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Informed Search 

• Best First Search 
• A* 

• Heuristics 

 

• Basic idea 
• Order nodes for expansion using a specific search strategy 

• Remember uniform cost search? 
• Nodes ordered by path length = path cost and we expand least cost 

• This function was called g(n) 

• Order nodes, n,  using an evaluation function f(n) 

• Most evaluation functions include a heuristic h(n) 
• For example: Estimated cost of the cheapest path from the state at 

node n to a goal state 

• Heuristics provide domain information to guide informed search 



Romania with straight line distance heuristic 

h(n) = straight line distance to Bucharest 



Greedy search 
• F(n) = h(n) = straight line distance to goal 

• Draw the search tree and list nodes in order of expansion (5 minutes) 

Time? 
Space? 
Complete? 
Optimal? 



Greedy search 



Greedy analysis 

• Optimal? 

• Path through Rimniu Velcea is shorter 

• Complete? 

• Consider Iasi to Fagaras 

• Tree search no, but graph search with no repeated states version  yes 

• In finite spaces 

• Time and Space 

• Worst case 𝑏𝑚 where m is the maximum depth of the search space 

• Good heuristic can reduce complexity 



𝐴∗ 
• f(n) = g(n) + h(n) 

•        = cost to state + estimated cost to goal 

•        = estimated cost of cheapest solution through n 



𝐴∗ 

Draw the search tree and list the nodes 
and their associated cities in order of 
expansion for going from Arad to 
Bucharest 
5 minutes 



A* 



𝐴∗ 
• f(n) = g(n) + h(n) 

•        = cost to state + estimated cost to goal 

•        = estimated cost of cheapest solution through n 

• Seem reasonable? 

• If heuristic is admissible, 𝐴∗ is optimal and complete for Tree search 

• Admissible heuristics underestimate cost to goal 

• If heuristic is consistent, 𝐴∗ is optimal and complete for graph search 

• Consistent heuristics follow the triangle inequality 

• If n’ is successor of n, then h(n) ≤ c(n, a, n’) + h(n’) 

• Is less than cost of going from n to n’ + estimated cost from n’ to goal 

• Otherwise you should have expanded n’ before n and you need a different heuristic 

• f costs are always non-decreasing along any path 



𝐴∗ contours 
• Non decreasing f implies  

• We can draw contours 

• Inside the 400 contour 

• All nodes have f(n) ≤ 400 

• Contour shape 

• Circular if h(n) = 0  

• Elliptical towards goal for h(n) 

• If C* is optimal path cost 

• A* expands all nodes with f(n) < C* 

• A* may expand some nodes with f(n) = C* before getting to a goal state 

• If b is finite and all step costs > e, then A* is complete since 

• There will only be a finite number of nodes with f(n) < C* 

• Because b is finite and all step costs > e 



Pruning, IDA*, RBFS, MA/SMA 
• A* does not expand nodes with f(n) > C* 

• The sub-tree rooted at Timisoara is pruned 

• A* may need too much memory 

• Iterative Deepening A* (IDA*)  

• Iterative deepening using f(n) to limit depth of search 

• Much less memory 

• Depth cutoff used: min f(n) from prior step 

• Recursive Best First Search (RBFS) 

• Best first search 

• Again uses f(n) to limit depth 

• Whenever current f(n) > next best alternative, explore alternative 

• Keep track of best alternative 

• Memory Bounded A* (MA) or Simple Memory Bounded A*(SMA) 

• A* with memory limit 

• When memory limit exceeded drop worst leaf, and back up f-value to parent 

• Drops oldest worst leaf, and expands newest best leaf 

 

 



Heuristic functions 

• Some consistent heuristics are better than others 

• Analysis 

• Consider the effective branching factor, b* 

• The better the heuristic, the closer that b* is to 1 

• N+1 = 1 + b* + (𝑏 ∗)2 + … + (b*)𝑑 

• If d = 5, and N = 52, then b* = 1.92 

 

• There are techniques for generating admissible heuristics  

• Relax a problem 

• Learn from pattern database 



Non-classical search 

- Path does not matter, just the final state 
- Maximize objective function 



Model 

• We have a black box “evaluate” function that returns an 
objective function value 

          Evaluate 
candidate state Obj. func 

Application dependent fitness function 



Local Hill Climbing 

• Move in the direction of increasing value 

• Very greedy 

• Subject to 

• Local maxima 

• Ridges 

• Plateaux 

• 8-queens: 86% failure, but only needs 4 steps to succeed, 3 to fail 



Hill climbing 

• Keep going on a plateau? 
• Advantage: Might find another hill 
• Disadvantage: infinite loops  limit number of moves on plateau 

• 8 queens: 94% success!! 

• Stochastic hill climbing  
• randomly choose from among better successors (proportional to obj?) 

• First-choice hill climbing  
• keep generating successors till a better one is generated 

• Random-restarts 
• If probability of success is p, then we will need 1/p restarts 
• 8-queens: p = 0.14 ~= 1/7 so 7 starts  
• 6 failures (3 steps), 1 success (4 steps) = 22 steps 
• In general: Cost of success + (1-p)/p * cost of failure 
• 8-queens sideways: 0.94 success in 21 steps, 64 steps for failure 

• Under a minute 



Simulated annealing 

• Gradient descent (not ascent) 

• Accept bad moves with probability 𝑒𝑑𝐸/𝑇 

• T decreases every iteration 

• If schedule(t) is slow enough we approach finding global optimum 
with probability 1 



Genetic Algorithms 
• Stochastic hill-climbing with information exchange 

• A population of stochastic hill-climbers 



More detailed GA 

• Generate pop(0) 

• Evaluate pop(0) 

• T=0 

• While (not converged) do 

• Select pop(T+1) from pop(T) 

• Recombine pop(T+1) 

• Evaluate pop(T+1) 

• T = T + 1 

• Done 



Generate pop(0) 

for(i = 0 ; i < popSize; i++){         
for(j = 0; j < chromLen; j++){ 
Pop[i].chrom[j] = flip(0.5); 

}                                                
}                                                    

Initialize population with randomly generated strings of 1’s 
and 0’s 



Genetic Algorithm 

• Generate pop(0) 

• Evaluate pop(0) 

• T=0 

• While (not converged) do 

• Select pop(T+1) from pop(T) 

• Recombine pop(T+1) 

• Evaluate pop(T+1) 

• T = T + 1 

• Done 



Evaluate pop(0) 

Evaluate 
Decoded individual Fitness 

Application dependent fitness function 



Genetic Algorithm 

• Generate pop(0) 

• Evaluate pop(0) 

• T=0 

• While (T < maxGen) do 

• Select pop(T+1) from pop(T) 

• Recombine pop(T+1) 

• Evaluate pop(T+1) 

• T = T + 1 

• Done 



Genetic Algorithm 

• Generate pop(0) 

• Evaluate pop(0) 

• T=0 

• While (T < maxGen) do 

• Select pop(T+1) from pop(T) 

• Recombine pop(T+1) 

• Evaluate pop(T+1) 

• T = T + 1 

• Done 



Selection 

• Each member of the population gets 
a share of the pie proportional to 
fitness relative to other members of 
the population 

• Spin the roulette wheel pie and pick 
the individual that the ball lands on 

• Focuses search in promising areas 



Code 

int roulette(IPTR pop, double sumFitness, int popsize) 

{  

 

  /* select a single individual by roulette wheel selection */ 

   

  double rand,partsum; 

  int i; 

 

  partsum = 0.0; i = 0; 

  rand = f_random() * sumFitness;  

   

  i = -1; 

  do{ 

    i++; 

    partsum += pop[i].fitness; 

  } while (partsum < rand && i < popsize - 1) ; 

   

  return i; 

} 

 



Genetic Algorithm 

• Generate pop(0) 

• Evaluate pop(0) 

• T=0 

• While (T < maxGen) do 

• Select pop(T+1) from pop(T) 

• Recombine pop(T+1) 

• Evaluate pop(T+1) 

• T = T + 1 

• Done 



Crossover and mutation 

Mutation Probability = 0.001 

Insurance 

Xover Probability = 0.7 

Exploration operator 



Crossover code 
void crossover(POPULATION *p, IPTR p1, IPTR p2, IPTR c1, IPTR c2) 

{ 

/* p1,p2,c1,c2,m1,m2,mc1,mc2 */ 

  int *pi1,*pi2,*ci1,*ci2; 

  int xp, i; 

 

  pi1 = p1->chrom; 

  pi2 = p2->chrom; 

  ci1 = c1->chrom; 

  ci2 = c2->chrom; 

   

  if(flip(p->pCross)){ 

 

    xp = rnd(0, p->lchrom - 1); 

    for(i = 0; i < xp; i++){ 

      ci1[i] = muteX(p, pi1[i]); 

      ci2[i] = muteX(p, pi2[i]); 

    } 

    for(i = xp; i < p->lchrom; i++){ 

      ci1[i] = muteX(p, pi2[i]); 

      ci2[i] = muteX(p, pi1[i]); 

    } 

  } else { 

    for(i = 0; i < p->lchrom; i++){ 

      ci1[i] = muteX(p, pi1[i]); 

      ci2[i] = muteX(p, pi2[i]); 

    } 

  } 

} 



Mutation code 

 
int muteX(POPULATION *p, int pa) 

{ 

  return (flip(p->pMut) ? 1 - pa  : pa); 

} 



Search 

• Problem solving by searching for a solution in a space of 
possible solutions 

• Uninformed versus Informed search 

• Atomic representation of state 

• Solutions are fixed sequences of actions 

 


