Artificial Intelligence

CS482, CS682, MW 1 — 2:15, SEM 201, MS 227
Prerequisites: 302, 365

Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil

mailto:sushil@cse.unr.edu
http://www.cse.unr.edu/~sushil

Three colour problem

| Morthern

Territory

Western

Australia |]
South A

Australia

[N
Tasmania t} @
(a) (b)

Figure 6.1 TILES: figures/ausiralia.eps (Tue Nov 3 16:22:26 2009) figures/australia-csp.eps
(Tue Nov 3 16:22:25 2009). (a) The pnncipal states and ferntories of Australia. Colonng this map
can be viewed as a constraint satisfaction problem (CSP). The goal 1s fo assign colors fo each region
50 that no neighbonng regions have the same color. (b) The map-colonng problem represented as a
constraint graph.

Neighboring regions cannot have the same color
Colors = {red, blue, green}

Consider using a local search
Wa N Nsw |aueen |Victora [sA [T

{r,g,b} |[{rgb} |{rg b} |[{rgb} |{ng b} |{rg b} |[{rg b}

- 3 to the power 7 possible states = 2187
- But not all states are legal
- Forexample: {r,r,r, 1,1, 1, r}is NOT legal because it violates our constraint

- Suppose we do sequential assighnment of values to variables
- Assignr (say) to WA then we can immediately reduce the number of possible
values for NT and SA to be {g, b}, and if we chose NT = {g}, then SA has to be

{b}.

Propagation of constraints

g
Morthern

? P07
v, 0, "

r | Territory
| Oueensland
Western | I
Australia | |
South —_
| Auvstralia b | New , '
South °~

e .
.’ .’ | @
T asmania W 2

(a) (b)

Figure 6.1 FILES: fisures/australia.eps (Tue Nov 3 16:22:26 2009) ficures/anstralia-csp.eps
(Tue Nov 3 16:22:25 2009). (a) The principal states and terntories of Australia. Colonng this map
can be viewed as a constraint satisfaction problem (CSP). The goal 1s to assign colors to each region
so that no neighboning regions have the same color. (b) The map-colonng problem represented as a
constraint graph.

Wouldn't it be nice to have a
constraint propagation algorithm?

function AC-3(c=p) returns false if an inconsistency 15 found and true otherwise
inputs: csp, a binary CSP with components (X, [,)
local variables: gueue, a quene of arcs, ufially all the ares i csp

while gueue 15 not empty do
(Xi, X;)— REMOVE-FIRST(queue)
if REVISE(esp, X:, X;) then
if size of [}, = 0 then return false
for each X in X, NEIGHEBORS - [X,] do
add (X5, X,) to queue
reurm irue

function EEVISE(cap, X, X ;) returns tme iff we revise the domain of X,
revized +— falze
for each = in [, do
if no value v m [; allows (z.y) to sahsfy the constramt between X, and X ; then
delete = from I,
revised +— true
refurn remased

Figure 6.3 The arcconsistency algonthm AC-3. After applymmg AC-3, either every arc 15 arc-
consistent, or some vanable has an empty domain, indicatng that the CSP cannot be solved. The
name “AC-3" was used by the algonthm’s mventor (7) because 1t’s the third version developed mn the
papet.

Properties

* Node consistency (unary)

* Arc consistency (binary)
Network arc consistency (all arcs are consistent)

* ACS3 is the most popular arc consistency algorithm
Fails quickly if no consistent set of values found

Start:
Considers all pairs of arcs

If making an arc (xi, xj) consistent causes domain reduction
* Add all neighboring arcs that go to xi to set of arcs to be considered

Success leaves a much smaller search space for search
Domains will have been reduced

Suppose n variables, max domain size is d, then complexity is
O(cd”3) where c is number of binary constraints

More constraint types and approach

* Path (triples)
* Global constraints (n variables)

Special purpose algorithms (heuristics)

Alldiff constraints (Sudoku)
Remove any variable with singleton domain
Remove that value from the domains of all other variables

Repeat
* While
* singletons values remain
* No domains are empty
* Not more variables than domain values

* Resource constraints (Ex: Atmost 100)
* Bounds and bounds propagation

Search

* Constraints have been met and propagated

* But the problem still remains to be solved (multiple values in
domains)

Search through remaining assignments
* For CSPs Backtracking search is good
Choose a value for variable, x

Choose a subsequent legal value for next variable, y
Backtrack to x if no legal value found fory

Australia coloring

WA =red WA=red
NT=green NT=blue
/ \ Ty e
WA=red WA=red
NT=green NT=green
Q=red OQ=klue
—_— | —_— |

Figure 6.6 FILES: figures/australia-search.eps (Tue Nov 3 16:22:25 2009). Part of the search
tree for the map-coloring problem in Figure 6.1.

Backtracking search algorithm

function BACKTRACKING-SEARCH(csp) returns a solution, or failure
return BACKTRACK({ }, csp)

function BACKTRACK(assignment, csp) returns a solution, or failure
if assignment 1s complete then return assignment
var «— SELECT-UNASSIGNED-VARIABLE(csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value 1s consistent with assignment then
add {var = value} to assignment
inferences «— INFERENCE(csp, var, value)
if inferences # failure then
add inferences to assignment
result +— BACKTRACK(assignment, csp)
if result + failure then
return result
remove {var = value } and inferences from assignment
return failure

Figure 6.5 A simple backfracking algorithm for constraint satisfaction problems. The algo-
rithm 1s modeled on the recursive depth-first search of Chapter ??. By varying the functions
SELECT-UNASSIGNED-VARIABLE and ORDER-DOMAIN-VALUES, we can implement the general-
purpose heuristics discussed 1n the text. The function INFERENCE can optionally be used to impose
arc-, path-, or k-consistency, as desired. If a value choice leads to failure (noticed either by INFERENCE

or by BACKTRACK), then value assignments (including those made by INFERENCE) are removed from
the current assignment and a new value 15 tried.

CSP heuristics

* For all CSPs
* Depends on the answer to the following:

Which var should be assigned next, and what order should it be
assigned a value from the set of values available?

What inference should be performed at each step of search?

When the search arrives at an assignment that violates a
constraint, can the search avoid repeating this failure?

Variable and value ordering

* Choosing which variable:

Minimum Remaining Value (MRV) heuristic aka fail-fast
Choose the variable with the fewest remaining “legal” values

Degree heuristic
Choose variable that is involved in the largest number of constraints
* Choosing which value:
Least constraining value (fail-last)

Interleaving search & inference

AC-3 infers reductions in set of possible values before search
Inference is also powerful during search

Consider backtracking search + Forward checking

FC: After X assigned,

For each unassigned var Y that is connected to X, delete any values
from Y’s domain that is inconsistent with the value chosen for X

After WA = red

Forward check
After Q = green
Forward check
NT = {blue}, SA = {blue}
V = {blue} D SA = {} = . @
Figure 6.1 FILES: figures/australia.eps (Tue Nov 3 16:22:26 2009) figures/australia-csp.eps
(Tue Nov 3 16:22:25 2009). (a) The principal states and territories of Australia. Coloring this map
can be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each region

so that no neighboring regions have the same color. (b) The map-coloring problem represented as a
constraint graph.

Backtrack because there is no assignment for SA

Inference + search

* Backtracking + AC3 = Maintaining Arc Consistency (MAC

algorithm)

Fails faster than Backtracking + forward checking

Initial domains
After WA=red
After Q=green
After V=blue

WA

NT

Q

NSW

%

SA

T

RGB

RGB

RGB

RGB

RGB

RGB

G B

RGB

RGB

RGB

G B

RGB

B

©

R B

RGB

RGB

@EP@|=

B

©

R

®

RGB

Figure 6.7 FILES: figures/australia-fc.eps (Tue Nov 3 16:22:25 2009). The progress of a map-
coloring search with forward checking. WA = red is assigned first: then forward checking deletes red
from the domains of the neighboring variables NT and SA. After () = green is assigned. green is
deleted from the domains of NT'. SA. and NSW. After V' = blue is assigned. blue is deleted from the
domains of NSW and SA. leaving SA with no legal values.

Heuristic backtracking

Q =red, NSW =green, V =blue, T=red, SA=7?
Every value of SA violates a constraint
Should we backtrack to T = red?
But T = red does not have anything to do with SA

Carry around a conflict set, a set of prior assignments that affects SA
{Q=red, NSW=green, V = blue} == conflict set for SA
FC may specify a conflict set!

Conflict set
tells us not to backtrackto T
instead to V

Back Jumping algorithm

Figure 6.1 FILES: figures/australia.eps (Tue Nov 3 16:22:26 2009) figures/australia-csp.eps
(Tue Nov 3 16:22:25 2009). (a) The principal states and ternitories of Australia. Colonng this map
can be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each region
so that no neighboring regions have the same color. (b) The map-coloring problem represented as a
constraint graph

Conflict-directed back jumping

* Not that simple:
* Consider {WA =red, NSW = red}
Is this possible?

South

Now, assign to T, Austraia

then to NT, Q, V, SA
Because of earlier inconsistency

Tasmania ‘C]

(@)

* FC does not always provide enough information
* Consider:

No possible assignment

So we backtrack to NT

* Try other values and still fail!
* NT’s conflict set {WA}is not complete

Figure 6.1 FILES: figures/australia.eps (Tue Nov 3 16:22:26 2009) figures/australia-csp.eps
(Tue Nov 3 16:22:25 2009). (z) The principal states and territories of Australia. Coloring this map
can be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each region
so that no neighboring regions have the same color. (b) The map-coloring problem represented as a
constraint graph

SA fails and SA’s conflict set is (say) {WA, NSW, NT, Q}

We backjump to Q and Q absorbs SA’s conflict set — Q
Q’s conflict set = {NT, NSW} (we haven’t seen SA yet)
SAcs Union Qcs - Q = {WA, NT, NSW} = no solution forward from Q given Qcs
Backtrack to NT which absorbs {WA, NT, NSW} — {NT} = {WA, NSW}
Back jump to NSW

Constraint learning

* Can we learn sets of variable assignments that lead to conflicts?

NO GOOD == {min set of variable and their values in a conflict set
that lead to contradiction}

L.ocal search for CSPs

function MIN-CONFLICTS(csp, maz_steps) returns a solution or failure
inputs: csp, a constraint satisfaction problem
mazr_steps, the number of steps allowed before giving up

current +— an mifial complete assignment for csp

for i = 1 to maz_steps do
if current 1s a solution for csp then return current

var «+— a randomly chosen conflicted vaniable from csp VARIABLES
value +— the value v for var that mimmizes CONFLICTS(var, v, current, csp)
set var = value 1n current

return failure

Figure 6.8 The MIN-CONFLICTS algorithm for solving CSPs by local search. The 1nitial state may
be chosen randomly or by a greedy assignment process that chooses a mmimal-conflict value for each
vanable in furn. The CONFLICTS function counts the number of constraints violated by a particular

value, given the rest of the current assignment.

CSP problem structure

* Independent sub-problems
Very nice
* Tree structure (any two variables are only connected by one
path)
Linear time! O(nd”2)
* Can we convert a constraint graph to a tree structure?

1. Removing nodes (delete SA!)

By assigning a value to SA and removing that value from all other
nodes’ domains

In general, find a cycle cutset, and return cutset’s assignment and
remaining tree CSP

d”c * (n-c)d”2

Removing nodes

(%

(a) (b)

Figure 6.12 FILES: figures/australia-csp.eps (Tue Nov 3 16:22:25 2009) figures/australia-
tree.eps (Tue Nov 3 16:22:26 2009). (a) The original constraint graph from Figure 6.1. (b) The
constraint graph after the remowval of S5A.

Collapsing nodes

* Tree decomposition of constraint graph into a set of
connected sub-problems.

Great if tree width of Constraint Graph is small

But
Many possible decompositions

o))
\@‘/

Figure 6.13 FILES: figures/australia-decompos .eps (Tue Nov 3 16:22:25 2009). A tree de-
composition of the ¢ onstraJ.ntgrphmFgureém()

CSP Puzzle

In five houses, each with a different
color, live five persons of different
nationalities, each of whom prefer a
different brand of candy, a different
drink, and a different pet.

Where does the zebra live?

Which house do they drink water?

What are possible representations
of this CSP problem?

Which is best?

The Englishman lives in the red house
The Spaniard owns the dog

The Norwegian lives in the first house o
the left

The green house is immediately to the
right of the ivory house

The man who eats Hershey bars lives in
the house next to the man with the fox

Kits Kats are eaten in the yellow house

The Norwegian lives next to the blue
house

The Smarties eater owns snails
The Snickers eater drinks OJ
The Ukranian drinks tea

The Japanese eats Milky Ways

Kit Kats are eaten in a house next to th
house where the horse is kep

Coffee is drunk in the green house
Milk is drunk in the middle house

Logical Agents

4 S domn

Br -
~—ere =
5555
= Sianch

w L0 s

G LY

START

