Artificial Intelligence

CS482, CS682, MW 1 – 2:15, SEM 201, MS 227
Prerequisites: 302, 365
Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil
Three colour problem

Neighboring regions cannot have the same color
Colors = \{red, blue, green\}
Consider using a local search

<table>
<thead>
<tr>
<th>WA</th>
<th>NT</th>
<th>NSW</th>
<th>Queen</th>
<th>Victoria</th>
<th>SA</th>
<th>Tas</th>
</tr>
</thead>
<tbody>
<tr>
<td>{r, g, b}</td>
</tr>
</tbody>
</table>

- 3 to the power 7 possible states = 2187
- But not all states are legal
- For example: \{r, r, r, r, r, r, r\} is NOT legal because it violates our constraint

- Suppose we do sequential assignment of values to variables
- Assign r (say) to WA then we can immediately reduce the number of possible values for NT and SA to be \{g, b\}, and if we chose NT = \{g\}, then SA has to be \{b\}.
Propagation of constraints

Figure 6.1 FILES: figures/australia.eps (Tue Nov 3 16:22:26 2009) figures/australia-csp.eps (Tue Nov 3 16:22:25 2009). (a) The principal states and territories of Australia. Coloring this map can be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each region so that no neighboring regions have the same color. (b) The map-coloring problem represented as a constraint graph.
Wouldn’t it be nice to have a constraint propagation algorithm?

```plaintext
function AC-3(csp) returns false if an inconsistency is found and true otherwise
   inputs: csp, a binary CSP with components (X, D, C)
   local variables: queue, a queue of arcs, initially all the arcs in csp
   while queue is not empty do
      (X_i, X_j) ← REMOVE-FIRST(queue)
      if REVISE(csp, X_i, X_j) then
         if size of D_i = 0 then return false
         for each X_k in X_i.NEIGHBORS - {X_j} do
            add (X_k, X_i) to queue
      return true

function REVISE(csp, X_i, X_j) returns true iff we revise the domain of X_i
   revised ← false
   for each x in D_i do
      if no value y in D_j allows (x,y) to satisfy the constraint between X_i and X_j then
         delete x from D_i
         revised ← true
   return revised
```

Figure 6.3 The arc-consistency algorithm AC-3. After applying AC-3, either every arc is arc-consistent, or some variable has an empty domain, indicating that the CSP cannot be solved. The name “AC-3” was used by the algorithm’s inventor (?) because it’s the third version developed in the paper.
Properties

- Node consistency (unary)
- Arc consistency (binary)
 - Network arc consistency (all arcs are consistent)
- ACS3 is the most popular arc consistency algorithm
 - Fails quickly if no consistent set of values found
- Start:
 - Considers all pairs of arcs
 - If making an arc \((x_i, x_j) \) consistent causes domain reduction
 - Add all neighboring arcs that go to \(x_i \) to set of arcs to be considered
 - Success leaves a much smaller search space for search
 - Domains will have been reduced
 - Suppose \(n \) variables, max domain size is \(d \), then complexity is \(O(cd^3) \) where \(c \) is number of binary constraints
More constraint types and approaches

- Path (triples)
- Global constraints (n variables)
 - Special purpose algorithms (heuristics)
 - AllDiff constraints (Sudoku)
 - Remove any variable with singleton domain
 - Remove that value from the domains of all other variables
 - Repeat
 - While
 - Singletons values remain
 - No domains are empty
 - Not more variables than domain values
- Resource constraints (Ex: Atmost 100)
- Bounds and bounds propagation
Search

- Constraints have been met and propagated
- But the problem still remains to be solved (multiple values in domains)
 - Search through remaining assignments
- For CSPs **Backtracking search** is good
 - Choose a value for variable, \(x \)
 - Choose a subsequent legal value for next variable, \(y \)
 - Backtrack to \(x \) if no legal value found for \(y \)
Figure 6.6 FILES: figures/australia-search.eps (Tue Nov 3 16:22:25 2009). Part of the search tree for the map-coloring problem in Figure 6.1.
figure 6.5 A simple backtracking algorithm for constraint satisfaction problems. The algorithm is modeled on the recursive depth-first search of Chapter ???. By varying the functions SELECT-UNASSIGNED-VARIABLE and ORDER-DOMAIN-VALUES, we can implement the general-purpose heuristics discussed in the text. The function INERENCE can optionally be used to impose arc-, path-, or k-consistency, as desired. If a value choice leads to failure (noticed either by INERENCE or by BACKTRACK), then value assignments (including those made by INERENCE) are removed from the current assignment and a new value is tried.
CSP heuristics

• For all CSPs
• Depends on the answer to the following:
 • Which var should be assigned next, and what order should it be assigned a value from the set of values available?
 • What inference should be performed at each step of search?
 • When the search arrives at an assignment that violates a constraint, can the search avoid repeating this failure?
Variable and value ordering

- Choosing which variable:
 - Minimum Remaining Value (MRV) heuristic aka fail-fast
 - Choose the variable with the fewest remaining “legal” values
 - Degree heuristic
 - Choose variable that is involved in the largest number of constraints

- Choosing which value:
 - Least constraining value (fail-last)
Interleaving search & inference

- AC-3 infers reductions in set of possible values before search
- Inference is also powerful during search
- Consider backtracking search + Forward checking
 - FC: After X assigned,
 - For each unassigned var Y that is connected to X, delete any values from Y’s domain that is inconsistent with the value chosen for X
 - After WA = red
 - Forward check
 - After Q = green
 - Forward check
 - NT = {blue}, SA = {blue}
 - V = {blue} \implies SA = {}
 - Backtrack because there is no assignment for SA
Inference + search

- Backtracking + AC3 = Maintaining Arc Consistency (MAC algorithm)
 - Fails faster than Backtracking + forward checking

<table>
<thead>
<tr>
<th>Initial domains</th>
<th>WA</th>
<th>NT</th>
<th>Q</th>
<th>NSW</th>
<th>V</th>
<th>SA</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>G</td>
<td>B</td>
<td>R</td>
<td>G</td>
<td>B</td>
<td>R</td>
</tr>
<tr>
<td>After WA=red</td>
<td>R</td>
<td>G</td>
<td>B</td>
<td>R</td>
<td>G</td>
<td>B</td>
<td>R</td>
</tr>
<tr>
<td>After Q=green</td>
<td>R</td>
<td>B</td>
<td>G</td>
<td>R</td>
<td></td>
<td>B</td>
<td>R</td>
</tr>
<tr>
<td>After V=blue</td>
<td>R</td>
<td>B</td>
<td>G</td>
<td>R</td>
<td></td>
<td>G</td>
<td>R</td>
</tr>
</tbody>
</table>

Figure 6.7 FILES: figures/australia-fc.eps (Tue Nov 3 16:22:25 2009). The progress of a map-coloring search with forward checking. WA = red is assigned first; then forward checking deletes red from the domains of the neighboring variables NT and SA. After Q = green is assigned, green is deleted from the domains of NT, SA, and NSW. After V = blue is assigned, blue is deleted from the domains of NSW and SA, leaving SA with no legal values.
Heuristic backtracking

- Q = red, NSW = green, V = blue, T = red, SA =？
 - Every value of SA violates a constraint
 - Should we backtrack to T = red?
 - But T = red does not have anything to do with SA
- Carry around a **conflict set**, a set of prior assignments that affects SA
- \{Q=red, NSW=green, V = blue\} == conflict set for SA
- FC may specify a conflict set!
- **Conflict set**
 - tells us not to backtrack to T
 - instead to V
- **Back Jumping** algorithm
Conflict-directed back jumping

- Not that simple:
- Consider \{WA = red, NSW = red\}
 - Is this possible?
 - Now, assign to T,
 - then to NT, Q, V, SA
 - Because of earlier inconsistency
 - No possible assignment
 - So we backtrack to NT
 - Try other values and still fail!
 - NT’s conflict set \{WA\} is not complete

- FC does not always provide enough information
- Consider:
 - SA fails and SA’s conflict set is (say) \{WA, NSW, NT, Q\}
 - We backtrack to Q and Q absorbs SA’s conflict set – Q
 - Q’s conflict set = \{NT, NSW\} (we haven’t seen SA yet)
 - SAcs Union Qcs - Q = \{WA, NT, NSW\} → no solution forward from Q given Qcs
 - Backtrack to NT which absorbs \{WA, NT, NSW\} – \{NT\} = \{WA, NSW\}
 - Back jump to NSW
Constraint learning

• Can we learn sets of variable assignments that lead to conflicts?
 • **NO GOOD** == \{min set of variable and their values in a conflict set that lead to contradiction\}
Local search for CSPs

```plaintext
function MIN-CONFLICTS(csp, max_steps) returns a solution or failure

inputs: csp, a constraint satisfaction problem
         max_steps, the number of steps allowed before giving up

current ← an initial complete assignment for csp
for i = 1 to max_steps do
    if current is a solution for csp then return current
    var ← a randomly chosen conflicted variable from csp.VARIABLES
    value ← the value v for var that minimizes CONFLICTS(var, v, current, csp)
    set var = value in current
return failure
```

Figure 6.8 The MIN-CONFLICTS algorithm for solving CSPs by local search. The initial state may be chosen randomly or by a greedy assignment process that chooses a minimal-conflict value for each variable in turn. The CONFLICTS function counts the number of constraints violated by a particular value, given the rest of the current assignment.
CSP problem structure

• Independent sub-problems
 • Very nice
• Tree structure (any two variables are only connected by one path)
 • Linear time! $O(nd^2)$
• Can we convert a constraint graph to a tree structure?
 • 1. Removing nodes (delete SA!)
 • By assigning a value to SA and removing that value from all other nodes’ domains
 • In general, find a cycle cutset, and return cutset’s assignment and remaining tree CSP
 • $d^c * (n-c)d^2$
Removing nodes

Figure 6.12 FILES: figures/australia-csp.eps (Tue Nov 3 16:22:25 2009) figures/australia-tree.eps (Tue Nov 3 16:22:26 2009). (a) The original constraint graph from Figure 6.1. (b) The constraint graph after the removal of SA.
Collapsing nodes

- Tree decomposition of constraint graph into a set of connected sub-problems.
 - Great if *tree width* of Constraint Graph is small
 - But
 - Many possible decompositions
CSP Puzzle

- In five houses, each with a different color, live five persons of different nationalities, each of whom prefer a different brand of candy, a different drink, and a different pet.
- Where does the zebra live?
- Which house do they drink water?

- What are possible representations of this CSP problem?
- Which is best?

- The Englishman lives in the red house
- The Spaniard owns the dog
- The Norwegian lives in the first house on the left
- The green house is immediately to the right of the ivory house
- The man who eats Hershey bars lives in the house next to the man with the fox
- Kits Kats are eaten in the yellow house
- The Norwegian lives next to the blue house
- The Smarties eater owns snails
- The Snickers eater drinks OJ
- The Ukrainian drinks tea
- The Japanese eats Milky Ways
- Kit Kats are eaten in a house next to the house where the horse is kep
- Coffee is drunk in the green house
- Milk is drunk in the middle house
Logical Agents

A grid diagram showing a sequence of states and actions:

- Starting state (START) at row 1, column 1.
- Moving to row 2, column 2 with "Breeze" and "Stench".
- At row 3, column 2, "Gold" with "Stench".
- Progressing to row 4, column 3 with "PIT".
- Finally, reaching row 4, column 4 with "PIT" and "Breeze".