Artificial Intelligence

CS482, CS682, MW 1 — 2:15, SEM 201, MS 227
Prerequisites: 302, 365

Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil

mailto:sushil@cse.unr.edu
http://www.cse.unr.edu/~sushil

Informed Search

* Best First Search
A*
Heuristics

* Basic idea

Order nodes for expansion using a specific search strategy

Remember uniform cost search?
* Nodes ordered by path length = path cost and we expand least cost
* This function was called g(n)

Order nodes, n, using an evaluation function f(n)

Most evaluation functions include a heuristic h(n)

For example: Estimated cost of the cheapest path from the state at
node n to a goal state

Heuristics provide domain information to guide informed search

Romania with straight line distance heuristic

[§ Vaslui

] Hirsowa
P Mehadia 146
Ta

|
Dobreta [J___ 120

Efarie

h(n) = straight line distance to Bucharest

Straight—lme distance

to Bucharest

Arad 3166
Bucharest]
Craiova 160
Dobreta 242
Eforie 1561
Fagaras 178
Ginrgin T7
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti o
Eimnicu Vilcea 1903
Sibin 153
Timisoara 379
Urziceni 80
Vaslui 199
Zerind 374

Greedy search

* F(n) = h(n) = straight line distance to goal
* Draw the search tree and list nodes in order of expansion (5 minut

Arad 166 Mehad ia 241
Bucharest] MNeamt 234
Craiova 160 Oradea 380
Drobeta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
Fagaras 176 Sibin 253
Giurgiu 77 Timisoara R Wt
Hirsova 151 Urziceni &
lasi 226 Vashu 199
Lugoj 244 Zerind 374
Aradl]
Time? el
Space? imisoara
?
Complete. ™ Lugos
Optimal? 70|

Mehadia
75 |
Dobretag—__120

Eforie

Greedy search

(a) The initial state >

ib) After expanding Arad

253 1] 374

ic) After expanding Sibiu

id) After expanding Fagaras

imisoara

Ll Lugoj

- Optimal? Ti||'|:||~aenac|ia
Path through Rimniu Velc@aPigedhortr_
* Complete?

i L Giurgiu
Consider lasi to Fagaras
Tree search no, but graph search with no repeated states version = ye
In finite spaces
* Time and Space
Worst case b™ where m is the maximum depth of the search space
Good heuristic can reduce complexity

A*
* f(n) = g(n) +h(n)

. = cost to state + estimated cost to goal
J = estimated cost of cheapest solution through n

Arad 366 Mehadia 241
Bucharest] Meamt 234
Craiova 160 Oradea 380
Drobeta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
Fagaras 176 Sibiu 253
Giurgiu 77 Timisoara 329
Hirsova 151 Urziceni B
Lasi 226G Vashn 199
Lugaoj 244 Lerind 374

Draw the search tree and list the nodes
and their associated cities in order of
expansion for going from Arad to
Bucharest

5 minutes

Eforie

(a) The initial state T

(b After expanding Arad

393= 14[H+253 Sd7=115+329 489=T5+374

(c) After expanding Sibin

44T=118+329

489=T5+374

GESH=2H0+366 4]15=23% 1T 6TI=291+380 413=2X+193

(dy After expanding Rimnicu Vilcea

447=118+329

489=T5+374

HdH=280H 306 415=239+174 a71=291+380

526=360+160 417=317+1M) S553=3NKH253

(e} After expanding Fagaras

447=118+329 449=T54+374

591=338+253 A50=d500) S26=366+160 417=317+100 553=300+253
(fy After expanding Pitest < Arsd
T T imiso=rs CZexind 3
$47=118+320 L49=T5+374

A a=2R+366 &7 1=291+380
CSivin_> (Buchares CCrmiovay (Piesti D Sibiu_J
SQ1=33K+253 AS50=450+] 526=368+1 A=3(WH-253
P Buche reg Craicva aimaia ¥ ilces

418=418+H0 &15=455+ 160 HI7T=4]14+193

A*
f(n) = g(n) + h(n)
= cost to state + estimated cost to goal

= estimated cost of cheapest solution through n

Seem reasonable?
If heuristic is admissible, A* is optimal and complete for Tree search

Admissible heuristics underestimate cost to goal
If heuristic is consistent, A* is optimal and complete for graph search
Consistent heuristics follow the triangle inequality
If n” is successor of n, then h(n) <c(n, a, n’) + h(n’)
Is less than cost of going from n to n” + estimated cost from n’ to goal
* Otherwise you should have expanded n’ before n and you need a different heuristic

f costs are always non-decreasing along any path

A* contours

* Non decreasing f implies
We can draw contours If:-’*‘

Inside the 400 contour >~
All nodes have f(n) €400 |™~.. "

Contour shape
Circular if h(n) =0
Elliptical towards goal for h(n)

* If C* is optimal path cost DO
A* expands all nodes with f(n) < C* A G
A* may expand some nodes with f(n) = C* before getting to a goal state

If b is finite and all step costs > e, then A* is complete since

There will only be a finite number of nodes with f(n) < C*
* Because b is finite and all step costs > e

Pruning, IDA*, RBFS, MA/SMA

* A* does not expand nodes with f(n) > C*
The sub-tree rooted at Timisoara is pruned
A* may need too much memory
Iterative Deepening A* (IDA*)
lterative deepening using f(n) to limit depth of search
Much less memory
Depth cutoff used: min f(n) from prior step
Recursive Best First Search (RBFS)
Best first search
Again uses f(n) to limit depth
Whenever current f(n) > next best alternative, explore alternative
Keep track of best alternative
Memory Bounded A* (MA) or Simple Memory Bounded A*(SMA)
A* with memory limit
When memory limit exceeded drop worst leaf, and back up f-value to pare
Drops oldest worst leaf, and expands newest best leaf

Heuristic functions

Some consistent heuristics are better than others

Analysis
Consider the effective branching factor, b*
The better the heuristic, the closer that b* is to 1

N+1=1+b*+ (b %)% +..+(b*)4
If d =5, and N =52, then b* =1.92

There are techniques for generating admissible heuristics
Relax a problem
Learn from pattern database

Non-classical search

objective function lobal ‘
i ___—global maximum

shoulder

N

local maximum

*flat” local maximum

//

e state space

current
state

- Path does not matter, just the final state
- Maximize objective function

Model

* We have a black box “evaluate” function that returns an
objective function value

4)

candidate state Ob;. func
Evaluate

A 4
v

- /

Application dependent fitness function

Local Hill Climbing

function HILL-CLIMBING(problem) returns a state that 1s a local maximum

current «— MAKE-NODE(problem INITIAL-STATE)

loop do
neighbor < a highest-valued successor of current
if neighbor VALUE <. current. VALUE then return current STATE
current «— neighbor

Move in the direction of increasing value

Very greedy

Subject to
Local maxima

Ridges
Plateaux

8-queens: 86% failure, but only needs 4 steps to succeed, 3 to fail

Hill climbing

Keep going on a plateau?

Advantage: Might find another hill

Disadvantage: infinite loops = limit number of moves on plateau

8 queens: 94% success!!

Stochastic hill climbing

randomly choose from among better successors (proportional to obj?)
First-choice hill climbing

keep generating successors till a better one is generated
Random-restarts

If probability of success is p, then we will need 1/p restarts

8-queens: p =0.14 ~=1/7 so 7 starts

6 failures (3 steps), 1 success (4 steps) = 22 steps

In general: Cost of success + (1-p)/p * cost of failure

8-queens sideways: 0.94 success in 21 steps, 64 steps for failure
Under a minute

Simulated annealing

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule a mapping from fime to “temperature™

curTent «— MAKE-NODE(problem INITIAL-STATE)
for £t =1 to oo do
T +— schedule(t)
if T' =0 then return current
next «+— a randomly selected successor of current
AFE +— next VALUE — current VALUE
if AE > 0 then current — next

else current «+— next only with probability eRE/T

* Gradient descent (not ascent)
* Accept bad moves with probability e4E/T
* T decreases every iteration

* If schedule(t) is slow enough we approach finding global optimum
with probability 1

Genetic Algorithms

* Stochastic hill-climbing with information exchange
* A population of stochastic hill-climbers

function GENETIC-ALGORITHM population, FITNESS-FN) returns an individual
inputs: population, a set of indrviduals
FITNESS-FN, a function that measures the fitness of an mdividual

repeat
new_population +— empty set

fori=1to SIZEi Eapulatian) do
T SELECTION(population, FITNESS-FN)
y — [} SELECTION(population, FITNESS-FN)

child «— REPRODUCE(z, i)
if (small random probability) then child «— MUTATE(child)
add child to new_population
population «— new_population
until some ndividual 1s fit enough, or enough time has elapsed
return the best indrvidual 1in population, according to FITNESS-FN

function REPRODUCE(z,) returns an mdmvidual
inputs: .y, parent individuals

n+— LENGTH(x); ¢+ random number from 1 to n
return APPEND(SUBSTRING(z, 1, ¢), SUBSTRING(y, ¢ + 1, 1))

More detailed GA

Generate pop(0)

Evaluate pop(0)
T=0
While (not converged) do

Select pop(T+1) from pop(T)
Recombine pop(T+1)
Evaluate pop(T+1)
T=T+1

Done

Generate pop(0)

Initialize population with randomly generated strings of 1’s

and Q’s

-~

\

for(i=0; i < popSize; i++){
for(j = 0; j < chromLen; j++){
Popli].chrom[j] = flip(0.5);
}
}

\

Genetic Algorithm

Generate pop(0)

Evaluate pop(0)
T=0
While (not converged) do

Select pop(T+1) from pop(T)
Recombine pop(T+1)
Evaluate pop(T+1)
T=T+1

Done

Evaluate pop(0)

Decoded individual Fitness

A 4

v

Evaluate

N /

Application dependent fitness function

Genetic Algorithm

Generate pop(0)

Evaluate pop(0)

T=0

While (T < maxGen) do
Select pop(T+1) from pop(T)

Recombine pop(T+1)
Evaluate pop(T+1)
T=T+1

Done

Genetic Algorithm

Generate pop(0)

Evaluate pop(0)

T=0

While (T < maxGen) do
Select pop(T+1) from pop(T)

Recombine pop(T+1)
Evaluate pop(T+1)
T=T+1

Done

Selection

* Each member of the population gets
a share of the pie proportional to
fitness relative to other members of
the population

* Spin the roulette wheel pie and pick
the individual that the ball lands on

* Focuses search in promising areas

Code

int roulette (IPTR pop, double sumFitness, int popsize)

{

/* select a single individual by roulette wheel selection */

double rand,partsum;
int i;

partsum = 0.0; i = O;
rand = £ random() * sumFitness;

i=-1;
do{
i++;
partsum += pop[i] .fitness;
} while (partsum < rand && i < popsize - 1) ;

return i;

Genetic Algorithm

Generate pop(0)

Evaluate pop(0)

T=0

While (T < maxGen) do
Select pop(T+1) from pop(T)

Recombine pop(T+1)
Evaluate pop(T+1)
T=T+1

Done

Crossover and mutation

Mutation Probability = 0.001

Insurance

Xover Probability = 0.7

l Exploration operator

Crossover code

void crossover (POPULATION *p, IPTR pl, IPTR p2, IPTR cl,
{
/* pl,p2,cl,c2,ml, m2,mcl, mc2 */

int *pil,*pi2,*cil,*ci2;

int xp, i;

pil = pl->chrom;
pi2 = p2->chrom;
cil = cl->chrom;
ci2 = c2->chrom;

if (flip (p->pCross)) {

xp = rnd(0, p->lchrom - 1);

for(i = 0; i < xp; i++){
cil[i] = muteX(p, pil[i]);
ci2[i] = muteX(p, pi2[i]);

}

for(i = xp; i < p->lchrom; i++) {
cil[i] = muteX(p, pi2[i]);
ci2[i] = muteX(p, pil[i]);

}

} else {

for(i = 0; i < p->1lchrom; i++) {
cil[i] = muteX(p, pil[i]):;
ci2[i] = muteX(p, pi2[i]);

}

IPTR c2)

Mutation code

int muteX (POPULATION *p, int pa)

{
return (flip(p->pMut) ? 1 - pa : pa);

}

Search

Problem solving by searching for a solution in a space of
possible solutions

Uninformed versus Informed search

Atomic representation of state

Solutions are fixed sequences of actions

