
1 INTRODUCTION

1

2 INTELLIGENT AGENTS

function TABLE-DRIVEN-AGENT(percept) returns an action
persistent: percepts , a sequence, initially empty

table, a table of actions, indexed by percept sequences, initially fully specified

appendpercept to the end ofpercepts
action← LOOKUP(percepts , table)
return action

Figure 2.3 The TABLE-DRIVEN-AGENT program is invoked for each new percept and returns an
action each time. It retains the complete percept sequence in memory.

function REFLEX-VACUUM-AGENT([location ,status]) returns an action

if status = Dirty then return Suck

else if location = A then return Right

else if location = B then return Left

Figure 2.4 The agent program for a simple reflex agent in the two-state vacuum environment. This
program implements the agent function tabulated in Figure??.

function SIMPLE-REFLEX-AGENT(percept) returns an action
persistent: rules , a set of condition–action rules

state← INTERPRET-INPUT(percept)
rule←RULE-MATCH(state ,rules)
action← rule.ACTION

return action

Figure 2.6 A simple reflex agent. It acts according to a rule whose condition matches the current
state, as defined by the percept.

2

3

function MODEL-BASED-REFLEX-AGENT(percept) returns an action
persistent: state , the agent’s current conception of the world state

model , a description of how the next state depends on current stateand action
rules , a set of condition–action rules
action , the most recent action, initially none

state←UPDATE-STATE(state ,action,percept ,model)
rule←RULE-MATCH(state ,rules)
action← rule.ACTION

return action

Figure 2.8 A model-based reflex agent. It keeps track of the current state of the world, using an
internal model. It then chooses an action in the same way as the reflex agent.

3 SOLVING PROBLEMS BY
SEARCHING

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
persistent: seq , an action sequence, initially empty

state , some description of the current world state
goal , a goal, initially null
problem , a problem formulation

state←UPDATE-STATE(state ,percept)
if seq is emptythen

goal← FORMULATE-GOAL(state)
problem← FORMULATE-PROBLEM(state ,goal)
seq← SEARCH(problem)
if seq = failure then return a null action

action← FIRST(seq)
seq←REST(seq)
return action

Figure 3.1 A simple problem-solving agent. It first formulates a goal and a problem, searches for a
sequence of actions that would solve the problem, and then executes the actions one at a time. When
this is complete, it formulates another goal and starts over.

4

5

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state ofproblem
loop do

if the frontier is emptythen return failure
choose a leaf node and remove it from the frontier
if the node contains a goal statethen return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function GRAPH-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state ofproblem
initialize the explored set to be empty
loop do

if the frontier is emptythen return failure
choose a leaf node and remove it from the frontier
if the node contains a goal statethen return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier or explored set

Figure 3.7 An informal description of the general tree-search and graph-search algorithms. The
parts of GRAPH-SEARCHmarked in bold italic are the additions needed to handle repeated states.

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node← a node with STATE = problem .INITIAL -STATE, PATH-COST= 0
if problem .GOAL -TEST(node .STATE) then return SOLUTION(node)
frontier← a FIFO queue withnode as the only element
explored←an empty set
loop do

if EMPTY?(frontier) then return failure
node← POP(frontier) /* chooses the shallowest node infrontier */
addnode .STATE to explored

for each action in problem .ACTIONS(node.STATE) do
child←CHILD -NODE(problem ,node,action)
if child .STATE is not inexplored or frontier then

if problem .GOAL -TEST(child .STATE) then return SOLUTION(child)
frontier← INSERT(child , frontier)

Figure 3.11 Breadth-first search on a graph.

6 Chapter 3. Solving Problems by Searching

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

node← a node with STATE = problem .INITIAL -STATE, PATH-COST= 0
frontier← a priority queue ordered by PATH-COST, with node as the only element
explored←an empty set
loop do

if EMPTY?(frontier) then return failure
node← POP(frontier) /* chooses the lowest-cost node infrontier */
if problem .GOAL -TEST(node .STATE) then return SOLUTION(node)
addnode .STATE to explored

for each action in problem .ACTIONS(node.STATE) do
child←CHILD -NODE(problem ,node,action)
if child .STATE is not inexplored or frontier then

frontier← INSERT(child , frontier)
else if child .STATE is in frontier with higher PATH-COST then

replace thatfrontier node withchild

Figure 3.13 Uniform-cost search on a graph. The algorithm is identical to the general graph search
algorithm in Figure??, except for the use of a priority queue and the addition of an extra check in case
a shorter path to a frontier state is discovered. The data structure forfrontier needs to support efficient
membership testing, so it should combine the capabilities of a priority queue and a hash table.

function DEPTH-L IMITED -SEARCH(problem , limit) returns a solution, or failure/cutoff
return RECURSIVE-DLS(MAKE-NODE(problem .INITIAL -STATE),problem , limit)

function RECURSIVE-DLS(node,problem , limit) returns a solution, or failure/cutoff
if problem .GOAL -TEST(node .STATE) then return SOLUTION(node)
else if limit = 0 then return cutoff

else
cutoff occurred?← false
for each action in problem .ACTIONS(node.STATE) do

child←CHILD -NODE(problem ,node,action)
result←RECURSIVE-DLS(child ,problem , limit − 1)
if result = cutoff then cutoff occurred?← true
else if result 6= failure then return result

if cutoff occurred? then return cutoff else return failure

Figure 3.16 A recursive implementation of depth-limited tree search.

7

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or failure
for depth = 0 to∞ do

result←DEPTH-L IMITED -SEARCH(problem ,depth)
if result 6= cutoff then return result

Figure 3.17 The iterative deepening search algorithm, which repeatedly applies depth-limited search
with increasing limits. It terminates when a solution is found or if the depth-limited search returns
failure, meaning that no solution exists.

function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution, or failure
return RBFS(problem , MAKE-NODE(problem .INITIAL -STATE),∞)

function RBFS(problem ,node, f limit) returns a solution, or failure and a newf -cost limit
if problem .GOAL -TEST(node .STATE) then return SOLUTION(node)
successors← []
for each action in problem .ACTIONS(node .STATE) do

add CHILD -NODE(problem ,node ,action) into successors

if successors is emptythen return failure,∞
for each s in successors do /* updatef with value from previous search, if any */

s.f ←max(s.g + s.h, node .f))
loop do

best← the lowestf -value node insuccessors
if best .f > f limit then return failure, best .f
alternative← the second-lowestf -value amongsuccessors
result ,best .f←RBFS(problem ,best ,min(f limit, alternative))
if result 6= failure then return result

Figure 3.24 The algorithm for recursive best-first search.

4 BEYOND CLASSICAL
SEARCH

function HILL -CLIMBING(problem) returns a state that is a local maximum

current←MAKE-NODE(problem .INITIAL -STATE)
loop do

neighbor←a highest-valued successor ofcurrent

if neighbor.VALUE ≤ current.VALUE then return current .STATE

current←neighbor

Figure 4.2 The hill-climbing search algorithm, which is the most basiclocal search technique. At
each step the current node is replaced by the best neighbor; in this version, that means the neighbor
with the highest VALUE, but if a heuristic cost estimateh is used, we would find the neighbor with the
lowesth.

function SIMULATED -ANNEALING(problem ,schedule) returns a solution state
inputs: problem , a problem

schedule , a mapping from time to “temperature”

current←MAKE-NODE(problem .INITIAL -STATE)
for t = 1 to∞ do

T← schedule(t)
if T = 0 then return current

next←a randomly selected successor ofcurrent

∆E← next .VALUE – current .VALUE

if ∆E > 0 then current←next

else current←next only with probabilitye∆E/T

Figure 4.5 The simulated annealing algorithm, a version of stochastichill climbing where some
downhill moves are allowed. Downhill moves are accepted readily early in the annealing schedule and
then less often as time goes on. Theschedule input determines the value of the temperatureT as a
function of time.

8

9

function GENETIC-ALGORITHM(population , FITNESS-FN) returns an individual
inputs: population , a set of individuals

FITNESS-FN, a function that measures the fitness of an individual

repeat
new population←empty set
for i = 1 to SIZE(population) do

x←RANDOM-SELECTION(population , FITNESS-FN)
y←RANDOM-SELECTION(population , FITNESS-FN)
child←REPRODUCE(x ,y)
if (small random probability)then child←MUTATE(child)
addchild to new population

population← new population

until some individual is fit enough, or enough time has elapsed
return the best individual inpopulation , according to FITNESS-FN

function REPRODUCE(x ,y) returns an individual
inputs: x ,y , parent individuals

n← LENGTH(x); c← random number from 1 ton
return APPEND(SUBSTRING(x , 1,c), SUBSTRING(y ,c + 1,n))

Figure 4.8 A genetic algorithm. The algorithm is the same as the one diagrammed in Figure??, with
one variation: in this more popular version, each mating of two parents produces only one offspring,
not two.

function AND-OR-GRAPH-SEARCH(problem) returns a conditional plan, or failure

OR-SEARCH(problem .INITIAL -STATE,problem , [])

function OR-SEARCH(state ,problem ,path) returns a conditional plan, or failure

if problem .GOAL -TEST(state) then return the empty plan
if state is onpath then return failure

for each action in problem .ACTIONS(state) do
plan←AND-SEARCH(RESULTS(state ,action),problem , [state | path])
if plan 6= failure then return [action | plan]

return failure

function AND-SEARCH(states ,problem ,path) returns a conditional plan, or failure

for each si in states do
plani←OR-SEARCH(si,problem ,path)
if plani = failure then return failure

return [if s1 then plan1 else if s2 then plan2 else . . . if sn−1 then plann−1 else plann]

Figure 4.11 An algorithm for searchingAND–OR graphs generated by nondeterministic environ-
ments. It returns a conditional plan that reaches a goal state in all circumstances. (The notation[x | l]
refers to the list formed by adding objectx to the front of listl.)

10 Chapter 4. Beyond Classical Search

function ONLINE-DFS-AGENT(s ′) returns an action
inputs: s ′, a percept that identifies the current state
persistent: result , a table indexed by state and action, initially empty

untried , a table that lists, for each state, the actions not yet tried
unbacktracked , a table that lists, for each state, the backtracks not yet tried
s, a, the previous state and action, initially null

if GOAL -TEST(s ′) then return stop

if s ′ is a new state (not inuntried) then untried [s ′]← ACTIONS(s ′)
if s is not nullthen

result [s,a]← s ′

adds to the front ofunbacktracked [s ′]
if untried [s ′] is emptythen

if unbacktracked [s ′] is emptythen return stop

else a← an actionb such thatresult [s ′,b] = POP(unbacktracked [s ′])
else a← POP(untried [s ′])
s← s ′

return a

Figure 4.21 An online search agent that uses depth-first exploration. The agent is applicable only in
state spaces in which every action can be “undone” by some other action.

function LRTA*-A GENT(s ′) returns an action
inputs: s ′, a percept that identifies the current state
persistent: result , a table, indexed by state and action, initially empty

H , a table of cost estimates indexed by state, initially empty
s, a, the previous state and action, initially null

if GOAL -TEST(s ′) then return stop

if s ′ is a new state (not inH) then H [s ′]←h(s ′)
if s is not null

result [s,a]← s ′

H [s]← min
b ∈ACTIONS(s)

LRTA*-C OST(s,b,result [s,b], H)

a←an actionb in ACTIONS(s ′) that minimizes LRTA*-COST(s ′,b,result [s ′,b], H)
s← s ′

return a

function LRTA*-C OST(s,a,s ′,H) returns a cost estimate
if s ′ is undefinedthen return h(s)
else return c(s, a, s′) + H [s′]

Figure 4.24 LRTA*-A GENT selects an action according to the values of neighboring states, which
are updated as the agent moves about the state space.

5 ADVERSARIAL SEARCH

function M INIMAX -DECISION(state) returns an action

return arg max
a ∈ ACTIONS(s) M IN-VALUE(RESULT(state ,a))

function MAX -VALUE(state) returns a utility value

if TERMINAL -TEST(state) then return UTILITY (state)
v←−∞
for each a in ACTIONS(state) do

v←MAX (v , M IN-VALUE(RESULT(s, a)))
return v

function M IN-VALUE(state) returns a utility value

if TERMINAL -TEST(state) then return UTILITY (state)
v←∞
for each a in ACTIONS(state) do

v←M IN(v , MAX -VALUE(RESULT(s, a)))
return v

Figure 5.3 An algorithm for calculating minimax decisions. It returnsthe action corresponding
to the best possible move, that is, the move that leads to the outcome with the best utility, under the
assumption that the opponent plays to minimize utility. Thefunctions MAX -VALUE and MIN-VALUE

go through the whole game tree, all the way to the leaves, to determine the backed-up value of a state.
The notationargmaxa∈ S f(a) computes the elementa of setS that has the maximum value off(a).

11

12 Chapter 5. Adversarial Search

function ALPHA-BETA-SEARCH(state) returns an action
v←MAX -VALUE(state ,−∞,+∞)
return theaction in ACTIONS(state) with valuev

function MAX -VALUE(state ,α,β) returns a utility value

if TERMINAL -TEST(state) then return UTILITY (state)
v←−∞
for each a in ACTIONS(state) do

v←MAX (v , M IN-VALUE(RESULT(s,a),α,β))
if v ≥ β then return v

α←MAX (α, v)
return v

function M IN-VALUE(state ,α,β) returns a utility value

if TERMINAL -TEST(state) then return UTILITY (state)
v←+∞
for each a in ACTIONS(state) do

v←M IN(v , MAX -VALUE(RESULT(s,a) ,α,β))
if v ≤ α then return v

β←M IN(β, v)
return v

Figure 5.7 The alpha–beta search algorithm. Notice that these routines are the same as the
M INIMAX functions in Figure??, except for the two lines in each of MIN-VALUE and MAX -VALUE

that maintainα andβ (and the bookkeeping to pass these parameters along).

6
CONSTRAINT
SATISFACTION
PROBLEMS

function AC-3(csp) returns false if an inconsistency is found and true otherwise
inputs: csp, a binary CSP with components(X, D, C)
local variables: queue , a queue of arcs, initially all the arcs incsp

while queue is not emptydo
(Xi, Xj)←REMOVE-FIRST(queue)
if REVISE(csp, Xi, Xj) then

if size ofDi = 0 then return false

for each Xk in Xi.NEIGHBORS- {Xj} do
add (Xk, Xi) to queue

return true

function REVISE(csp, Xi, Xj) returns true iff we revise the domain ofXi

revised← false

for each x in Di do
if no valuey in Dj allows (x ,y) to satisfy the constraint betweenXi andXj then

deletex from Di

revised← true

return revised

Figure 6.3 The arc-consistency algorithm AC-3. After applying AC-3, either every arc is arc-
consistent, or some variable has an empty domain, indicating that the CSP cannot be solved. The
name “AC-3” was used by the algorithm’s inventor (?) becauseit’s the third version developed in the
paper.

13

14 Chapter 6. Constraint Satisfaction Problems

function BACKTRACKING-SEARCH(csp) returns a solution, or failure
return BACKTRACK({ },csp)

function BACKTRACK(assignment ,csp) returns a solution, or failure
if assignment is completethen return assignment

var← SELECT-UNASSIGNED-VARIABLE(csp)
for each value in ORDER-DOMAIN -VALUES(var ,assignment ,csp) do

if value is consistent withassignment then
add{var = value} to assignment

inferences← INFERENCE(csp,var ,value)
if inferences 6= failure then

addinferences to assignment

result←BACKTRACK(assignment ,csp)
if result 6= failure then

return result

remove{var = value} andinferences from assignment

return failure

Figure 6.5 A simple backtracking algorithm for constraint satisfaction problems. The algo-
rithm is modeled on the recursive depth-first search of Chapter ??. By varying the functions
SELECT-UNASSIGNED-VARIABLE and ORDER-DOMAIN -VALUES, we can implement the general-
purpose heuristics discussed in the text. The function INFERENCEcan optionally be used to impose
arc-, path-, ork-consistency, as desired. If a value choice leads to failure(noticed either by INFERENCE

or by BACKTRACK), then value assignments (including those made by INFERENCE) are removed from
the current assignment and a new value is tried.

function M IN-CONFLICTS(csp,max steps) returns a solution or failure
inputs: csp, a constraint satisfaction problem

max steps , the number of steps allowed before giving up

current←an initial complete assignment forcsp

for i = 1 tomax steps do
if current is a solution forcsp then return current

var← a randomly chosen conflicted variable fromcsp.VARIABLES

value← the valuev for var that minimizes CONFLICTS(var ,v ,current ,csp)
setvar = value in current

return failure

Figure 6.8 The MIN-CONFLICTSalgorithm for solving CSPs by local search. The initial state may
be chosen randomly or by a greedy assignment process that chooses a minimal-conflict value for each
variable in turn. The CONFLICTS function counts the number of constraints violated by a particular
value, given the rest of the current assignment.

15

function TREE-CSP-SOLVER(csp) returns a solution, or failure
inputs: csp, a CSP with componentsX, D, C

n← number of variables inX
assignment←an empty assignment
root←any variable inX
X ← TOPOLOGICALSORT(X ,root)
for j = n down to 2 do

MAKE-ARC-CONSISTENT(PARENT(Xj),Xj)
if it cannot be made consistentthen return failure

for i = 1 to n do
assignment [Xi]←any consistent value fromDi

if there is no consistent valuethen return failure

return assignment

Figure 6.11 The TREE-CSP-SOLVER algorithm for solving tree-structured CSPs. If the CSP has a
solution, we will find it in linear time; if not, we will detecta contradiction.

7 LOGICAL AGENTS

function KB-AGENT(percept) returns anaction

persistent: KB , a knowledge base
t , a counter, initially 0, indicating time

TELL(KB , MAKE-PERCEPT-SENTENCE(percept , t))
action← ASK(KB , MAKE-ACTION-QUERY(t))
TELL(KB , MAKE-ACTION-SENTENCE(action, t))
t← t + 1
return action

Figure 7.1 A generic knowledge-based agent. Given a percept, the agentadds the percept to its
knowledge base, asks the knowledge base for the best action,and tells the knowledge base that it has in
fact taken that action.

16

17

function TT-ENTAILS?(KB ,α) returns true or false

inputs: KB , the knowledge base, a sentence in propositional logic
α, the query, a sentence in propositional logic

symbols← a list of the proposition symbols inKB andα
return TT-CHECK-ALL(KB ,α,symbols ,{ })

function TT-CHECK-ALL(KB ,α,symbols ,model) returns true or false
if EMPTY?(symbols) then

if PL-TRUE?(KB ,model) then return PL-TRUE?(α,model)
else return true // when KB is false, always return true

else do
P← FIRST(symbols)
rest←REST(symbols)
return (TT-CHECK-ALL(KB ,α,rest ,model ∪ {P = true})

and
TT-CHECK-ALL(KB ,α,rest ,model ∪ {P = false }))

Figure 7.8 A truth-table enumeration algorithm for deciding propositional entailment. (TT stands
for truth table.) PL-TRUE? returnstrue if a sentence holds within a model. The variablemodelrep-
resents a partial model—an assignment to some of the symbols. The keyword “and” is used here as a
logical operation on its two arguments, returningtrue or false.

function PL-RESOLUTION(KB ,α) returns true or false

inputs: KB , the knowledge base, a sentence in propositional logic
α, the query, a sentence in propositional logic

clauses← the set of clauses in the CNF representation ofKB ∧ ¬α
new←{}
loop do

for each pair of clausesCi, Cj in clauses do
resolvents← PL-RESOLVE(Ci,Cj)
if resolvents contains the empty clausethen return true

new← new ∪ resolvents

if new ⊆ clauses then return false

clauses← clauses ∪new

Figure 7.9 A simple resolution algorithm for propositional logic. Thefunction PL-RESOLVE re-
turns the set of all possible clauses obtained by resolving its two inputs.

18 Chapter 7. Logical Agents

function PL-FC-ENTAILS?(KB ,q) returns true or false

inputs: KB , the knowledge base, a set of propositional definite clauses
q , the query, a proposition symbol

count←a table, wherecount [c] is the number of symbols inc’s premise
inferred←a table, whereinferred [s] is initially false for all symbols
agenda←a queue of symbols, initially symbols known to be true inKB

while agenda is not emptydo
p← POP(agenda)
if p = q then return true

if inferred [p] = false then
inferred [p]← true

for each clausec in KB wherep is in c.PREMISEdo
decrementcount [c]
if count [c] = 0 then addc.CONCLUSION to agenda

return false

Figure 7.12 The forward-chaining algorithm for propositional logic. The agenda keeps track of
symbols known to be true but not yet “processed.” Thecount table keeps track of how many premises
of each implication are as yet unknown. Whenever a new symbolp from the agenda is processed, the
count is reduced by one for each implication in whose premisep appears (easily identified in constant
time with appropriate indexing.) If a count reaches zero, all the premises of the implication are known,
so its conclusion can be added to the agenda. Finally, we needto keep track of which symbols have
been processed; a symbol that is already in the set of inferred symbols need not be added to the agenda
again. This avoids redundant work and prevents loops causedby implications such asP ⇒ Q and
Q⇒ P .

19

function DPLL-SATISFIABLE?(s) returns true or false
inputs: s, a sentence in propositional logic

clauses← the set of clauses in the CNF representation ofs

symbols← a list of the proposition symbols ins
return DPLL(clauses ,symbols ,{ })

function DPLL(clauses ,symbols ,model) returns true or false

if every clause inclauses is true inmodel then return true

if some clause inclauses is false inmodel then return false

P ,value← FIND-PURE-SYMBOL(symbols ,clauses ,model)
if P is non-nullthen return DPLL(clauses ,symbols – P ,model ∪ {P=value})
P ,value← FIND-UNIT-CLAUSE(clauses ,model)
if P is non-nullthen return DPLL(clauses ,symbols – P ,model ∪ {P=value})
P← FIRST(symbols); rest←REST(symbols)
return DPLL(clauses ,rest ,model ∪ {P=true}) or

DPLL(clauses ,rest ,model ∪ {P=false}))

Figure 7.14 The DPLL algorithm for checking satisfiability of a sentencein propositional logic. The
ideas behind FIND-PURE-SYMBOL and FIND-UNIT-CLAUSE are described in the text; each returns a
symbol (or null) and the truth value to assign to that symbol.Like TT-ENTAILS?, DPLL operates over
partial models.

function WALK SAT(clauses ,p,max flips) returns a satisfying model orfailure
inputs: clauses , a set of clauses in propositional logic

p, the probability of choosing to do a “random walk” move, typically around 0.5
max flips, number of flips allowed before giving up

model← a random assignment oftrue /false to the symbols inclauses
for i = 1 to max flips do

if model satisfiesclauses then return model

clause← a randomly selected clause fromclauses that is false inmodel

with probability p flip the value inmodel of a randomly selected symbol fromclause
else flip whichever symbol inclause maximizes the number of satisfied clauses

return failure

Figure 7.15 The WALK SAT algorithm for checking satisfiability by randomly flipping the values of
variables. Many versions of the algorithm exist.

20 Chapter 7. Logical Agents

function HYBRID-WUMPUS-AGENT(percept) returns anaction

inputs: percept , a list, [stench ,breeze ,glitter ,bump,scream]
persistent: KB , a knowledge base, initially the atemporal “wumpus physics”

t , a counter, initially 0, indicating time
plan, an action sequence, initially empty

TELL(KB , MAKE-PERCEPT-SENTENCE(percept , t))
TELL theKB the temporal “physics” sentences for timet

safe←{[x , y] : ASK(KB ,OK t
x,y) = true}

if ASK(KB ,Glitter t) = true then
plan← [Grab] + PLAN -ROUTE(current ,{[1,1]},safe) + [Climb]

if plan is emptythen
unvisited←{[x , y] : ASK(KB , Lt′

x,y) = false for all t′ ≤ t}
plan← PLAN -ROUTE(current ,unvisited ∩ safe,safe)

if plan is empty and ASK(KB ,HaveArrow t) = true then
possible wumpus←{[x , y] : ASK(KB ,¬Wx,y) = false}
plan← PLAN -SHOT(current ,possible wumpus,safe)

if plan is emptythen // no choice but to take a risk
not unsafe←{[x , y] : ASK(KB ,¬ OK t

x,y) = false}
plan← PLAN -ROUTE(current ,unvisited ∩not unsafe,safe)

if plan is emptythen
plan← PLAN -ROUTE(current ,{[1, 1]},safe) + [Climb]

action← POP(plan)
TELL(KB , MAKE-ACTION-SENTENCE(action, t))
t← t + 1
return action

function PLAN -ROUTE(current ,goals ,allowed) returns an action sequence
inputs: current , the agent’s current position

goals , a set of squares; try to plan a route to one of them
allowed , a set of squares that can form part of the route

problem←ROUTE-PROBLEM(current ,goals ,allowed)
return A*-G RAPH-SEARCH(problem)

Figure 7.17 A hybrid agent program for the wumpus world. It uses a propositional knowledge base
to infer the state of the world, and a combination of problem-solving search and domain-specific code
to decide what actions to take.

21

function SATPLAN(init , transition, goal ,T max) returns solution or failure
inputs: init , transition, goal , constitute a description of the problem

T max, an upper limit for plan length

for t = 0 to T max do
cnf ← TRANSLATE-TO-SAT(init , transition, goal , t)
model←SAT-SOLVER(cnf)
if model is not nullthen

return EXTRACT-SOLUTION(model)
return failure

Figure 7.19 The SATPLAN algorithm. The planning problem is translated into a CNF sentence in
which the goal is asserted to hold at a fixed time stept and axioms are included for each time step up to
t. If the satisfiability algorithm finds a model, then a plan is extracted by looking at those proposition
symbols that refer to actions and are assignedtrue in the model. If no model exists, then the process is
repeated with the goal moved one step later.

8 FIRST-ORDER LOGIC

22

9 INFERENCE IN
FIRST-ORDER LOGIC

function UNIFY(x ,y ,θ) returns a substitution to makex andy identical
inputs: x , a variable, constant, list, or compound expression

y , a variable, constant, list, or compound expression
θ, the substitution built up so far (optional, defaults to empty)

if θ = failure then return failure
else if x = y then return θ
else if VARIABLE ?(x) then return UNIFY-VAR(x ,y ,θ)
else if VARIABLE ?(y) then return UNIFY-VAR(y ,x ,θ)
else if COMPOUND?(x) and COMPOUND?(y) then

return UNIFY(x .ARGS,y .ARGS, UNIFY(x .OP,y .OP,θ))
else if L IST?(x) and L IST?(y) then

return UNIFY(x .REST,y .REST, UNIFY(x .FIRST,y .FIRST,θ))
else return failure

function UNIFY-VAR(var ,x ,θ) returns a substitution

if {var/val} ∈ θ then return UNIFY(val ,x ,θ)
else if {x/val} ∈ θ then return UNIFY(var ,val ,θ)
else if OCCUR-CHECK?(var ,x) then return failure
else return add{var /x} to θ

Figure 9.1 The unification algorithm. The algorithm works by comparingthe structures of the in-
puts, element by element. The substitutionθ that is the argument to UNIFY is built up along the way and
is used to make sure that later comparisons are consistent with bindings that were established earlier. In
a compound expression such asF (A,B), the OP field picks out the function symbolF and the ARGS

field picks out the argument list(A, B).

23

24 Chapter 9. Inference in First-Order Logic

function FOL-FC-ASK(KB ,α) returns a substitution orfalse
inputs: KB , the knowledge base, a set of first-order definite clauses

α, the query, an atomic sentence
local variables: new , the new sentences inferred on each iteration

repeat until new is empty
new←{}
for each rule in KB do

(p1 ∧ . . . ∧ pn ⇒ q)← STANDARDIZE-VARIABLES(rule)
for each θ such that SUBST(θ,p1 ∧ . . . ∧ pn) = SUBST(θ,p′

1 ∧ . . . ∧ p′
n)

for somep′
1, . . . , p

′
n in KB

q ′← SUBST(θ,q)
if q ′ does not unify with some sentence already inKB or new then

addq ′ to new

φ←UNIFY(q ′,α)
if φ is notfail then return φ

addnew to KB

return false

Figure 9.3 A conceptually straightforward, but very inefficient, forward-chaining algorithm. On
each iteration, it adds toKB all the atomic sentences that can be inferred in one step fromthe impli-
cation sentences and the atomic sentences already inKB . The function STANDARDIZE-VARIABLES

replaces all variables in its arguments with new ones that have not been used before.

function FOL-BC-ASK(KB ,query) returns a generator of substitutions
return FOL-BC-OR(KB ,query ,{ })

generator FOL-BC-OR(KB ,goal ,θ) yields a substitution
for each rule (lhs ⇒ rhs) in FETCH-RULES-FOR-GOAL(KB , goal) do

(lhs, rhs)← STANDARDIZE-VARIABLES((lhs, rhs))
for each θ′ in FOL-BC-AND(KB , lhs, UNIFY(rhs , goal , θ)) do

yield θ′

generator FOL-BC-AND(KB ,goals ,θ) yields a substitution
if θ = failure then return
else if LENGTH(goals) = 0 then yield θ
else do

first ,rest← FIRST(goals), REST(goals)
for each θ′ in FOL-BC-OR(KB , SUBST(θ, first), θ) do

for each θ′′ in FOL-BC-AND(KB ,rest ,θ′) do
yield θ′′

Figure 9.6 A simple backward-chaining algorithm for first-order knowledge bases.

25

procedure APPEND(ax ,y ,az ,continuation)

trail←GLOBAL -TRAIL -POINTER()
if ax = [] and UNIFY(y ,az) then CALL (continuation)
RESET-TRAIL(trail)
a, x , z←NEW-VARIABLE(), NEW-VARIABLE(), NEW-VARIABLE()
if UNIFY(ax , [a | x]) and UNIFY(az , [a | z]) then APPEND(x ,y ,z ,continuation)

Figure 9.8 Pseudocode representing the result of compiling theAppend predicate. The function
NEW-VARIABLE returns a new variable, distinct from all other variables used so far. The procedure
CALL (continuation) continues execution with the specified continuation.

10 CLASSICAL PLANNING

Init(At(C1, SFO) ∧ At(C2, JFK) ∧ At(P1, SFO) ∧ At(P2, JFK)
∧ Cargo(C1) ∧ Cargo(C2) ∧ Plane(P1) ∧ Plane(P2)
∧ Airport(JFK) ∧ Airport(SFO))

Goal(At(C1, JFK) ∧ At(C2, SFO))
Action(Load(c, p, a),

PRECOND: At(c, a) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)
EFFECT: ¬ At(c, a) ∧ In(c, p))

Action(Unload(c, p, a),
PRECOND: In(c, p) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)
EFFECT: At(c, a) ∧ ¬ In(c, p))

Action(Fly(p, from, to),
PRECOND: At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)
EFFECT: ¬ At(p, from) ∧ At(p, to))

Figure 10.1 A PDDL description of an air cargo transportation planning problem.

Init(Tire(Flat) ∧ Tire(Spare) ∧ At(Flat , Axle) ∧ At(Spare ,Trunk))
Goal(At(Spare ,Axle))
Action(Remove(obj , loc),

PRECOND: At(obj , loc)
EFFECT: ¬ At(obj , loc) ∧ At(obj , Ground))

Action(PutOn(t , Axle),
PRECOND: Tire(t) ∧ At(t , Ground) ∧ ¬ At(Flat ,Axle)
EFFECT: ¬ At(t , Ground) ∧ At(t ,Axle))

Action(LeaveOvernight ,
PRECOND:
EFFECT: ¬ At(Spare ,Ground) ∧ ¬ At(Spare ,Axle) ∧ ¬ At(Spare ,Trunk)

∧ ¬ At(Flat , Ground) ∧ ¬ At(Flat ,Axle) ∧ ¬ At(Flat , Trunk))

Figure 10.2 The simple spare tire problem.

26

27

Init(On(A,Table) ∧ On(B,Table) ∧ On(C, A)
∧ Block(A) ∧ Block(B) ∧ Block(C) ∧ Clear(B) ∧ Clear(C))

Goal(On(A, B) ∧ On(B, C))
Action(Move(b, x, y),

PRECOND: On(b, x) ∧ Clear(b) ∧ Clear(y) ∧ Block(b) ∧ Block(y) ∧
(b 6=x) ∧ (b 6=y) ∧ (x 6=y),

EFFECT: On(b, y) ∧ Clear(x) ∧ ¬On(b, x) ∧ ¬Clear(y))
Action(MoveToTable(b, x),

PRECOND: On(b, x) ∧ Clear(b) ∧ Block(b) ∧ (b 6=x),
EFFECT: On(b,Table) ∧ Clear(x) ∧ ¬On(b, x))

Figure 10.3 A planning problem in the blocks world: building a three-block tower. One solution is
the sequence[MoveToTable(C, A),Move(B,Table, C),Move(A,Table, B)].

Init(Have(Cake))
Goal(Have(Cake) ∧ Eaten(Cake))
Action(Eat(Cake)

PRECOND: Have(Cake)
EFFECT: ¬ Have(Cake) ∧ Eaten(Cake))

Action(Bake(Cake)
PRECOND: ¬ Have(Cake)
EFFECT: Have(Cake))

Figure 10.7 The “have cake and eat cake too” problem.

function GRAPHPLAN(problem) returns solution or failure

graph← INITIAL -PLANNING -GRAPH(problem)
goals←CONJUNCTS(problem .GOAL)
nogoods← an empty hash table
for tl = 0 to∞ do

if goals all non-mutex inSt of graph then
solution← EXTRACT-SOLUTION(graph , goals, NUMLEVELS(graph), nogoods)
if solution 6= failure then return solution

if graph andnogoods have both leveled offthen return failure

graph←EXPAND-GRAPH(graph , problem)

Figure 10.9 The GRAPHPLAN algorithm. GRAPHPLAN calls EXPAND-GRAPH to add a level until
either a solution is found by EXTRACT-SOLUTION, or no solution is possible.

11 PLANNING AND ACTING
IN THE REAL WORLD

Jobs({AddEngine1 ≺AddWheels1 ≺ Inspect1},
{AddEngine2 ≺AddWheels2 ≺ Inspect2})

Resources(EngineHoists(1),WheelStations(1), Inspectors(2),LugNuts(500))

Action(AddEngine1 , DURATION:30,

USE:EngineHoists(1))
Action(AddEngine2 , DURATION:60,

USE:EngineHoists(1))
Action(AddWheels1 , DURATION:30,

CONSUME:LugNuts(20), USE:WheelStations(1))
Action(AddWheels2 , DURATION:15,

CONSUME:LugNuts(20), USE:WheelStations(1))
Action(Inspect

i
, DURATION:10,

USE:Inspectors(1))

Figure 11.1 A job-shop scheduling problem for assembling two cars, withresource constraints. The
notationA≺B means that actionA must precede actionB.

28

29

Refinement(Go(Home,SFO),
STEPS: [Drive(Home,SFOLongTermParking),

Shuttle(SFOLongTermParking ,SFO)])
Refinement(Go(Home,SFO),

STEPS: [Taxi(Home,SFO)])

Refinement(Navigate([a, b], [x, y]),
PRECOND: a =x ∧ b= y
STEPS: [])

Refinement(Navigate([a, b], [x, y]),
PRECOND:Connected([a, b], [a− 1, b])
STEPS: [Left ,Navigate([a− 1, b], [x, y])])

Refinement(Navigate([a, b], [x, y]),
PRECOND:Connected([a, b], [a + 1, b])
STEPS: [Right ,Navigate([a + 1, b], [x, y])])

. . .

Figure 11.4 Definitions of possible refinements for two high-level actions: going to San Francisco
airport and navigating in the vacuum world. In the latter case, note the recursive nature of the refine-
ments and the use of preconditions.

function HIERARCHICAL-SEARCH(problem ,hierarchy) returns a solution, or failure

frontier← a FIFO queue with[Act] as the only element
loop do

if EMPTY?(frontier) then return failure
plan←POP(frontier) /* chooses the shallowest plan infrontier */
hla← the first HLA inplan, or null if none
prefix ,suffix← the action subsequences before and afterhla in plan

outcome←RESULT(problem .INITIAL -STATE, prefix)
if hla is null then /* so plan is primitive andoutcome is its result */

if outcome satisfiesproblem .GOAL then return plan

else for each sequence in REFINEMENTS(hla,outcome ,hierarchy) do
frontier← INSERT(APPEND(prefix ,sequence ,suffix), frontier)

Figure 11.5 A breadth-first implementation of hierarchical forward planning search. The initial plan
supplied to the algorithm is[Act]. The REFINEMENTSfunction returns a set of action sequences, one
for each refinement of the HLA whose preconditions are satisfied by the specified state,outcome .

30 Chapter 11. Planning and Acting in the Real World

function ANGELIC-SEARCH(problem ,hierarchy , initialPlan) returns solution orfail

frontier← a FIFO queue withinitialPlan as the only element
loop do

if EMPTY?(frontier) then return fail

plan←POP(frontier) /* chooses the shallowest node infrontier */
if REACH+(problem .INITIAL -STATE,plan) intersectsproblem .GOAL then

if plan is primitive then return plan /* REACH+ is exact for primitive plans */
guaranteed←REACH−(problem .INITIAL -STATE,plan) ∩ problem .GOAL

if guaranteed 6={ } and MAKING -PROGRESS(plan, initialPlan) then
finalState← any element ofguaranteed

return DECOMPOSE(hierarchy ,problem .INITIAL -STATE,plan,finalState)
hla← some HLA inplan

prefix ,suffix← the action subsequences before and afterhla in plan

for each sequence in REFINEMENTS(hla,outcome ,hierarchy) do
frontier← INSERT(APPEND(prefix ,sequence ,suffix), frontier)

function DECOMPOSE(hierarchy ,s0 ,plan,sf) returns a solution

solution← an empty plan
while plan is not emptydo

action←REMOVE-LAST(plan)
si← a state in REACH−(s0 ,plan) such thatsf∈REACH−(si ,action)
problem←a problem with INITIAL -STATE = si and GOAL = sf
solution←APPEND(ANGELIC-SEARCH(problem ,hierarchy ,action),solution)
sf ← si

return solution

Figure 11.8 A hierarchical planning algorithm that uses angelic semantics to identify and com-
mit to high-level plans that work while avoiding high-levelplans that don’t. The predicate
MAKING -PROGRESSchecks to make sure that we aren’t stuck in an infinite regression of refinements.
At top level, call ANGELIC-SEARCHwith [Act] as theinitialPlan.

Actors(A,B)
Init(At(A,LeftBaseline) ∧ At(B,RightNet) ∧

Approaching(Ball ,RightBaseline)) ∧ Partner (A, B) ∧ Partner (B, A)
Goal(Returned(Ball) ∧ (At(a,RightNet) ∨ At(a,LeftNet))
Action(Hit(actor ,Ball),

PRECOND:Approaching(Ball , loc) ∧ At(actor , loc)
EFFECT:Returned (Ball))

Action(Go(actor , to),
PRECOND:At(actor , loc) ∧ to 6= loc,
EFFECT:At(actor , to) ∧ ¬ At(actor , loc))

Figure 11.10 The doubles tennis problem. Two actorsA andB are playing together and can be in
one of four locations:LeftBaseline , RightBaseline , LeftNet , andRightNet . The ball can be returned
only if a player is in the right place. Note that each action must include the actor as an argument.

12 KNOWLEDGE
REPRESENTATION

31

13 QUANTIFYING
UNCERTAINTY

function DT-AGENT(percept) returns anaction

persistent: belief state , probabilistic beliefs about the current state of the world
action , the agent’s action

updatebelief state based onaction andpercept

calculate outcome probabilities for actions,
given action descriptions and currentbelief state

selectaction with highest expected utility
given probabilities of outcomes and utility information

return action

Figure 13.1 A decision-theoretic agent that selects rational actions.

32

14 PROBABILISTIC
REASONING

function ENUMERATION-ASK(X ,e,bn) returns a distribution overX
inputs: X , the query variable

e, observed values for variablesE
bn, a Bayes net with variables{X} ∪ E ∪ Y /* Y = hidden variables*/

Q(X)← a distribution overX , initially empty
for each valuexi of X do

Q(xi)← ENUMERATE-ALL(bn.VARS,exi
)

whereexi
is e extended withX = xi

return NORMALIZE(Q(X))

function ENUMERATE-ALL(vars ,e) returns a real number
if EMPTY?(vars) then return 1.0
Y ← FIRST(vars)
if Y has valuey in e

then return P (y | parents(Y)) × ENUMERATE-ALL(REST(vars),e)
else return

P

y P (y | parents(Y)) × ENUMERATE-ALL(REST(vars),ey)
whereey is e extended withY = y

Figure 14.9 The enumeration algorithm for answering queries on Bayesian networks.

function ELIMINATION -ASK(X ,e,bn) returns a distribution overX
inputs: X , the query variable

e, observed values for variablesE
bn, a Bayesian network specifying joint distributionP(X1, . . . , Xn)

factors← []
for each var in ORDER(bn.VARS) do

factors← [MAKE-FACTOR(var , e)|factors]
if var is a hidden variablethen factors←SUM-OUT(var , factors)

return NORMALIZE(POINTWISE-PRODUCT(factors))

Figure 14.10 The variable elimination algorithm for inference in Bayesian networks.

33

34 Chapter 14. Probabilistic Reasoning

function PRIOR-SAMPLE(bn) returns an event sampled from the prior specified bybn

inputs: bn, a Bayesian network specifying joint distributionP(X1, . . . , Xn)

x←an event withn elements
foreach variableXi in X1, . . . , Xn do

x[i]←a random sample fromP(Xi | parents(Xi))
return x

Figure 14.12 A sampling algorithm that generates events from a Bayesian network. Each variable
is sampled according to the conditional distribution giventhe values already sampled for the variable’s
parents.

function REJECTION-SAMPLING(X ,e,bn,N) returns an estimate ofP(X|e)
inputs: X , the query variable

e, observed values for variablesE
bn, a Bayesian network
N , the total number of samples to be generated

local variables: N, a vector of counts for each value ofX , initially zero

for j = 1 toN do
x←PRIOR-SAMPLE(bn)
if x is consistent withe then

N[x]←N[x]+1 wherex is the value ofX in x
return NORMALIZE(N)

Figure 14.13 The rejection-sampling algorithm for answering queries given evidence in a Bayesian
network.

35

function L IKELIHOOD-WEIGHTING(X ,e,bn,N) returns an estimate ofP(X|e)
inputs: X , the query variable

e, observed values for variablesE
bn, a Bayesian network specifying joint distributionP(X1, . . . , Xn)
N , the total number of samples to be generated

local variables: W, a vector of weighted counts for each value ofX , initially zero

for j = 1 toN do
x,w←WEIGHTED-SAMPLE(bn,e)
W[x]←W[x] + w wherex is the value ofX in x

return NORMALIZE(W)

function WEIGHTED-SAMPLE(bn,e) returns an event and a weight

w← 1; x← an event withn elements initialized frome
foreach variableXi in X1, . . . , Xn do

if Xi is an evidence variable with valuexi in e
then w←w × P (Xi = xi | parents(Xi))
else x[i]←a random sample fromP(Xi | parents(Xi))

return x, w

Figure 14.14 The likelihood-weighting algorithm for inference in Bayesian networks. In
WEIGHTED-SAMPLE, each nonevidence variable is sampled according to the conditional distribution
given the values already sampled for the variable’s parents, while a weight is accumulated based on the
likelihood for each evidence variable.

function GIBBS-ASK(X ,e,bn ,N) returns an estimate ofP(X|e)
local variables: N, a vector of counts for each value ofX , initially zero

Z, the nonevidence variables inbn
x, the current state of the network, initially copied frome

initialize x with random values for the variables inZ
for j = 1 toN do

for each Zi in Z do
set the value ofZi in x by sampling fromP(Zi|mb(Zi))
N[x]←N[x] + 1 wherex is the value ofX in x

return NORMALIZE(N)

Figure 14.15 The Gibbs sampling algorithm for approximate inference in Bayesian networks; this
version cycles through the variables, but choosing variables at random also works.

15 PROBABILISTIC
REASONING OVER TIME

function FORWARD-BACKWARD(ev,prior) returns a vector of probability distributions
inputs: ev, a vector of evidence values for steps1, . . . , t

prior , the prior distribution on the initial state,P(X0)
local variables: fv, a vector of forward messages for steps0, . . . , t

b, a representation of the backward message, initially all 1s
sv, a vector of smoothed estimates for steps1, . . . , t

fv[0]← prior

for i = 1 to t do
fv[i]← FORWARD(fv[i− 1], ev[i])

for i = t downto 1 do
sv[i]←NORMALIZE(fv[i]× b)
b← BACKWARD(b, ev[i])

return sv

Figure 15.4 The forward–backward algorithm for smoothing: computing posterior probabilities of
a sequence of states given a sequence of observations. The FORWARD and BACKWARD operators are
defined by Equations (??) and (??), respectively.

36

37

function FIXED-LAG-SMOOTHING(et,hmm,d) returns a distribution overXt−d

inputs: et, the current evidence for time stept
hmm, a hidden Markov model withS× S transition matrixT
d , the length of the lag for smoothing

persistent: t , the current time, initially 1
f, the forward messageP(Xt|e1:t), initially hmm.PRIOR

B, thed-step backward transformation matrix, initially the identity matrix
et−d:t, double-ended list of evidence fromt− d to t, initially empty

local variables: Ot−d, Ot, diagonal matrices containing the sensor model information

addet to the end ofet−d:t

Ot← diagonal matrix containingP(et|Xt)
if t > d then

f← FORWARD(f, et)
removeet−d−1 from the beginning ofet−d:t

Ot−d← diagonal matrix containingP(et−d|Xt−d)
B←O−1

t−dT−1BTOt

else B←BTOt

t← t + 1
if t > d then return NORMALIZE(f × B1) else return null

Figure 15.6 An algorithm for smoothing with a fixed time lag ofd steps, implemented as an online
algorithm that outputs the new smoothed estimate given the observation for a new time step. Notice
that the final output NORMALIZE(f×B1) is justα f× b, by Equation (??).

function PARTICLE-FILTERING(e,N ,dbn) returns a set of samples for the next time step
inputs: e, the new incoming evidence

N , the number of samples to be maintained
dbn, a DBN with priorP(X0), transition modelP(X1|X0), sensor modelP(E1|X1)

persistent: S , a vector of samples of sizeN , initially generated fromP(X0)
local variables: W , a vector of weights of sizeN

for i = 1 toN do
S [i]← sample fromP(X1 | X0 = S [i]) /* step 1 */
W [i]←P(e | X1 = S[i]) /* step 2 */

S←WEIGHTED-SAMPLE-WITH-REPLACEMENT(N ,S ,W) /* step 3 */
return S

Figure 15.17 The particle filtering algorithm implemented as a recursiveupdate operation with state
(the set of samples). Each of the sampling operations involves sampling the relevant slice variables
in topological order, much as in PRIOR-SAMPLE. The WEIGHTED-SAMPLE-WITH-REPLACEMENT

operation can be implemented to run inO(N) expected time. The step numbers refer to the description
in the text.

16 MAKING SIMPLE
DECISIONS

function INFORMATION-GATHERING-AGENT(percept) returns anaction

persistent: D , a decision network

integratepercept into D

j ← the value that maximizesVPI (Ej) / Cost(Ej)
if VPI (Ej) > Cost(Ej)

return REQUEST(Ej)
else return the best action fromD

Figure 16.9 Design of a simple information-gathering agent. The agent works by repeatedly select-
ing the observation with the highest information value, until the cost of the next observation is greater
than its expected benefit.

38

17 MAKING COMPLEX
DECISIONS

function VALUE -ITERATION(mdp,ǫ) returns a utility function
inputs: mdp, an MDP with statesS , actionsA(s), transition modelP (s′ | s, a),

rewardsR(s), discountγ
ǫ, the maximum error allowed in the utility of any state

local variables: U , U ′, vectors of utilities for states inS , initially zero
δ, the maximum change in the utility of any state in an iteration

repeat
U ←U ′; δ← 0
for each states in S do

U ′[s]←R(s) + γ max
a ∈ A(s)

X

s′

P (s′ | s, a) U [s′]

if |U ′[s] − U [s]| > δ then δ←|U ′[s] − U [s]|
until δ < ǫ(1− γ)/γ
return U

Figure 17.4 The value iteration algorithm for calculating utilities ofstates. The termination condi-
tion is from Equation (??).

39

40 Chapter 17. Making Complex Decisions

function POLICY-ITERATION(mdp) returns a policy
inputs: mdp, an MDP with statesS , actionsA(s), transition modelP (s′ | s, a)
local variables: U , a vector of utilities for states inS , initially zero

π, a policy vector indexed by state, initially random

repeat
U ← POLICY-EVALUATION (π,U ,mdp)
unchanged?← true
for each states in S do

if max
a∈ A(s)

X

s′

P (s′ | s, a) U [s′] >
X

s′

P (s′ | s, π[s]) U [s′] then do

π[s]← argmax
a∈ A(s)

X

s′

P (s′ | s, a) U [s′]

unchanged?← false
until unchanged?
return π

Figure 17.7 The policy iteration algorithm for calculating an optimal policy.

function POMDP-VALUE -ITERATION(pomdp,ǫ) returns a utility function
inputs: pomdp, a POMDP with statesS , actionsA(s), transition modelP (s′ | s, a),

sensor modelP (e | s), rewardsR(s), discountγ
ǫ, the maximum error allowed in the utility of any state

local variables: U , U ′, sets of plansp with associated utility vectorsαp

U ′←a set containing just the empty plan[], with α[](s)= R(s)
repeat

U ←U ′

U ′← the set of all plans consisting of an action and, for each possible next percept,
a plan inU with utility vectors computed according to Equation (??)

U ′←REMOVE-DOMINATED-PLANS(U ′)
until MAX -DIFFERENCE(U ,U ′) < ǫ(1− γ)/γ
return U

Figure 17.9 A high-level sketch of the value iteration algorithm for POMDPs. The
REMOVE-DOMINATED-PLANS step and MAX -DIFFERENCEtest are typically implemented as linear
programs.

18 LEARNING FROM
EXAMPLES

function DECISION-TREE-LEARNING(examples ,attributes ,parent examples) returns a
tree

if examples is emptythen return PLURALITY -VALUE(parent examples)
else if all examples have the same classificationthen return the classification
else if attributes is emptythen return PLURALITY -VALUE(examples)
else

A← argmaxa ∈ attributes IMPORTANCE(a, examples)
tree←a new decision tree with root testA

for each valuevk of A do
exs←{e : e∈ examples and e.A = vk}
subtree←DECISION-TREE-LEARNING(exs ,attributes −A,examples)
add a branch totree with label(A = vk) and subtreesubtree

return tree

Figure 18.4 The decision-tree learning algorithm. The function IMPORTANCE is described in Sec-
tion ??. The function PLURALITY -VALUE selects the most common output value among a set of
examples, breaking ties randomly.

41

42 Chapter 18. Learning from Examples

function CROSS-VALIDATION -WRAPPER(Learner ,k ,examples) returns a hypothesis

local variables: errT , an array, indexed bysize, storing training-set error rates
errV , an array, indexed bysize, storing validation-set error rates

for size = 1 to∞ do
errT [size], errV [size]←CROSS-VALIDATION (Learner , size, k , examples)
if errT has convergedthen do

best size← the value ofsize with minimumerrV [size]
return Learner (best size , examples)

function CROSS-VALIDATION (Learner ,size,k ,examples) returns two values:
average training set error rate, average validation set error rate

fold errT ← 0; fold errV ← 0
for fold = 1 to k do

training set ,validation set← PARTITION(examples , fold ,k)
h←Learner (size, training set)
fold errT ← fold errT + ERROR-RATE(h, training set)
fold errV ← fold errV +ERROR-RATE(h,validation set)

return fold errT /k , fold errV /k

Figure 18.7 An algorithm to select the model that has the lowest error rate on validation data by
building models of increasing complexity, and choosing theone with best empirical error rate on val-
idation data. HereerrT means error rate on the training data, anderrV means error rate on the
validation data.Learner (size, examples) returns a hypothesis whose complexity is set by the parame-
ter size, and which is trained on theexamples . PARTITION(examples, fold, k) splitsexamplesinto two
subsets: a validation set of sizeN/k and a training set with all the other examples. The split is different
for each value offold.

function DECISION-L IST-LEARNING(examples) returns a decision list, orfailure

if examples is emptythen return the trivial decision listNo

t← a test that matches a nonempty subsetexamplest of examples

such that the members ofexamples t are all positive or all negative
if there is no sucht then return failure

if the examples inexamples t are positivethen o←Yes else o←No

return a decision list with initial testt and outcomeo and remaining tests given by
DECISION-L IST-LEARNING(examples − examplest)

Figure 18.10 An algorithm for learning decision lists.

43

function BACK-PROP-LEARNING(examples ,network) returns a neural network
inputs: examples , a set of examples, each with input vectorx and output vectory

network , a multilayer network withL layers, weightswi,j , activation functiong
local variables: ∆, a vector of errors, indexed by network node

repeat
for each weightwi,j in network do

wi,j← a small random number
for each example(x, y) in examples do

/* Propagate the inputs forward to compute the outputs*/
for each nodei in the input layerdo

ai← xi

for ℓ = 2 to L do
for each nodej in layerℓ do

inj←
P

i wi,j ai

aj← g(inj)
/* Propagate deltas backward from output layer to input layer*/
for each nodej in the output layerdo

∆[j]← g ′(inj) × (yj − aj)
for ℓ = L− 1 to 1 do

for each nodei in layerℓ do
∆[i]← g ′(ini)

P

j wi,j ∆[j]
/* Update every weight in network using deltas*/
for each weightwi,j in network do

wi,j←wi,j + α × ai × ∆[j]
until some stopping criterion is satisfied
return network

Figure 18.23 The back-propagation algorithm for learning in multilayernetworks.

44 Chapter 18. Learning from Examples

function ADABOOST(examples ,L,K) returns a weighted-majority hypothesis
inputs: examples , set ofN labeled examples(x1, y1), . . . , (xN , yN)

L, a learning algorithm
K , the number of hypotheses in the ensemble

local variables: w, a vector ofN example weights, initially1/N
h, a vector ofK hypotheses
z, a vector ofK hypothesis weights

for k = 1 to K do
h[k]←L(examples ,w)
error← 0
for j = 1 to N do

if h[k](xj) 6= yj then error← error + w[j]
for j = 1 to N do

if h[k](xj) = yj then w[j]←w[j] · error/(1− error)
w←NORMALIZE(w)
z[k]← log (1− error)/error

return WEIGHTED-MAJORITY(h,z)

Figure 18.33 The ADABOOST variant of the boosting method for ensemble learning. The al-
gorithm generates hypotheses by successively reweightingthe training examples. The function
WEIGHTED-MAJORITY generates a hypothesis that returns the output value with the highest vote from
the hypotheses inh, with votes weighted byz.

19 KNOWLEDGE IN
LEARNING

function CURRENT-BEST-LEARNING(examples ,h) returns a hypothesis or fail

if examples is emptythen
return h

e← FIRST(examples)
if e is consistent withh then

return CURRENT-BEST-LEARNING(REST(examples), h)
else if e is a false positive forh then

for each h ′ in specializations ofh consistent withexamples seen so fardo
h ′′←CURRENT-BEST-LEARNING(REST(examples), h ′)
if h ′′ 6= fail then return h ′′

else if e is a false negative forh then
for each h ′ in generalizations ofh consistent withexamples seen so fardo

h ′′←CURRENT-BEST-LEARNING(REST(examples), h ′)
if h ′′ 6= fail then return h ′′

return fail

Figure 19.2 The current-best-hypothesis learning algorithm. It searches for a consistent hypothesis
that fits all the examples and backtracks when no consistent specialization/generalization can be found.
To start the algorithm, any hypothesis can be passed in; it will be specialized or gneralized as needed.

45

46 Chapter 19. Knowledge in Learning

function VERSION-SPACE-LEARNING(examples) returns a version space
local variables: V , the version space: the set of all hypotheses

V ← the set of all hypotheses
for each examplee in examples do

if V is not emptythen V ← VERSION-SPACE-UPDATE(V ,e)
return V

function VERSION-SPACE-UPDATE(V ,e) returns an updated version space

V ←{h∈V : h is consistent withe}

Figure 19.3 The version space learning algorithm. It finds a subset ofV that is consistent with all
theexamples .

function M INIMAL -CONSISTENT-DET(E ,A) returns a set of attributes
inputs: E , a set of examples

A, a set of attributes, of sizen

for i = 0 to n do
for each subsetAi of A of sizei do

if CONSISTENT-DET?(Ai,E) then return Ai

function CONSISTENT-DET?(A,E) returns a truth value
inputs: A, a set of attributes

E , a set of examples
local variables: H , a hash table

for each examplee in E do
if some example inH has the same values ase for the attributesA

but a different classificationthen return false

store the class ofe in H , indexed by the values for attributesA of the examplee
return true

Figure 19.8 An algorithm for finding a minimal consistent determination.

47

function FOIL(examples , target) returns a set of Horn clauses
inputs: examples , set of examples

target , a literal for the goal predicate
local variables: clauses , set of clauses, initially empty

while examples contains positive examplesdo
clause←NEW-CLAUSE(examples , target)
remove positive examples covered byclause from examples

addclause to clauses

return clauses

function NEW-CLAUSE(examples , target) returns a Horn clause
local variables: clause , a clause withtarget as head and an empty body

l , a literal to be added to the clause
extended examples , a set of examples with values for new variables

extended examples← examples

while extended examples contains negative examplesdo
l←CHOOSE-L ITERAL(NEW-L ITERALS(clause),extended examples)
appendl to the body ofclause
extended examples← set of examples created by applying EXTEND-EXAMPLE

to each example inextended examples

return clause

function EXTEND-EXAMPLE(example , literal) returns a set of examples
if example satisfiesliteral

then return the set of examples created by extendingexample with
each possible constant value for each new variable inliteral

else return the empty set

Figure 19.12 Sketch of the FOIL algorithm for learning sets of first-order Horn clauses fromexam-
ples. NEW-L ITERALS and CHOOSE-L ITERAL are explained in the text.

20 LEARNING
PROBABILISTIC MODELS

48

21 REINFORCEMENT
LEARNING

function PASSIVE-ADP-AGENT(percept) returns an action
inputs: percept , a percept indicating the current states ′ and reward signalr ′

persistent: π, a fixed policy
mdp, an MDP with modelP , rewardsR, discountγ
U , a table of utilities, initially empty
Nsa , a table of frequencies for state–action pairs, initially zero
Ns′|sa , a table of outcome frequencies given state–action pairs, initially zero
s, a, the previous state and action, initially null

if s ′ is newthen U [s ′]← r ′; R[s ′]← r ′

if s is not nullthen
incrementNsa [s,a] andNs′|sa [s ′,s,a]
for each t such thatNs′|sa [t ,s,a] is nonzerodo

P (t | s, a)←Ns′|sa [t ,s,a] / Nsa [s,a]
U ← POLICY-EVALUATION (π,U ,mdp)
if s ′.TERMINAL ? then s,a←null else s,a← s ′,π[s ′]
return a

Figure 21.2 A passive reinforcement learning agent based on adaptive dynamic programming. The
POLICY-EVALUATION function solves the fixed-policy Bellman equations, as described on page??.

49

50 Chapter 21. Reinforcement Learning

function PASSIVE-TD-AGENT(percept) returns an action
inputs: percept , a percept indicating the current states ′ and reward signalr ′

persistent: π, a fixed policy
U , a table of utilities, initially empty
Ns, a table of frequencies for states, initially zero
s, a, r , the previous state, action, and reward, initially null

if s ′ is newthen U [s ′]← r ′

if s is not nullthen
incrementN s[s]
U [s]←U [s] + α(Ns[s])(r + γ U [s ′] − U [s])

if s ′.TERMINAL ? then s,a,r←null else s,a,r← s ′,π[s ′],r ′

return a

Figure 21.4 A passive reinforcement learning agent that learns utilityestimates using temporal dif-
ferences. The step-size functionα(n) is chosen to ensure convergence, as described in the text.

function Q-LEARNING-AGENT(percept) returns an action
inputs: percept , a percept indicating the current states ′ and reward signalr ′

persistent: Q , a table of action values indexed by state and action, initially zero
Nsa , a table of frequencies for state–action pairs, initially zero
s, a, r , the previous state, action, and reward, initially null

if TERMINAL ?(s) then Q [s,None]← r ′

if s is not nullthen
incrementNsa [s,a]
Q [s,a]←Q [s,a] + α(Nsa [s, a])(r + γ maxa′ Q [s′,a ′] − Q [s,a])

s,a,r← s ′,argmaxa′ f(Q [s ′, a ′], Nsa [s ′, a′]),r ′

return a

Figure 21.8 An exploratory Q-learning agent. It is an active learner that learns the valueQ(s, a) of
each action in each situation. It uses the same exploration functionf as the exploratory ADP agent,
but avoids having to learn the transition model because the Q-value of a state can be related directly to
those of its neighbors.

22 NATURAL LANGUAGE
PROCESSING

function HITS(query) returns pages with hub and authority numbers

pages←EXPAND-PAGES(RELEVANT-PAGES(query))
for each p in pages do

p.AUTHORITY←1
p.HUB←1

repeat until convergencedo
for each p in pages do

p.AUTHORITY←
P

i INLINK i(p).HUB

p.HUB←
P

i OUTLINK i(p).AUTHORITY

NORMALIZE(pages)
return pages

Figure 22.1 The HITS algorithm for computing hubs and authorities with respect to a query.
RELEVANT-PAGES fetches the pages that match the query, and EXPAND-PAGES adds in every page
that links to or is linked from one of the relevant pages. NORMALIZE divides each page’s score by the
sum of the squares of all pages’ scores (separately for both the authority and hubs scores).

51

23 NATURAL LANGUAGE
FOR COMMUNICATION

function CYK-PARSE(words ,grammar) returns P , a table of probabilities

N ← LENGTH(words)
M ← the number of nonterminal symbols ingrammar

P← an array of size [M , N , N], initially all 0
/* Insert lexical rules for each word*/
for i = 1 to N do

for each rule of form (X → wordsi [p]) do
P [X , i , 1]← p

/* Combine first and second parts of right-hand sides of rules, from short to long*/
for length = 2 to N do

for start = 1 to N − length + 1 do
for len1 = 1 to N − 1 do

len2← length − len1

for each rule of the form (X → Y Z [p]) do
P [X , start , length]←MAX(P [X , start , length],

P [Y , start , len1] × P [Z , start + len1 , len2] × p)
return P

Figure 23.4 The CYK algorithm for parsing. Given a sequence of words, it finds the most probable
derivation for the whole sequence and for each subsequence.It returns the whole table,P , in which
an entryP [X , start , len] is the probability of the most probableX of lengthlen starting at position
start . If there is noX of that size at that location, the probability is 0.

52

53

[[S [NP-SBJ-2 Her eyes]
[VP were

[VP glazed
[NP *-2]
[SBAR-ADV as if

[S [NP-SBJ she]
[VP did n’t

[VP [VP hear [NP *-1]]
or
[VP [ADVP even] see [NP *-1]]
[NP-1 him]]]]]]]]

.]

Figure 23.5 Annotated tree for the sentence “Her eyes were glazed as if she didn’t hear or even
see him.” from the Penn Treebank. Note that in this grammar there is a distinction between an object
noun phrase (NP) and a subject noun phrase (NP-SBJ). Note also a grammatical phenomenon we have
not covered yet: the movement of a phrase from one part of the tree to another. This tree analyzes
the phrase “hear or even see him” as consisting of two constituentVPs, [VP hear [NP *-1]] and [VP
[ADVP even] see [NP *-1]], both of which have a missing object, denoted *-1, which refers to theNP

labeled elsewhere in the tree as [NP-1 him].

24 PERCEPTION

54

25 ROBOTICS

function MONTE-CARLO-LOCALIZATION(a, z , N , P (X ′|X, v, ω), P (z|z∗), m) returns
a set of samples for the next time step

inputs: a, robot velocitiesv andω
z, range scanz1, . . . , zM

P (X ′|X, v, ω), motion model
P (z|z∗), range sensor noise model
m, 2D map of the environment

persistent: S, a vector of samples of sizeN
local variables: W , a vector of weights of sizeN

S′, a temporary vector of particles of sizeN
W ′, a vector of weights of sizeN

if S is emptythen /* initialization phase */
for i = 1 to N do

S[i]← sample fromP (X0)
for i = 1 to N do /* update cycle */

S′[i]← sample fromP (X ′|X = S[i], v, ω)
W ′[i]←1
for j = 1 to M do

z∗←RAY CAST(j, X = S′[i], m)
W ′[i]←W ′[i] · P (zj | z

∗)
S←WEIGHTED-SAMPLE-WITH-REPLACEMENT(N ,S ′,W ′)

return S

Figure 25.9 A Monte Carlo localization algorithm using a range-scan sensor model with indepen-
dent noise.

55

26 PHILOSOPHICAL
FOUNDATIONS

56

27 AI: THE PRESENT AND
FUTURE

57

28 MATHEMATICAL
BACKGROUND

58

29 NOTES ON LANGUAGES
AND ALGORITHMS

generator POWERS-OF-2() yields ints
i← 1
while true do

yield i

i← 2 × i

for p in POWERS-OF-2() do
PRINT(p)

Figure 29.1 Example of a generator function and its invocation within a loop.

59

