Artificial Intelligence

CS482, CS682, MW 1 – 2:15, SEM 201, MS 227

Prerequisites: 302, 365

Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil

Three colour problem

Figure 6.1 FILES: figures/australia.eps (Tue Nov 3 16:22:26 2009) figures/australia-csp.eps (Tue Nov 3 16:22:25 2009). (a) The principal states and territories of Australia. Coloring this map can be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each region so that no neighboring regions have the same color. (b) The map-coloring problem represented as a constraint graph.

Neighboring regions cannot have the same color Colors = {red, blue, green}

Consider using a local search

- 3 to the power 7 possible states = 2187
- But not all states are legal
- For example: {r, r, r, r, r, r} is NOT legal because it violates our constraint
- Suppose we do sequential assignment of values to variables
- Assign r (say) to WA then we can immediately reduce the number of possible values for NT and SA to be {g, b}, and if we chose NT = {g}, then SA has to be {b}.

Propagation of constraints

Figure 6.1 FILES: figures/australia.eps (Tue Nov 3 16:22:26 2009) figures/australia-csp.eps (Tue Nov 3 16:22:25 2009). (a) The principal states and territories of Australia. Coloring this map can be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each region so that no neighboring regions have the same color. (b) The map-coloring problem represented as a constraint graph.

Wouldn't it be nice to have a constraint propagation algorithm?

```
function AC-3(csp) returns false if an inconsistency is found and true otherwise
inputs: csp, a binary CSP with components (X, D, C)
local variables: queue, a queue of arcs, initially all the arcs in csp
```

```
while queue is not empty do

(X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)

if \text{REVISE}(csp, X_i, X_j) then

if size of D_i = 0 then return false

for each X_k in X_i.NEIGHBORS - \{X_j\} do

add (X_k, X_i) to queue

return true
```

```
function REVISE(csp, X_i, X_j) returns true iff we revise the domain of X_i

revised \leftarrow false

for each x in D_i do

if no value y in D_j allows (x, y) to satisfy the constraint between X_i and X_j then

delete x from D_i

revised \leftarrow true

return revised
```

Figure 6.3 The arc-consistency algorithm AC-3. After applying AC-3, either every arc is arcconsistent, or some variable has an empty domain, indicating that the CSP cannot be solved. The name "AC-3" was used by the algorithm's inventor (?) because it's the third version developed in the paper.

Properties

- Node consistency (unary)
- Arc consistency (binary)
 - Network arc consistency (all arcs are consistent)
- ACS3 is the most popular arc consistency algorithm
 - Fails quickly if no consistent set of values found
 - Start:
 - Considers all pairs of arcs
 - If making an arc (xi, xj) consistent causes domain reduction
 - Add all neighboring arcs that go to xi to set of arcs to be considered
 - Success leaves a much smaller search space for search
 - Domains will have been reduced
 - Suppose n variables, max domain size is d, then complexity is O(cd^3) where c is number of binary constraints

More constraint types and approache

- Path (triples)
- Global constraints (n variables)
 - Special purpose algorithms (heuristics)
 - Alldiff constraints (Sudoku)
 - Remove any variable with singleton domain
 - Remove that value from the domains of all other variables
 - Repeat
 - While
 - singletons values remain
 - No domains are empty
 - Not more variables than domain values
- Resource constraints (Ex: Atmost 100)
- Bounds and bounds propagation

Search

- Constraints have been met and propagated
- But the problem still remains to be solved (multiple values in domains)
 - Search through remaining assignments
- For CSPs **Backtracking search** is good
 - Choose a value for variable, x
 - Choose a subsequent legal value for next variable, y
 - Backtrack to x if no legal value found for y

Australia coloring

Backtracking search algorithm

function BACKTRACKING-SEARCH(csp) returns a solution, or failure
return BACKTRACK({ }, csp)

```
function BACKTRACK(assignment, csp) returns a solution, or failure

if assignment is complete then return assignment

var \leftarrow SELECT-UNASSIGNED-VARIABLE(csp)

for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment then

add {var = value} to assignment

inferences \leftarrow INFERENCE(csp, var, value)

if inferences \neq failure then

add inferences to assignment

result \leftarrow BACKTRACK(assignment, csp)

if result \neq failure then

return result

remove {var = value} and inferences from assignment

return failure
```

Figure 6.5 A simple backtracking algorithm for constraint satisfaction problems. The algorithm is modeled on the recursive depth-first search of Chapter ??. By varying the functions SELECT-UNASSIGNED-VARIABLE and ORDER-DOMAIN-VALUES, we can implement the general-purpose heuristics discussed in the text. The function INFERENCE can optionally be used to impose arc-, path-, or *k*-consistency, as desired. If a value choice leads to failure (noticed either by INFERENCE or by BACKTRACK), then value assignments (including those made by INFERENCE) are removed from the current assignment and a new value is tried.

CSP heuristics

- For all CSPs
- Depends on the answer to the following:
 - Which var should be assigned next, and what order should it be assigned a value from the set of values available?
 - What inference should be performed at each step of search?
 - When the search arrives at an assignment that violates a constraint, can the search avoid repeating this failure?

Variable and value ordering

- Choosing which variable:
 - Minimum Remaining Value (MRV) heuristic aka fail-fast
 - Choose the variable with the fewest remaining "legal" values
 - Degree heuristic
 - Choose variable that is involved in the largest number of constraints
- Choosing which value:
 - Least constraining value (fail-last)

Interleaving search & inference

- AC-3 infers reductions in set of possible values before search
- Inference is also powerful during search
- Consider backtracking search + Forward checking
- FC: After X assigned,
 - For each unassigned var Y that is connected to X, delete any values from Y's domain that is inconsistent with the value chosen for X
 - After WA = red
 - Forward check
 - After Q = green
 - Forward check
 - NT = {blue}, SA = {blue}
 - V = {blue} → SA = {}

Figure 6.1 FILES: figures/australia.eps (Tue Nov 3 16:22:26 2009) figures/australia-csp.eps (Tue Nov 3 16:22:25 2009). (a) The principal states and territories of Australia. Coloring this map can be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each region so that no neighboring regions have the same color. (b) The map-coloring problem represented as a constraint graph.

Backtrack because there is no assignment for SA

Inference + search

- Backtracking + AC3 = Maintaining Arc Consistency (MAC algorithm)
 - Fails faster than Backtracking + forward checking

	WA	NT	Q	NSW	V	SA	Т
Initial domains	R G B	RGB	RGB	RGB	RGB	RGB	RGB
After WA=red	ß	GΒ	RGB	RGB	RGB	GΒ	RGB
After Q=green	ß	В	G	R B	RGB	В	RGB
After V=blue	®	В	G	R	B		RGB

Figure 6.7 FILES: figures/australia-fc.eps (Tue Nov 3 16:22:25 2009). The progress of a mapcoloring search with forward checking. WA = red is assigned first; then forward checking deletes *red* from the domains of the neighboring variables NT and SA. After Q = green is assigned, green is deleted from the domains of NT, SA, and NSW. After V = blue is assigned, *blue* is deleted from the domains of NSW and SA, leaving SA with no legal values.

Heuristic backtracking

- Q = red, NSW = green, V = blue, T = red, SA = ?
 - Every value of SA violates a constraint
 - Should we backtrack to T = red?
 - But T = red does not have anything to do with SA
- Carry around a conflict set, a set of prior assignments that affects SA
- {Q=red, NSW=green, V = blue} == **conflict set** for SA
- FC may specify a conflict set!
- Conflict set
 - tells us not to backtrack to T
 - instead to V
- Back Jumping algorithm

Figure 6.1 FILES: figures/australia.eps (Tue Nov 3 16:22:26 2009) figures/australia-csp.eps (Tue Nov 3 16:22:25 2009). (a) The principal states and territories of Australia. Coloring this map can be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each region so that no neighboring regions have the same color. (b) The map-coloring problem represented as a constraint graph.

Conflict-directed back jumping

- Not that simple:
- Consider {WA = red, NSW = red}
 - Is this possible?
 - Now, assign to T,
 - then to NT, Q, V, SA <
 - Because of earlier inconsistency
 - No possible assignment
 - So we backtrack to NT
 - Try other values and still fail!
 - NT's conflict set {WA} is not complete
- FC does not always provide enough information
- Consider:
 - SA fails and SA's conflict set is (say) {WA, NSW, NT, Q}
 - We backjump to Q and Q absorbs SA's conflict set Q
 - Q's conflict set = {NT, NSW} (we haven't seen SA yet)
 - SAcs Union Qcs Q = {WA, NT, NSW} \rightarrow no solution forward from Q given Qcs
 - Backtrack to NT which absorbs {WA, NT, NSW} {NT} = {WA, NSW}
 - Back jump to NSW

Figure 6.1 FILES: figures/australia.eps (Tue Nov 3 16:22:26 2009) figures/australia-csp.eps (Tue Nov 3 16:22:25 2009). (a) The principal states and territories of Australia. Coloring this map can be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each region so that no neighboring regions have the same color. (b) The map-coloring problem represented as a constraint graph.

Constraint learning

- Can we learn sets of variable assignments that lead to conflicts?
 - NO GOOD == {min set of variable and their values in a conflict set that lead to contradiction}

Local search for CSPs

```
function MIN-CONFLICTS(csp, max\_steps) returns a solution or failure
inputs: csp, a constraint satisfaction problem
max\_steps, the number of steps allowed before giving up
current \leftarrow an initial complete assignment for csp
for i = 1 to max\_steps do
if current is a solution for csp then return current
var \leftarrow a randomly chosen conflicted variable from csp.VARIABLES
value \leftarrow the value v for var that minimizes CONFLICTS(var, v, current, csp)
set var = value in current
return failure
```

Figure 6.8 The MIN-CONFLICTS algorithm for solving CSPs by local search. The initial state may be chosen randomly or by a greedy assignment process that chooses a minimal-conflict value for each variable in turn. The CONFLICTS function counts the number of constraints violated by a particular value, given the rest of the current assignment.

CSP problem structure

- Independent sub-problems
 - Very nice
- Tree structure (any two variables are only connected by one path)
 - Linear time! O(nd^2)
- Can we convert a constraint graph to a tree structure?
 - 1. Removing nodes (delete SA!)
 - By assigning a value to SA and removing that value from all other nodes' domains
 - In general, find a cycle cutset, and return cutset's assignment and remaining tree CSP
 - d^c * (n-c)d^2

Removing nodes

Figure 6.12 FILES: figures/australia-csp.eps (Tue Nov 3 16:22:25 2009) figures/australiatree.eps (Tue Nov 3 16:22:26 2009). (a) The original constraint graph from Figure 6.1. (b) The constraint graph after the removal of *SA*.

Collapsing nodes

- Tree decomposition of constraint graph into a set of connected sub-problems.
 - Great if tree width of Constraint Graph is small
 - But
 - Many possible decompositions

CSP Puzzle

- In five houses, each with a different color, live five persons of different nationalities, each of whom prefer a different brand of candy, a different drink, and a different pet.
- Where does the zebra live?
- Which house do they drink water?
- What are possible representations of this CSP problem?
- Which is best?

- The Englishman lives in the red house
- The Spaniard owns the dog
- The Norwegian lives in the first house on the left
- The green house is immediately to the right of the ivory house
- The man who eats Hershey bars lives in the house next to the man with the fox
- Kits Kats are eaten in the yellow house
- The Norwegian lives next to the blue house
- The Smarties eater owns snails
- The Snickers eater drinks OJ
- The Ukranian drinks tea
- The Japanese eats Milky Ways
- Kit Kats are eaten in a house next to the house where the horse is kep
- Coffee is drunk in the green house
- Milk is drunk in the middle house

Logical Agents

4