODE(problem, node, action)
result «— RECURSIVEDLS(child, problem, limit — 1)
if result = cutoff then cutoff-occurred? « true
eseif result # failure then return result
if cutoff_occurred? then return cutoff elsereturn failure

Figure3.16 A recursive implementation of depth-limited tree search.

function ITERATIVE-DEEPENING SEARCH problem) returns a solution, or failure
for depth = 0to co do
result < DEPTH-LIMITED-SEARCH problem, depth)
if result # cutoff then return result

Figure3.17 The iterative deepening search algorithm, which repegtgaiblies depth-limited search
with increasing limits. It terminates when a solution is riduor if the depth-limited search returns

failure, meaning that no solution exists.

function RECURSIVEBEST-FIRST-SEARCH problem) returnsa solution, or failure
return RBFS(problem, MAKE-NODE(problem.INITIAL - STATE), c0)

function RBFS(problem, node, f_limit) returnsa solution, or failure and a neyi~cost limit
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
successors «—]
for each action in problem.ACTIONYnode.STATE) do
add GH1LD-NODE(problem, node, action) into successors
if successors is emptythen return failure, co
for each s in successors do /* updatef with value from previous search, if any */
s.f «—max(s.g + s.h, node.f))
loop do
best < the lowestf-value node insuccessors
if best.f > f-limit then return failure, best.f
alternative «+ the second-lowesf-value amonguccessors
result, best. f «— RBFS(problem, best, min(f_-limit, alternative))
if result # failure then return result

Figure3.24 The algorithm for recursive best-first search.

BEYOND CLASSICAL
SEARCH

function HiLL -CLIMBING(problem) returns a state that is a local maximum

current — MAKE-NODE(problem.INITIAL -STATE)

loop do
neighbor «— a highest-valued successora@frrent
if neighborMLUE < current.\ALUE then return current.STATE
current < neighbor

Figure4.2 The hill-climbing search algorithm, which is the most bdsical search technique. At
each step the current node is replaced by the best neighbthisi version, that means the neighbor
with the highest ¥LUE, but if a heuristic cost estimateis used, we would find the neighbor with the
lowesth.

function SIMULATED -ANNEALING(problem, schedule) returnsa solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”

current < MAKE-NODE(problem.INITIAL -STATE)
for t =1tooco do
T «— schedule(t)
if T =0thenreturn current
next < a randomly selected successorcafrent
AFE — next.VALUE — current . VALUE
if AE > 0then current < next

else current < nezt only with probabilitye® /%

Figure45 The simulated annealing algorithm, a version of stochdsticclimbing where some
downhill moves are allowed. Downhill moves are acceptedihg@arly in the annealing schedule and
then less often as time goes on. Thedule input determines the value of the temperatlUieas a
function of time.

function GENETIC-ALGORITHM(population, FITNESS-FN) returnsan individual
inputs population, a set of individuals

FITNESSFN, a function that measures the fitness of an individual

repeat
new_population < empty set
for ¢ = 1to Si1zE(population) do
x <— RANDOM-SELECTION(population, FITNESS-FN)
y < RANDOM-SELECTION population, FITNESS-FN)
child +— REPRODUCEKZ, y)
if (small random probabilitydhen child < MUTATE(child)
add child to new _population
population «— new _population
until some individual is fit enough, or enough time has elapsed
return the best individual irpopulation, according to FTNESS-FN

function REPRODUCKz, y) returnsan individual
inputs z, y, parent individuals

n < LENGTH(z); ¢ « random number from 1 te
return APPEND(SUBSTRINdz, 1,c¢), SUBSTRING(y, ¢ + 1, n))

Figure4.8 A genetic algorithm. The algorithm is the same as the onerdiamed in Figur@?, with

one variation: in this more popular version, each matingaaf parents produces only one offspring,
not two.

function AND-OR-GRAPH-SEARCH(problem) returns a conditional plan, or failure
OR-SEARCH(problem.INITIAL - STATE, problem, [])

function OR-SEARCH(state, problem, path) returns a conditional plan, or failure
if problem.GOAL-TEST(state) then return the empty plan
if state is onpath then return failure
for each action in problem.ACTIONstate) do
plan < AND-SEARCHRESULTY state, action), problem, [state | path])
if plan # failure then return [action | plan]
return failure

function AND-SEARCH(states, problem, path) returns a conditional plan, or failure
for each s; in states do

plan; < OR-SEARCH(s;, problem, path)
if plan; = failure then return failure
return [if s; then plan, eseif s; then plan, else .. .if s,—1 then plan,,_; eseplan,,]

Figure 411 An algorithm for searchinghND—OR graphs generated by nondeterministic environ-
ments. It returns a conditional plan that reaches a goa# stall circumstances. (The notati¢n | {]
refers to the list formed by adding objecto the front of listl.)

10

Chapter 4. Beyond Classical Search

function ONLINE-DFS-AGENT(s’) returnsan action
inputs. s, a percept that identifies the current state
persistent: result, a table indexed by state and action, initially empty
untried, a table that lists, for each state, the actions not yet tried
unbacktracked, a table that lists, for each state, the backtracks not gt tr
s, a, the previous state and action, initially null

if GOAL-TEST(s") then return stop
if s’ is a new state (not imntried) then untried[s’'] < ACTIONS(s")
if s is not nullthen
result[s, a] < s’
adds to the front ofunbacktracked[s’]
if untried[s’] is emptythen
if unbacktracked[s'] is emptythen return stop
€else a < an actionb such thatresult[s’, b] = PoP(unbacktracked[s'])
else a < PoP(untried[s’])
s—s

return a

Figure4.21 Anonline search agent that uses depth-first exploratioe.agent is applicable only in
state spaces in which every action can be “undone” by soner attiion.

function LRTA*-A GENT(s') returnsan action
inputs: s’, a percept that identifies the current state
persistent: result, a table, indexed by state and action, initially empty
H, atable of cost estimates indexed by state, initially empty
s, a, the previous state and action, initially null

if GOAL-TEST(s") then return stop
if s’ is a new state (not i&l) then H[s'] «— h(s’)
if sis not null
result[s, a] < s’
H[s]«— min LRTA*-COST(s,b,result[s,b], H)

b € ACTIONS(s)
a < an actionb in ACTIONS(s’) that minimizes LRTA*-@sT(s’, b, result[s’, b], H)
/
B}

return a

function LRTA*-C0ST(s, a, s’, H) returnsa cost estimate
if s is undefinedhen return h(s)
elsereturn c(s,a,s’) + HJs']

Figure4.24 LRTA*-A GENTselects an action according to the values of neighboringstavhich
are updated as the agent moves about the state space.

ADVERSARIAL SEARCH

function MINIMAX -DECISION state) returns an action
returnargmax, . Actiongs) MIN-VALUE(RESULT(state, a))

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY (state)
V<— —00
for each a in ACTIONS(state) do
v «— MAX (v, MIN-VALUE(RESULT(s, a)))
return v

function MIN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY (state)
V<— OO
for each a in ACTIONY(state) do
v < MIN(v, MAX-VALUE(RESULT(s, a)))
return v

Figure 53 An algorithm for calculating minimax decisions. It returtig action corresponding
to the best possible move, that is, the move that leads toutemme with the best utility, under the
assumption that the opponent plays to minimize utility. Timections Max-VALUE and MIN-VALUE

go through the whole game tree, all the way to the leaves,terméne the backed-up value of a state.
The notatiomargmax,, ¢ f(a) computes the elementof setS that has the maximum value ¢fa).

11

12

Chapter

5.

Adversarial Search

function ALPHA-BETA-SEARCH(state) returnsan action
v «— MAX-VALUE(state, —00, +00)

return the action in ACTIONstate) with valuev

function MAX -VALUE(state, o, 3) returns a utility value
if TERMINAL-TEST(state) then return UTILITY (state)
V<— —00
for each a in ACTIONS(state) do
v« MAX (v, MIN-VALUE(RESULT(s,a), @, 3))
if v > Gthenreturnv
a—MaX(a, v)
return v

function MIN-VALUE(state, «, 8) returns a utility value

if TERMINAL-TEST(state) then return UTILITY (state)
V +— +00

for each a in ACTIONS(state) do

v« MIN(v, MAX-VALUE(RESULT(s,a) , o, 3))
ifv < athenreturnov
B—MIN(B, v)

return v

Figure 5.7

that maintainx andg (and the bookkeeping to pass these parameters along).

The alpha—-beta search algorithm. Notice that these rautare the same as the
MINIMAX functions in Figure??, except for the two lines in each of IM-VALUE and MAX -VALUE

CONSTRAINT
SATISFACTION
PROBLEMS

function AC-3(csp) returnsfalse if an inconsistency is found and true otherwise
inputs. csp, a binary CSP with componentX, D, C)
local variables: queue, a queue of arcs, initially all the arcs inp

while queue is not emptydo
(Xi, X;) < REMOVE-FIRST(queue)
if REVISE(csp, X;, X;) then
if size of D, = 0thenreturn false
for each X}, in X;.NEIGHBORS- {X;} do
add (Xx, X;) to queue
return true

function REVISE(csp, X, X;) returnstrue iff we revise the domain oX;
revised < false

for each z in D; do
if no valuey in D; allows (z,y) to satisfy the constraint betweéfy and X; then
deletez from D;
revised < true
return revised

Figure 6.3 The arc-consistency algorithm AC-3. After applying AC-3ther every arc is arc-
consistent, or some variable has an empty domain, indigdtiat the CSP cannot be solved. The

name “AC-3" was used by the algorithm’s inventor (?) becdtis¢he third version developed in the
paper.

13

14

Chapter 6. Constraint Satisfaction Problems

function BACKTRACKING-SEARCH(csp) returnsa solution, or failure
return BACKTRACK({ }, csp)

function BACKTRACK(assignment, csp) returnsa solution, or failure
if assignment is completehen return assignment
var < SELECT-UNASSIGNED-VARIABLE(csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent withussignment then
add{var = value} to assignment
inferences < INFERENCEcsp, var, value)
if inferences # failure then
addinferences to assignment
result «+ BACKTRACK(assignment, csp)
if result # failure then
return result
remove{var = value} andinferences from assignment
return failure

Figure 6.5 A simple backtracking algorithm for constraint satisfactiproblems. The algo-
rithm is modeled on the recursive depth-first search of Gftap?. By varying the functions
SELECT-UNASSIGNED-VARIABLE and CRDER-DOMAIN-VALUES, we can implement the general-
purpose heuristics discussed in the text. The functiotfERENCEcan optionally be used to impose
arc-, path-, ok-consistency, as desired. If a value choice leads to fajhwdced either byNFERENCE
or by BACKTRACK), then value assignments (including those madeN®meERENCE are removed from
the current assignment and a new value is tried.

function MIN-CONFLICTY csp, maz_steps) returnsa solution or failure
inputs. csp, a constraint satisfaction problem
maz_steps, the number of steps allowed before giving up

current < an initial complete assignment fosp
for i = 1 to max_steps do
if current is a solution foresp then return current
var < a randomly chosen conflicted variable frasp.VARIABLES
value — the valuev for var that minimizes ©NFLICTYvar, v, current, csp)
setvar = value in current
return failure

Figure6.8 The MiN-CoNFLICTSalgorithm for solving CSPs by local search. The initial statay
be chosen randomly or by a greedy assignment process thasehia minimal-conflict value for each
variable in turn. The ©ONFLICTS function counts the number of constraints violated by ai@aler
value, given the rest of the current assignment.

15

function TREE-CSP-S®LVER(csp) returnsa solution, or failure
inputs: csp, a CSP with components, D, C

n < number of variables itk
assignment «— an empty assignment
root «— any variable inX
X < TOPOLOGICALSORT(X, root)
for j =n downto2do
MAKE-ARC-CONSISTENKPARENT(X), X;)
if it cannot be made consistettten return faslure
for i =1ton do
assignment[X;] < any consistent value fror;
if there is no consistent valibken return failure
return assignment

Figure6.11 The TREE-CSP-LVER algorithm for solving tree-structured CSPs. If the CSP has
solution, we will find it in linear time; if not, we will detec contradiction.

LOGICAL AGENTS

function KB-AGENT(percept) returnsan action
persistent: KB, a knowledge base

t, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPFSENTENCH percept, t))
action «— ASK(KB, MAKE-ACTION-QUERY(t))
TELL(KB, MAKE-ACTION-SENTENCH action, t))
t—t+1

return action

Figure 7.1 A generic knowledge-based agent. Given a percept, the agklst the percept to its

knowledge base, asks the knowledge base for the best aatidnells the knowledge base that it has in|
fact taken that action.

16

17

function TT-ENTAILS?(K B, &) returns true or false
inputs KB, the knowledge base, a sentence in propositional logic
«, the query, a sentence in propositional logic

symbols < a list of the proposition symbols iAfB anda
return TT-CHECK-ALL(KB, o, symbols,{ })

function TT-CHECK-ALL(KB, a, symbols, model) returns true or false
if EMPTY?(symbols) then
if PL-TRUE?(K B, model) then return PL-TRUE?(«, model)
esereturn true // when KB is false, always return true
elsedo
P «— FIRST(symbols)
rest «+— REST(symbols)
return (TT-CHECK-ALL(KB, a, rest, model U {P = true})
and
TT-CHECK-ALL(KB, a, rest, model U{P = false }))

Figure7.8 A truth-table enumeration algorithm for deciding propwsial entailment. (TT stands
for truth table.) PL-RUE? returnstrue if a sentence holds within a model. The variabiedelrep-
resents a partial model—an assignment to some of the symibloéskeyword and” is used here as a
logical operation on its two arguments, returnifge or false.

function PL-RESOLUTION KB, &) returns true or false
inputs KB, the knowledge base, a sentence in propositional logic
«, the query, a sentence in propositional logic

clauses < the set of clauses in the CNF representatio@f A -«
new «—{ }
loop do
for each pair of clauses”;, C; in clauses do
resolvents «— PL-RESOLVHC}, Cj)
if resolvents contains the empty clausken return true
new «— new U resolvents
if new C clauses then return false
clauses «— clauses U new

Figure 7.9 A simple resolution algorithm for propositional logic. THienction PL-REsOLVEre-
turns the set of all possible clauses obtained by resol¥ayvio inputs.

18

Chapter

7.

Logical Agents

function PL-FC-ENTAILS?(K B, q) returns true or false

inputs KB, the knowledge base, a set of propositional definite clauses
q, the query, a proposition symbol

count <« a table, whereount[c] is the number of symbols in's premise

inferred «— a table, wherénferred][s] is initially false for all symbols

agenda < a queue of symbols, initially symbols known to be trueim

while agenda is not emptydo
p — PoP(agenda)
if p = qthenreturn true
if inferred[p] = false then
inferred[p] < true
for each clausec in KB wherep is in c.PREMISEdO
decrementount|[c]
if count[c] =0 then addc.CONCLUSIONtO agenda
return false

Figure 7.12 The forward-chaining algorithm for propositional logic.h& agenda keeps track of
symbols known to be true but not yet “processed.” thent table keeps track of how many premises
of each implication are as yet unknown. Whenever a new symffram the agenda is processed, the
count is reduced by one for each implication in whose premiappears (easily identified in constant
time with appropriate indexing.) If a count reaches zerithal premises of the implication are known,
so its conclusion can be added to the agenda. Finally, we toelegep track of which symbols have
been processed; a symbol that is already in the set of infeymbols need not be added to the agenda
again. This avoids redundant work and prevents loops caogehplications such a® = @ and

Q= P.

19

function DPLL-SATISFIABLE ?(s) returns true or false
inputs s, a sentence in propositional logic

clauses — the set of clauses in the CNF representation of
symbols < a list of the proposition symbols in
return DPLL(clauses, symbols, { })

function DPLL(clauses, symbols, model) returns true or false

if every clause irtlauses is true inmodel then return true
if some clause irlauses is false inmodel then return false
P, value +— FIND-PURE-SYMBOL(symbols, clauses, model)
if P is non-nullthen return DPLL(clauses, symbols — P, model U { P=value})
P, value < FIND-UNIT-CLAUSE(clauses, model)
if P is non-nullthen return DPLL(clauses, symbols — P, model U { P=value})
P «— FIRST(symbols); rest < REST(symbols)
return DPLL(clauses, rest, model U { P=true}) or
DPLL(clauses, rest, model U { P=false}))

Figure7.14 The DPLL algorithm for checking satisfiability of a sentefmeeropositional logic. The
ideas behind RND-PURE-SymBoOL and AND-UNIT-CLAUSE are described in the text; each returns g
symbol (or null) and the truth value to assign to that symhide TT-ENTAILS?, DPLL operates over
partial models.

function WALK SAT(clauses, p, mazx_flips) returns a satisfying model ofailure
inputs clauses, a set of clauses in propositional logic
p, the probability of choosing to do a “random walk” move, tyadly around 0.5
maz_flips, number of flips allowed before giving up

model — a random assignment ¢fue/false to the symbols irclauses
for i = 1to maz_flips do
if model satisfiesclauses then return model
clause «+ a randomly selected clause frattuuses that is false inmodel
with probability p flip the value inmodel of a randomly selected symbol frondause
elseflip whichever symbol irclause maximizes the number of satisfied clauses
return failure

Figure7.15 The WALK SAT algorithm for checking satisfiability by randomly flipg the values of
variables. Many versions of the algorithm exist.

20

Chapter 7. Logical Agents

function HYBRID-WUMPUS-AGENT(percept) returnsan action
inputs. percept, a list, [stench,breeze, glitter,bump,scream]
persistent: KB, a knowledge base, initially the atemporal “wumpus physics
t, a counter, initially O, indicating time
plan, an action sequence, initially empty

TELL(KB, MAKE-PERCEPFSENTENCH percept, t))
TELL the KB the temporal “physics” sentences for time
safe — {[z,y] : AsK(KB,OK.) = true}
if ASK(KB, Glitter') = true then
plan «— [Grab] + PLAN-ROUTE(current, {[1,1]}, safe) + [Climb]
if plan is emptythen
unvisited — {[z, y] : ASK(KB,L;I_’y) = falseforall ¢’ < t}
plan < PLAN-ROUTE(current, unvisited N safe, safe)
if plan is empty and AK(KB, HaveArrow®) = true then
possible_wumpus — {[z,y] : ASK(KB,— Wy y) = false}
plan «— PLAN-SHOT(current, possible_wumpus, safe)
if plan is emptythen // no choice but to take a risk
not_unsafe — {[z,y] : AsK(KB,= OK% ,) = false}
plan «— PLAN-ROUTE(current, unvisited N not_unsafe, safe)
if plan is emptythen
plan <+ PLAN-ROUTE(current, {[1, 1]}, safe) + [Climb]
action «— POP(plan)
TELL(KB, MAKE-ACTION-SENTENCHaction, t))
t—t+1
return action

function PLAN-ROUTE(current,goals,allowed) returnsan action sequence
inputs. current, the agent’s current position
goals, a set of squares; try to plan a route to one of them
allowed, a set of squares that can form part of the route

problem «— ROUTE-PROBLEM(current, goals,allowed)
return A*-G RAPH-SEARCH(problem)

Figure7.17 A hybrid agent program for the wumpus world. It uses a prajpmsal knowledge base
to infer the state of the world, and a combination of probkemhving search and domain-specific code
to decide what actions to take.

21

function SATPLAN(init, transition, goal,T max) returnssolution or failure
inputs. init, transition, goal, constitute a description of the problem
T max, an upper limit for plan length

for t =010 T max do
enf < TRANSLATE-TO-SAT(init, transition, goal,t)
model < SAT-SOLVER(cnf)
if model is not nullthen
return EXTRACT-SOLUTION(model)
return failure

Figure7.19 The SATR.AN algorithm. The planning problem is translated into a CNResece in
which the goal is asserted to hold at a fixed time stapd axioms are included for each time step up tq
t. If the satisfiability algorithm finds a model, then a planx$éracted by looking at those proposition
symbols that refer to actions and are assigfired in the model. If no model exists, then the process is
repeated with the goal moved one step later.

8

FIRST-ORDER LOGIC

22

INFERENCE IN
FIRST-ORDER LOGIC

function UNIFY(z, y,) returnsa substitution to make andy identical
inputs z, a variable, constant, list, or compound expression
y, a variable, constant, list, or compound expression

6, the substitution built up so far (optional, defaults to éyhp

if 6 = failurethen return failure
dseif x =y thenreturn
elseif VARIABLE ?(z) then return UNIFY-VAR(z, y, 0)
elseif VARIABLE ?(y) then return UNIFY-VAR(y, z, 0)
elseif CoMmPOUND?(z) and COMPOUND?(y) then
return UNIFY(z.ARGS y.ARGS UNIFY(z.OP, y.0OP, 0))
eseif LIsT?(x) and Li1ST?(y) then
return UNIFY(z.REST, y.REST, UNIFY(z.FIRST, y.FIRST, 6))
elsereturn failure

function UNIFY-VAR(var, z,0) returnsa substitution

if {var/val} € 0 thenreturn UNIFY(val, z,0)
eseif {x/val} € 6 then return UNIFY(var, val,6)
elseif OCCUR-CHECK?(var, x) then return failure
elsereturn add{var/z} to 6

Figure9.1 The unification algorithm. The algorithm works by comparihg structures of the in-
puts, element by element. The substitutidhat is the argument toFY is built up along the way and
is used to make sure that later comparisons are consistémbindings that were established earlier. In
a compound expression such/dgA, B), the O field picks out the function symbdf and the /RGsS
field picks out the argument li$td, B).

23

24

Chapter 9. Inference in First-Order Logic

function FOL-FC-AsSk(K B, o) returns a substitution offalse
inputs. KB, the knowledge base, a set of first-order definite clauses
«, the query, an atomic sentence
local variables: new, the new sentences inferred on each iteration

repeat until new is empty
new «—{ }

for each rule in KB do

(ptA... A pn = q)< STANDARDIZE-VARIABLES(rule)
for each # such that $BST(@,p1 A ... A pn)=SUBST(@,p] A ... A ph)
for someps, ..., p, in KB
q' «— SuBsT(9, q)
if ¢’ does not unify with some sentence alreadyiB or new then
addq’ to new
¢« UNIFY(q',)
if ¢ is not fail then return ¢
addnew to KB
return false

Figure 9.3 A conceptually straightforward, but very inefficient, faavd-chaining algorithm. On
each iteration, it adds t&B all the atomic sentences that can be inferred in one step tihenmpli-
cation sentences and the atomic sentences alrea#yBinThe function SANDARDIZE-VARIABLES

replaces all variables in its arguments with new ones that hat been used before.

function FOL-BC-ASK(KB, query) returnsa generator of substitutions
return FOL-BC-OR(KB, query,{ })

generator FOL-BC-OR(K B, goal,0) yields a substitution
for each rule (lhs = rhs)in FETCH-RULES-FOR-GOAL(KB, goal) do
(Ihs, rhs) < STANDARDIZE-VARIABLES((lhs, rhs))

for each 0’ in FOL-BC-AND(KB, lhs, UNIFY(rhs, goal, 0)) do
yield ¢’

generator FOL-BC-AND(K B, goals, 0) yields a substitution
if 0 = failure then return
eseif LENGTH(goals) = 0thenyield 6
elsedo
first,rest — FIRST(goals), REST(goals)
for each ' in FOL-BC-OR(KB, SUBST(9, first), #) do
for each #” in FOL-BC-AND(K B, rest,8’) do
yield 0

Figure9.6 A simple backward-chaining algorithm for first-order kneate bases.

25

procedure APPENOaz, y, az, continuation)

trail < GLOBAL-TRAIL-POINTER)

if az =[] and WNIFY(y, az) then CALL (continuation)
RESETFTRAIL(trail)

a,z,z — NEW-VARIABLE(), NEW-VARIABLE(), NEW-VARIABLE()
if UNIFY(az,[a | z]) and UNIFY(az, [a | 2]) then APPENK(z, y, 2, continuation)

Figure 9.8 Pseudocode representing the result of compilingAbpend predicate. The function

NEW-VARIABLE returns a new variable, distinct from all other variablesdiso far. The procedure
CALL (continuation) continues execution with the specified continuation.

O CLASSICAL PLANNING

Init(At(Cy, SFO) N At(Ca, JFK) A At(P1, SFO) N At(P, JFK)
A Cargo(C1) N Cargo(C2) A Plane(P1) A Plane(P2)
A Airport(JFK) N Airport(SFO))
Goal(At(C1, JFK) AN At(Cs, SFO))
Action(Load(c, p, a),
PRECOND: At(c, a) A At(p, a) A Cargo(c) N Plane(p) A Airport(a)
EFFECT. = At(c, a) A In(c, p))
Action(Unload(c, p, a),
PRECOND: In(c, p) A At(p, a) A Cargo(c) A Plane(p) N Airport(a)
EFFECT. At(c, a) A = In(c, p))
Action(Fly(p, from, to),
PRECOND: At(p, from) A Plane(p) A Airport(from) A Airport(to)
EFFECT. = At(p, from) N At(p, to))

Figure10.1 A PDDL description of an air cargo transportation plannimglkpem.

Init(Tire(Flat) A Tire(Spare) N At(Flat, Azle) N At(Spare, Trunk))
Goal(At(Spare, Azle))
Action(Remove(obj, loc),
PRECOND: At(obj, loc)
EFFECT. — At(obj, loc) N At(obj, Ground))
Action(PutOn(t, Axle),
PRECOND: Tire(t) A At(t, Ground) A — At(Flat, Axle)
EFFECT. = At(¢, Ground) N At(t, Axle))
Action(LeaveOvernight,
PRECOND:
EFFECT. = At(Spare, Ground) N — At(Spare, Azle) N — At(Spare, Trunk)
A = At(Flat, Ground) N — At(Flat, Azle) N — At(Flat, Trunk))

Figure10.2 The simple spare tire problem.

26

27

Init(On(A, Table) A On(B, Table) A On(C, A)

A Block(A) A Block(B) N Block(C) A Clear(B) A Clear(C))
Goal(On(A,B) A On(B,C))
Action(Move(b, z,y),

PRECOND: On(b,x) A Clear(b) A Clear(y) N Block(b) A Block(y) A

(b#z) A (b#y) A (z#y),

EFFECT. On(b,y) A Clear(z) A =On(b,x) A —Clear(y))
Action(MoveToTable(b, x),

PRECOND: On(b,x) A Clear(b) A Block(b) N (b#x),

EFFECT. On(b, Table) A Clear(xz) A =On(b,x))

Figure10.3 A planning problem in the blocks world: building a three-tkaower. One solution is
the sequencEMoveToTable(C, A), Move(B, Table, C'), Move(A, Table, B)].

Init(Have(Cake))
Goal(Have(Cake) A Eaten(Cake))
Action(Eat(Cake)

PRECOND: Have(Cake)

EFFECT. = Have(Cake) A Eaten(Cake))
Action(Bake(Cake)

PRECOND: = Have(Cake)

EFFECT. Have(Cake))

Figure10.7 The “have cake and eat cake too” problem.

function GRAPHPLAN(problem) returns solution or failure

graph < INITIAL -PLANNING -GRAPH problem)
goals — CONJUNCTEproblem.GOAL)
nogoods <— an empty hash table
for ¢/ =0to oo do
if goals all non-mutex inS; of graph then
solution «— EXTRACT-SOLUTION(graph, goals, NUMLEVELS(graph), nogoods)
if solution # failure then return solution
if graph andnogoods have both leveled offhen return failure
graph <— EXPAND-GRAPH(graph, problem)

Figure10.9 The GRAPHPLANalgorithm. GRAPHPLAN calls EXPAND-GRAPHto add a level until
either a solution is found by ¥ErRACT-SOLUTION, or no solution is possible.

PLANNING AND ACTING
IN THE REAL WORLD

Jobs({ AddEnginel < AddWheels1 < Inspect1},
{AddEngine2 < Add Wheels2 < Inspect2})

Resources(EngineHoists(1), WheelStations(1), Inspectors(2), LugNuts(500))

Action(AddEnginel ,DURATION:30,

USE EngineHoists(1))
Action(AddEngine2, DURATION:60,

USE EngineHoists(1))
Action(AddWheels1 , DURATION:30,

CONSUME: LugNuts(20), USE: WheelStations(1))
Action(AddWheels2, DURATION:15,

CONSUME: LugNuts(20), USE: WheelStations(1))
Action(Inspect;, DURATION:10,

UsE: Inspectors(1))

Figurell.l Ajob-shop scheduling problem for assembling two cars, waource constraints. The
notationA < B means that actiodd must precede actioB.

28

29

Refinement(Go(Home, SFO),
STEPS [Drive(Home, SFOLongTermParking),
Shuttle(SFOLongTermParking, SFO)])
Refinement(Go(Home, SFO),
STEPS [Taxi(Home, SFO)])

Refinement(Navigate([a, b], [z, y]),
PRECONDa=z A b=y
STEPS [])

Refinement(Navigate([a, b], [z, y]),
PRECOND: Connected([a, b], [a — 1, b])
STEPS [Left, Navigate([a — 1, b], [z,y])])

Refinement(Navigate([a, b], [z, y]),
PRECOND: Connected([a, b], [a + 1, b])
STEPS [Right, Navigate([a + 1, 0], [z,y])])

Figure11.4 Definitions of possible refinements for two high-level aoogoing to San Francisco
airport and navigating in the vacuum world. In the latterezasote the recursive nature of the refine-

ments and the use of preconditions.

function HIERARCHICAL-SEARCH problem, hierarchy) returnsa solution, or failure

frontier — a FIFO queue withAct as the only element

loop do
if EMPTY?(frontier) then return failure

plan — POP(frontier) [* chooses the shallowest planfrontier */

hla < the first HLA in plan, or null if none

prefiz,suffiz <— the action subsequences before and dftetin plan

outcome «— RESULT(problem.INITIAL -STATE, prefiz)

if hla is nullthen /* so plan is primitive andoutcome is its result */
if outcome satisfieproblem.GOAL then return plan

elsefor each sequence in REFINEMENTY hla, outcome, hierarchy) do
frontier «— INSERTAPPEND prefix, sequence, suffix), frontier)

Figure1l.5 A breadth-firstimplementation of hierarchical forwardmténg search. The initial plan
supplied to the algorithm ifAct. The REFINEMENTSfunction returns a set of action sequences, on
for each refinement of the HLA whose preconditions are satidfiy the specified stateytcome.

30

Chapter 11. Planning and Acting in the Real World

function ANGELIC-SEARCH problem, hierarchy, initial Plan) returns solution orfail

frontier — a FIFO queue withinitial Plan as the only element
loop do
if EMPTY?(frontier) then return fail
plan «— POM(frontier) [* chooses the shallowest nodefintier */
if REACHT (problem.INITIAL -STATE, plan) intersectgproblem.GOAL then
if plan is primitive then return plan /* REACHT is exact for primitive plans */
guaranteed < REACH™ (problem.INITIAL -STATE, plan) N problem.GOAL
if guaranteed#{ } and MAKING -PROGRES$plan, initialPlan) then
finalState «— any element ofjuaranteed
return DECOMPOSHEhierarchy, problem . INITIAL - STATE, plan, finalState)
hla — some HLA inplan
prefiz,suffiz <— the action subsequences before and dftetin plan
for each sequence in REFINEMENTY hla, outcome, hierarchy) do
frontier — INSERTAPPENK prefiz, sequence, suffiz), frontier)

function DEcoMPOSKEhierarchy, so, plan, s¢) returnsa solution

solution <+ an empty plan
while plan is not emptydo
action < REMOVE-LAST(plan)
s; «— a state in RACH™ (so, plan) such thatsy EREACH™ (s;, action)
problem «— a problem with NITIAL -STATE = s; and GOAL = s;
solution < APPEND{ANGELIC-SEARCH(problem, hierarchy, action), solution)
Sf < 8¢
return solution

Figure 11.8 A hierarchical planning algorithm that uses angelic seianb identify and com-
mit to high-level plans that work while avoiding high-levelans that don't. The predicate
MAKING-PROGRES<Ihecks to make sure that we aren’t stuck in an infinite regressf refinements.
At top level, call ANGELIC-SEARCHWith [Act] as theinitial Plan.

Actors(A, B)
Init(At(A, LeftBaseline) N At(B, RightNet) A
Approaching (Ball, RightBaseline)) A Partner(A, B) A Partner(B, A)
Goal(Returned(Ball) N (At(a, RightNet) vV At(a, LeftNet))
Action(Hit(actor, Ball),
PRECOND: Approaching(Ball, loc) A At(actor,loc)
EFFECT. Returned (Ball))
Action(Go(actor, to),
PRECOND: At(actor,loc) A to # loc,
EFFECT At (actor,to) A — At(actor,loc))

Figure11.10 The doubles tennis problem. Two actotsand B are playing together and can be in
one of four locationsZLeftBaseline, RightBaseline, LeftNet, andRightNet. The ball can be returned
only if a player is in the right place. Note that each actiorstinclude the actor as an argument.

1 KNOWLEDGE
REPRESENTATION

31

13 QUANTIFYING
UNCERTAINTY

function DT-AGENT(percept) returnsan action
persistent: belief_state, probabilistic beliefs about the current state of the world
action, the agent’s action

updatebelief_state based oruction andpercept
calculate outcome probabilities for actions,

given action descriptions and currdnfief_state
selectaction with highest expected utility

given probabilities of outcomes and utility information
return action

Figure13.1 A decision-theoretic agent that selects rational actions.

32

PROBABILISTIC
REASONING

function ENUMERATION-ASK(X, €, bn) returnsa distribution overX
inputs X, the query variable
e, observed values for variabl&s
bn, a Bayes net with variablesX} U E U Y /Y = hidden variables:/

Q(X) < adistribution overX , initially empty
for each valuex; of X do
Q(zi) < ENUMERATE-ALL(bn.VARS, €;,)
wheree,, is eextended withX = z;
return NORMALIZE(Q(X))

function ENUMERATE-ALL(vars, €) returnsa real number
if EMPTY?(vars) then return 1.0
Y «— FIRST(vars)
if Y hasvalueyine
thenreturn P(y | parents(Y)) x ENUMERATE-ALL(REST(vars),€)
esereturny_ P(y | parents(Y)) x ENUMERATE-ALL(REST(vars),ey)
wheree, is e extended witht” = y

Figure14.9 The enumeration algorithm for answering queries on Bayes&works.

function ELIMINATION -ASK(X, e, bn) returns a distribution overX
inputs X, the query variable
e, observed values for variablé&s
bn, a Bayesian network specifying joint distributi®i X, ..., X,)

factors —[]
for each var in ORDER(bn.VARS) do

factors — [MAKE-FACTOR(var, €)|factors]

if var is a hidden variabléhen factors < SUM-OUT(var, factors)
return NORMALIZE(POINTWISE-PRODUCT(factors))

Figure14.10 The variable elimination algorithm for inference in Bayssnetworks.

33

Chapter 14. Probabilistic Reasoning

function PRIOR-SAMPLE(bn) returnsan event sampled from the prior specifiedty
inputs: bn, a Bayesian network specifying joint distributi®i X1, ..., X,)

X < an event withn elements

foreach variableX; in X4,..., X, do

X[i] < a random sample from(X; | parents(X;))
return x
Figure 14.12

A sampling algorithm that generates events from a Bayesiwwork. Each variable

is sampled according to the conditional distribution gitlea values already sampled for the variable’s
parents.

function REJECTION-SAMPLING(X , €, bn, N) returnsan estimate oP(X|e)
inputs. X, the query variable
e, observed values for variablé&s
bn, a Bayesian network
N, the total number of samples to be generated
local variables: N, a vector of counts for each value &f, initially zero

for j=1toN do
X «— PRIOR-SAMPLE(bn)
if x is consistent witle then

N[z] < N[z]+1 wherez is the value ofX in x
return NORMALIZE(N)

Figure 14.13

The rejection-sampling algorithm for answering querieggievidence in a Bayesian
network.

35

function LIKELIHOOD-WEIGHTING(X, €, bn, N) returnsan estimate oP(X |e)
inputs. X, the query variable
e, observed values for variablé&s
bn, a Bayesian network specifying joint distributi®i X, ..., X,)
N, the total number of samples to be generated
local variables: W, a vector of weighted counts for each valueXfinitially zero

for j=1toN do

X, w < WEIGHTED-SAMPLE(bn, €)

W(z] — W{z] + w wherez is the value ofX in x
return NORMALIZE(W)

function WEIGHTED-SAMPLE(bn, €) returnsan event and a weight

w «+— 1; X + an event withm elements initialized frone
foreach variableX; in X1,..., X, do
if X; is an evidence variable with valug in e
then w «— w x P(X; = z; | parents(X;))
else x[i] «+ a random sample froR(X; | parents(X;))
return X, w

Figure 14.14 The likelihood-weighting algorithm for inference in Bayms networks. In
WEIGHTED-SAMPLE, each nonevidence variable is sampled according to theitcmmal distribution
given the values already sampled for the variable’s payeritde a weight is accumulated based on the
likelihood for each evidence variable.

function GIBBS-ASK(X, €, bn, N) returnsan estimate oP(X |e)
local variables: N, a vector of counts for each value &f, initially zero
Z, the nonevidence variables bm
X, the current state of the network, initially copied fram

initialize x with random values for the variablesh
for j=1toN do
for each Z; in Z do
set the value o; in x by sampling fromP(Z;|mb(Z;))
N[z] < N[z] + 1 wherez is the value ofX in x
return NORMALIZE(N)

Figure14.15 The Gibbs sampling algorithm for approximate inference ay®&sian networks; this
version cycles through the variables, but choosing vaemhbt random also works.

15 PROBABILISTIC
REASONING OVER TIME

function FORWARD-BACKWARD(ev, prior) returnsa vector of probability distributions
inputs. ev, a vector of evidence values for steps. . , ¢
prior, the prior distribution on the initial stat®(Xo)
local variables: fv, a vector of forward messages for stéps. . , ¢
b, a representation of the backward message, initially all 1s
sv, a vector of smoothed estimates for stéps. ., ¢
fv[0] < prior
for ;= 1totdo
fv[i] — FORWARD(fv[i — 1], ev[s])
for i= t downto 1do
sv[i] < NORMALIZE(fv[i] X b)
b — BackwaRD(b, ev[i])
return sv

Figure15.4 The forward—backward algorithm for smoothing: computirggterior probabilities of

a sequence of states given a sequence of observations. OfngARD and BACKWARD operators are
defined by Equations?®) and (??), respectively.

36

37

function FIXED-LAG-SMOOTHING(e, hmnm, d) returnsa distribution oveiX;_4
inputs. e, the current evidence for time stéep
hmm, a hidden Markov model witl§ x S transition matrixT
d, the length of the lag for smoothing
persistent: ¢, the current time, initially 1
f, the forward messade(X;|ei.;), initially hmm.PRIOR
B, thed-step backward transformation matrix, initially the idénmatrix
et—d:t, double-ended list of evidence from- d to ¢, initially empty
local variables: O,_g4, O, diagonal matrices containing the sensor model informatio

adde; to the end ok;_g4:+
O; « diagonal matrix containin®(e:| X+)
if t > dthen
f — FORWARD(, e;)
removee;_4—1 from the beginning oé;_4.;
O;_4 < diagonal matrix containin@(e:—q| X:—q)
B« O;',T"'BTO,
eseB—BTO;
t—t+1
if t > d thenreturn NORMALIZE(f x B1) esereturn null

Figure15.6 An algorithm for smoothing with a fixed time lag dfsteps, implemented as an online
algorithm that outputs the new smoothed estimate given lisergation for a new time step. Notice
that the final output WRMALIZE(f x B1) is justa f x b, by Equation ??).

function PARTICLE-FILTERING(g, N, dbn) returns a set of samples for the next time step
inputs: e, the new incoming evidence
N, the number of samples to be maintained
dbn, a DBN with priorP(Xo), transition modeP(X1|Xo), sensor moddP(E;|X1)
persistent: S, a vector of samples of siz¥, initially generated fronP(Xq)
local variables: W, a vector of weights of siz&/

for i=1toN do
S[:] — sample fromP(X | Xo= S[i]) /[*step1l*

W[i] —P(e| X1 = S[i]) I* step 2 */
S < WEIGHTED-SAMPLE-WITH-REPLACEMENT(N, S, W) /* step 3*/
return S

Figure15.17 The particle filtering algorithm implemented as a recursigdate operation with state
(the set of samples). Each of the sampling operations irgobampling the relevant slice variables
in topological order, much as inFPOR-SAMPLE. The WEIGHTED-SAMPLE-WITH-REPLACEMENT

operation can be implemented to run(xN') expected time. The step numbers refer to the descriptio
in the text.

=]

MAKING SIMPLE
DECISIONS

function INFORMATION-GATHERING-AGENT(percept) returnsan action
persistent: D, a decision network

integratepercept into D
j < the value that maximize¥PI(E;) / Cost(E;)
if VP[(EJ) > COSt(Ej)
return REQUEST(E;)
elsereturn the best action fronD

Figure16.9 Design of a simple information-gathering agent. The agerka/by repeatedly select-
ing the observation with the highest information value,iuhe cost of the next observation is greater
than its expected benefit.

38

MAKING COMPLEX
DECISIONS

function VALUE-ITERATION(mdp, €) returnsa utility function
inputs. mdp, an MDP with states, actionsA(s), transition modelP(s’ | s, a),
rewardsR(s), discounty
¢, the maximum error allowed in the utility of any state
local variables: U, U’, vectors of utilities for states i, initially zero
d, the maximum change in the utility of any state in an iteratio

repeat
U—U";6<0
for each states in S do
T R ¢ P(s’ Uls'
U'[s] — (s)—|—'yar€ng~z<5) 2 (s']s,a) Uls']
if |U'[s] — Uls]| > dthend—|U'[s] — Uls]|
until 6 < e(1—7)/y
return U

Figure17.4 The value iteration algorithm for calculating utilities sffates. The termination condi-
tion is from Equation ??).

39

Chapter 17. Making Complex Decisions

function PoLicy-ITERATION(mdp) returnsa policy
inputs mdp, an MDP with states, actionsA(s), transition modelP(s’ | s, a)
local variables: U, a vector of utilities for states i, initially zero
m, a policy vector indexed by state, initially random

repeat

U «— PoLICY-EVALUATION (7, U, mdp)

unchanged? « true

for each states in S do

if P(s Uls’ P(s Uls'] thend
it max, >0 P 1,0) U] > 32 P&/ ul]) U] then o

7[s] < argmax Z P(s'|s,a) Uls')
a € A(s) o

unchanged? « false
until unchanged?
return

Figure17.7

The policy iteration algorithm for calculating an optimatlizy.

function POMDP-\ALUE-ITERATION(pomdp, €) returnsa utility function
inputs pomdp, a POMDP with state$, actionsA(s), transition modelP (s’ | s, a),
sensor modeP (e | s), rewardsR(s), discounty
¢, the maximum error allowed in the utility of any state
local variables: U, U’, sets of plang with associated utility vectors,,
U’ — a set containing just the empty plah with o) (s) = R(s)
repeat
U«—U’

U’ «— the set of all plans consisting of an action and, for eachiplessext percept,

a plan inU with utility vectors computed according to Equatica?)
U’ «+ REMOVE-DOMINATED-PLANS(U")

until MAX-DIFFERENCE U, U’) < e(1 —7)/v
return U

Figure 17.9 A high-level sketch of the value iteration algorithm for POMs.

The
REMOVE-DOMINATED-PLANS step and MXx-DIFFERENCEtest are typically implemented as linear
programs.

LEARNING FROM
EXAMPLES

function DECISION-TREE-LEARNING(ezamples, attributes, parent_examples) returns
tree

if examples is emptythen return PLURALITY -VALUE(parent_examples)
dseif all ezamples have the same classificatitimen return the classification
eseif attributes is emptythen return PLURALITY -VALUE(examples)
else
A «—argmax, ¢ gyerivutes | MPORTANCH a, examples)
tree <+ a new decision tree with root tegt
for each valuew, of A do
exs —{e : e€ examples and e. A = v}
subtree «— DECISION-TREE-LEARNING(ezxs, attributes — A, examples)
add a branch taree with label (A = v) and subtreaubtree
return tree

Figure18.4 The decision-tree learning algorithm. The functiomPloORTANCEIs described in Sec-
tion ??. The function RURALITY-VALUE selects the most common output value among a set

examples, breaking ties randomly.

Df

41

42

Chapter 18. Learning from Examples

function CROSSVALIDATION -WRAPPEKR Learner, k, examples) returnsa hypothesis

local variables: errT, an array, indexed byize, storing training-set error rates

errV, an array, indexed byize, storing validation-set error rates
for size = 1tooo do

errT[size], errV[size] <+ CROSSVALIDATION (Learner, size, k, ezamples)
if errT has convergethen do

best_size « the value ofsize with minimum errV|[size]

return Learner (best_size, examples)

function CROSSVALIDATION (Learner, size, k, examples) returnstwo values:
average training set error rate, average validation set eate

fold_errT < 0; fold_errV <0
for fold =1to k do
training_set, validation_set < PARTITION(examples, fold, k)
h < Learner(size, training_set)
fold_errT «— fold_errT + ERROR-RATE(h, training_set)
fold_errV « fold_errV +ERROR-RATE(h, validation_set)
return fold_errTIk, fold_errVIk

Figure 18.7 An algorithm to select the model that has the lowest errar cat validation data by
building models of increasing complexity, and choosingdhe with best empirical error rate on val-
idation data. HereerrT means error rate on the training data, am@l” means error rate on the
validation data Learner (size, examples) returns a hypothesis whose complexity is set by the param
ter size, and which is trained on thecamples. PARTITION(examplesfold, k) splitsexamplesnto two

subsets: a validation set of si2é/k and a training set with all the other examples. The splitfiedint
for each value ofold.

function DECISION-LIST-LEARNING(examples) returnsa decision list, offailure

if ezamples is emptythen return the trivial decision listNo
t — a test that matches a nonempty sulesetnples, of examples
such that the members etamples, are all positive or all negative
if there is no such then return failure
if the examples irzamples, are positivehen o — Yes else 0 < No
return a decision list with initial test and outcome and remaining tests given by
DECISION-LIST-LEARNING(ezamples — examples,)

Figure18.10 An algorithm for learning decision lists.

43

function BACK-PROP-LEARNING(ezamples, network) returns a neural network
inputs examples, a set of examples, each with input vectand output vectoy
network, a multilayer network withl layers, weightsv; ;, activation functiory
local variables: A, a vector of errors, indexed by network node

repeat
for each weightws;,; in network do
w;,; < a small random number
for each example(x,y) in examples do
/ = Propagate the inputs forward to compute the outputs
for each nodei in the input layerdo
a; <— T;
for £=2to L do
for each nodej in layer/ do
ing Y ; wij @
a;j < g(in;)
/ = Propagate deltas backward from output layer to input layér
for each nodej in the output layedo
Aljl < g'(ing) x (y; — a;)
for{=L—1toldo
for each nodei in layer/ do
Ald] g’ (ini) 32; wi; Alj]
/ » Update every weight in network using deltds
for each weightw;,; in network do
Wi j Wi ; + a X a; X A[]]
until some stopping criterion is satisfied
return network

Figure18.23 The back-propagation algorithm for learning in multilayetworks.

44

Chapter 18.

Learning from Examples

function ADABoOST(ezamples, L, K) returns a weighted-majority hypothesis
inputs. examples, set of N labeled example&e1,y1),. .., (zn,yn)
L, a learning algorithm
K, the number of hypotheses in the ensemble
local variables: w, a vector ofN example weights, initiallyt / N
h, a vector ofK hypotheses
z, a vector ofK hypothesis weights

for k=1to K do
h[k] < L(examples,w)
error <0
for j=1to N do
if h[k](x;) # y; then error — error + wi[j]
for j =1to N do
if h[k](x;) = y; then w[j] —w[j] - error/(1 — error)
W < NORMALIZE(W)
z[k] «log (1 — error)/error
return WEIGHTED-MAJORITY(h, 2)

Figure 18.33 The ADABOOST variant of the boosting method for ensemble learning. The a
gorithm generates hypotheses by successively reweighkiagtraining examples. The function

WEIGHTED-MAJORITY generates a hypothesis that returns the output val
the hypotheses ih, with votes weighted by.

ue vathighest vote from

KNOWLEDGE IN
LEARNING

function CURRENT-BEST-LEARNING(ezamples, h) returnsa hypothesis or fail

if examples is emptythen
return h
e — FIRST(examples)
if e is consistent withh then
return CURRENT-BEST-LEARNING(REST(examples), h)
elseif e is a false positive fok then
for each A’ in specializations of. consistent withezamples seen so fado
R «— CURRENT-BEST-LEARNING(RES T examples), h')
if A # fail thenreturn h”
eseif e is a false negative fak then
for each " in generalizations of consistent withezamples seen so fado
h" « CURRENT-BEST-LEARNING(REST(ezamples), h')
if B # fail thenreturn h”
return fail

Figure19.2 The current-best-hypothesis learning algorithm. It seesdfor a consistent hypothesis
that fits all the examples and backtracks when no consigpextaization/generalization can be found.
To start the algorithm, any hypothesis can be passed in|lib&/ispecialized or gneralized as needed.

45

Chapter 19. Knowledge in Learning

function VERSION-SPACE-LEARNING(ezamples) returnsa version space
local variables: V, the version space: the set of all hypotheses

V « the set of all hypotheses
for each examplee in examples do

if V is not emptythen V <« VERSION-SPACE-UPDATH V/, €)
return V

function VERSION-SPACE-UPDATH V, ¢) returnsan updated version space
V —{he V : hisconsistent withe}

Figure19.3 The version space learning algorithm. It finds a subsel’ éhat is consistent with all
the ezamples.

function MINIMAL -CONSISTENEDET(F, A) returnsa set of attributes
inputs. E, a set of examples
A, a set of attributes, of size

for i=0ton do
for each subsetA; of A of sizei do
if CONSISTENFDET?(4,, EY) thenreturn A;

function CONSISTENFDET?(A, E) returnsa truth value
inputs A, a set of attributes
E, a set of examples
local variables: H, a hash table

for each examplee in E do
if some example it/ has the same values agor the attributesA
but a different classificatiothen return false
store the class of in H, indexed by the values for attributéisof the example:
return true

Figure19.8 An algorithm for finding a minimal consistent determination

47

function FolL(examples, target) returnsa set of Horn clauses
inputs: exzamples, set of examples
target, a literal for the goal predicate
local variables: clauses, set of clauses, initially empty

while ezamples contains positive examplem
clause — NEW-CLAUSE(examples, target)
remove positive examples covered flyuse from ezamples
addclause to clauses

return clauses

function NEw-CLAUSE(ezamples, target) returnsa Horn clause
local variables: clause, a clause withtarget as head and an empty body
[, a literal to be added to the clause
extended _examples, a set of examples with values for new variables

extended_examples «— examples
while extended_examples contains negative examplds
|+ CHOOSELITERAL(NEW-LITERALS(clause), extended _examples)
append to the body ofclause
extended_examples «— set of examples created by applying EEND-EXAMPLE
to each example iaztended -examples
return clause

function EXTEND-EXAMPLE(ezample, literal) returnsa set of examples
if example satisfiediteral
then return the set of examples created by extendiagmple with
each possible constant value for each new variablé énal
elsereturn the empty set

Figure19.12 Sketch of the BIL algorithm for learning sets of first-order Horn clauses frexam-

ples. New-LITERALSand CGHOOSELITERAL are explained in the text.

2

LEARNING
PROBABILISTIC MODELS

48

REINFORCEMENT
LEARNING

function PASSIVE-ADP-AGENT(percept) returnsan action
inputs: percept, a percept indicating the current stateand reward signat’
persistent: 7, a fixed policy
mdp, an MDP with modelP, rewardsR, discounty
U, a table of utilities, initially empty
N, a table of frequencies for state—action pairs, initiabya
Ny 5., a table of outcome frequencies given state—action pait&lly zero
s, a, the previous state and action, initially null

if s’ is newthen U[s'] «—r’; R[s'] <1’
if sis not nullthen
incrementN,,[s, a] and Ny, [s', s, al
for each ¢ such thatV,/,,[t, s, a] is nonzerodo
P(t]s,a) — Ny slt,s,a]l / Neals,a]
U «— PoLICY-EVALUATION (7, U, mdp)
if . TERMINAL?then s,a < null else s, a + s',[s’]
return a

Figure21.2 A passive reinforcement learning agent based on adaptivardic programming. The
PoLicy-EvaLUATION function solves the fixed-policy Bellman equations, as diesd on pagé?.

49

50

Chapter 21. Reinforcement Learning

function PASSIVE-TD-AGENT(percept) returnsan action
inputs: percept, a percept indicating the current stateand reward signat’
persistent: 7, a fixed policy
U, a table of utilities, initially empty
N, a table of frequencies for states, initially zero
s, a, r, the previous state, action, and reward, initially null

if s’ is newthen U[s'] < r’
if s is not nullthen
incrementN 4[s]
Uls] — Uls] + a(N[s])(r + 7 Uls') — Us])
if . TERMINAL?then s,a,r <—null ese s, a, 7« s',7[s'],r’
return a

Figure21.4 A passive reinforcement learning agent that learns ut@gfmates using temporal dif-
ferences. The step-size functieatin) is chosen to ensure convergence, as described in the text.

function Q-LEARNING-AGENT(percept) returnsan action
inputs percept, a percept indicating the current stateand reward signat’
persistent: @, a table of action values indexed by state and action, llyizaro
Nsq, atable of frequencies for state—action pairs, initialya
s, a, r, the previous state, action, and reward, initially null

if TERMINAL ?(s) then Q[s, None] — r’
if sis not nullthen
incrementN,,[s, a]
Qls, a] — Q[s, a] + a(Nuals, a])(r + 7 maxa Q[s',a’] — Qls, a))
s,a,r s’ argmax,, f(Q[s',a’], Ne[s',a']),r’
return a

Figure21.8 An exploratory Q-learning agent. It is an active learnet tearns the valu€)(s, a) of
each action in each situation. It uses the same exploratioctibn f as the exploratory ADP agent,
but avoids having to learn the transition model because thal@ of a state can be related directly to
those of its neighbors.

NATURAL LANGUAGE
PROCESSING

function HIT S(query) returns pages with hub and authority numbers

pages «— EXPAND-PAGEY RELEVANT-PAGEY query))
for each p in pages do

p.AUTHORITY «— 1
p.HUB«+—1
repeat until convergencelo
for each p in pages do
p.AUTHORITY « >, INLINK;(p).HUB

p.HUB >~ OUTLINK;(p).AUTHORITY
NORMALIZE(pages)
return pages

Figure 221 The HITS algorithm for computing hubs and authorities widspect to a query.
RELEVANT-PAGESfetches the pages that match the query, an@ARD-PAGES adds in every page
that links to or is linked from one of the relevant page©RWALIZE divides each page’s score by the
sum of the squares of all pages’ scores (separately for betauthority and hubs scores).

51

NATURAL LANGUAGE
FOR COMMUNICATION

function CYK-PARSHwords, grammar) returns P, a table of probabilities

N — LENGTH(words)
M « the number of nonterminal symbols imammar
P — an array of size i/, N, NJ, initially all 0
/ * Insert lexical rules for each wore/
for i =1to N do
for each rule of form (X — words; [p]) do
P[X,i,1]«p
/ = Combine first and second parts of right-hand sides of rutesy §hort to long: /
for length =2to N do
for start =1to N — length + 1 do
for len1 =1to N — 1do
len2 <« length — lenl
for each rule of the form X — Y Z [p]) do
P[X, start, length] — MAX(P[X, start, length],
PlY, start, lenl] x P[Z, start + lenl, len2] X p)
return P

Figure23.4 The CYK algorithm for parsing. Given a sequence of wordsnitisithe most probable
derivation for the whole sequence and for each subsequédnhoeturns the whole table?, in which
an entryP[X, start, len] is the probability of the most probabl¥ of lengthlen starting at position
start. If there is noX of that size at that location, the probability is O.

52

53

[[S [NP-SBJ-2 Her eyes]
[VP were
[VP glazed
[NP *-2]
[SBAR-ADV as if
[S [NP-SBJ she]
[VP did n't
[VP [VP hear [NP *-1]]

or
[VP [ADVP even] see [NP *-1]]
[NP-1 him]]]1]1]]

Figure 235 Annotated tree for the sentence “Her eyes were glazed aziflgin’t hear or even
see him.” from the Penn Treebank. Note that in this grammexetfs a distinction between an object
noun phraseNP) and a subject noun phradgR-SBJ. Note also a grammatical phenomenon we have
not covered yet: the movement of a phrase from one part ofrdeeto another. This tree analyzes
the phrase “hear or even see him” as consisting of two comestitl’Ps, [VP hear [NP *-1]] and [VP
[ADVP even] see [NP *-1]], both of which have a missing objet#noted *-1, which refers to th¥P
labeled elsewhere in the tree as [NP-1 him].

24 PERCEPTION

54

5 ROBOTICS

function MONTE-CARLO-LOCALIZATION(a, z, N, P(X'|X, v, w), P(z|z*), m) returns
a set of samples for the next time step
inputs: a, robot velocitiesy andw
z,range scani, ..., zu
P(X'|X, v, w), motion model
P(z|z*), range sensor noise model
m, 2D map of the environment
persistent: S, a vector of samples of siz&
local variables: W, a vector of weights of sizé&/
S’, a temporary vector of particles of si2é
W', a vector of weights of sizeV

if Sis emptythen [* initialization phase */
for i =1to N do
S[i] + sample fromP(Xo)
for i = 1to N do /*update cycle */
S'[4] «+ sample fromP(X’| X = S[i], v,w)
W'[i] —1
for j = 1to M do
z* «— RAYCAST(j, X = S'[i], m)
W[—W'li] - P(z]2")
S« WEIGHTED-SAMPLE-WITH-REPLACEMENT(V,S’, W)
return S

Figure25.9 A Monte Carlo localization algorithm using a range-scanssemodel with indepen-
dent noise.

55

2

PHILOSOPHICAL
FOUNDATIONS

56

2

Al: THE PRESENT AND
FUTURE

57

2

MATHEMATICAL
BACKGROUND

58

2 9 NOTES ON LANGUAGES
AND ALGORITHMS

generator POWERS OF-2() yiedsints
11
while true do
yield ¢

1—2 X 1

for p in POWERS OF-2() do
PRINT(p)

Figure29.1 Example of a generator function and its invocation withioaeg.

59

