
Artificial Intelligence
CS482, CS682, MW 1 – 2:15, SEM 201, MS 227

Prerequisites: 302, 365

Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil

mailto:sushil@cse.unr.edu
http://www.cse.unr.edu/~sushil

Informed Search

• Best First Search
• A*

• Heuristics

• Basic idea
• Order nodes for expansion using a specific search strategy

• Remember uniform cost search?
• Nodes ordered by path length = path cost and we expand least cost

• This function was called g(n)

• Order nodes, n, using an evaluation function f(n)

• Most evaluation functions include a heuristic h(n)
• For example: Estimated cost of the cheapest path from the state at

node n to a goal state

• Heuristics provide domain information to guide informed search

Romania with straight line distance heuristic

h(n) = straight line distance to Bucharest

Greedy search
• F(n) = h(n) = straight line distance to goal

• Draw the search tree and list nodes in order of expansion (5 minutes)

Time?
Space?
Complete?
Optimal?

Greedy search

Greedy analysis

• Optimal?

• Path through Rimniu Velcea is shorter

• Complete?

• Consider Iasi to Fagaras

• Tree search no, but graph search with no repeated states version  yes

• In finite spaces

• Time and Space

• Worst case 𝑏𝑚 where m is the maximum depth of the search space

• Good heuristic can reduce complexity

𝐴∗
• f(n) = g(n) + h(n)

• = cost to state + estimated cost to goal

• = estimated cost of cheapest solution through n

𝐴∗

Draw the search tree and list the nodes
and their associated cities in order of
expansion for going from Arad to
Bucharest
5 minutes

A*

𝐴∗
• f(n) = g(n) + h(n)

• = cost to state + estimated cost to goal

• = estimated cost of cheapest solution through n

• Seem reasonable?

• If heuristic is admissible, 𝐴∗ is optimal and complete for Tree search

• Admissible heuristics underestimate cost to goal

• If heuristic is consistent, 𝐴∗ is optimal and complete for graph search

• Consistent heuristics follow the triangle inequality

• If n’ is successor of n, then h(n) ≤ c(n, a, n’) + h(n’)

• Is less than cost of going from n to n’ + estimated cost from n’ to goal

• Otherwise you should have expanded n’ before n and you need a different heuristic

• f costs are always non-decreasing along any path

𝐴∗ contours
• Non decreasing f implies

• We can draw contours

• Inside the 400 contour

• All nodes have f(n) ≤ 400

• Contour shape

• Circular if h(n) = 0

• Elliptical towards goal for h(n)

• If C* is optimal path cost

• A* expands all nodes with f(n) < C*

• A* may expand some nodes with f(n) = C* before getting to a goal state

• If b is finite and all step costs > e, then A* is complete since

• There will only be a finite number of nodes with f(n) < C*

• Because b is finite and all step costs > e

Pruning, IDA*, RBFS, MA/SMA
• A* does not expand nodes with f(n) > C*

• The sub-tree rooted at Timisoara is pruned

• A* may need too much memory

• Iterative Deepening A* (IDA*)

• Iterative deepening using f(n) to limit depth of search

• Much less memory

• Depth cutoff used: min f(n) from prior step

• Recursive Best First Search (RBFS)

• Best first search

• Again uses f(n) to limit depth

• Whenever current f(n) > next best alternative, explore alternative

• Keep track of best alternative

• Memory Bounded A* (MA) or Simple Memory Bounded A*(SMA)

• A* with memory limit

• When memory limit exceeded drop worst leaf, and back up f-value to parent

• Drops oldest worst leaf, and expands newest best leaf

Heuristic functions

• Some consistent heuristics are better than others

• Analysis

• Consider the effective branching factor, b*

• The better the heuristic, the closer that b* is to 1

• N+1 = 1 + b* + (𝑏 ∗)2 + … + (b*)𝑑

• If d = 5, and N = 52, then b* = 1.92

• There are techniques for generating admissible heuristics

• Relax a problem

• Learn from pattern database

Non-classical search

- Path does not matter, just the final state
- Maximize objective function

Model

• We have a black box “evaluate” function that returns an
objective function value

 Evaluate
candidate state Obj. func

Application dependent fitness function

Local Hill Climbing

• Move in the direction of increasing value

• Very greedy

• Subject to

• Local maxima

• Ridges

• Plateaux

• 8-queens: 86% failure, but only needs 4 steps to succeed, 3 to fail

Hill climbing

• Keep going on a plateau?
• Advantage: Might find another hill
• Disadvantage: infinite loops  limit number of moves on plateau

• 8 queens: 94% success!!

• Stochastic hill climbing
• randomly choose from among better successors (proportional to obj?)

• First-choice hill climbing
• keep generating successors till a better one is generated

• Random-restarts
• If probability of success is p, then we will need 1/p restarts
• 8-queens: p = 0.14 ~= 1/7 so 7 starts
• 6 failures (3 steps), 1 success (4 steps) = 22 steps
• In general: Cost of success + (1-p)/p * cost of failure
• 8-queens sideways: 0.94 success in 21 steps, 64 steps for failure

• Under a minute

Simulated annealing

• Gradient descent (not ascent)

• Accept bad moves with probability 𝑒𝑑𝐸/𝑇

• T decreases every iteration

• If schedule(t) is slow enough we approach finding global optimum
with probability 1

Genetic Algorithms
• Stochastic hill-climbing with information exchange

• A population of stochastic hill-climbers

More detailed GA

• Generate pop(0)

• Evaluate pop(0)

• T=0

• While (not converged) do

• Select pop(T+1) from pop(T)

• Recombine pop(T+1)

• Evaluate pop(T+1)

• T = T + 1

• Done

Generate pop(0)

for(i = 0 ; i < popSize; i++){
for(j = 0; j < chromLen; j++){
Pop[i].chrom[j] = flip(0.5);

}
}

Initialize population with randomly generated strings of 1’s
and 0’s

Genetic Algorithm

• Generate pop(0)

• Evaluate pop(0)

• T=0

• While (not converged) do

• Select pop(T+1) from pop(T)

• Recombine pop(T+1)

• Evaluate pop(T+1)

• T = T + 1

• Done

Evaluate pop(0)

Evaluate
Decoded individual Fitness

Application dependent fitness function

Genetic Algorithm

• Generate pop(0)

• Evaluate pop(0)

• T=0

• While (T < maxGen) do

• Select pop(T+1) from pop(T)

• Recombine pop(T+1)

• Evaluate pop(T+1)

• T = T + 1

• Done

Genetic Algorithm

• Generate pop(0)

• Evaluate pop(0)

• T=0

• While (T < maxGen) do

• Select pop(T+1) from pop(T)

• Recombine pop(T+1)

• Evaluate pop(T+1)

• T = T + 1

• Done

Selection

• Each member of the population gets
a share of the pie proportional to
fitness relative to other members of
the population

• Spin the roulette wheel pie and pick
the individual that the ball lands on

• Focuses search in promising areas

Code

int roulette(IPTR pop, double sumFitness, int popsize)

{

 /* select a single individual by roulette wheel selection */

 double rand,partsum;

 int i;

 partsum = 0.0; i = 0;

 rand = f_random() * sumFitness;

 i = -1;

 do{

 i++;

 partsum += pop[i].fitness;

 } while (partsum < rand && i < popsize - 1) ;

 return i;

}

Genetic Algorithm

• Generate pop(0)

• Evaluate pop(0)

• T=0

• While (T < maxGen) do

• Select pop(T+1) from pop(T)

• Recombine pop(T+1)

• Evaluate pop(T+1)

• T = T + 1

• Done

Crossover and mutation

Mutation Probability = 0.001

Insurance

Xover Probability = 0.7

Exploration operator

Crossover code
void crossover(POPULATION *p, IPTR p1, IPTR p2, IPTR c1, IPTR c2)

{

/* p1,p2,c1,c2,m1,m2,mc1,mc2 */

 int *pi1,*pi2,*ci1,*ci2;

 int xp, i;

 pi1 = p1->chrom;

 pi2 = p2->chrom;

 ci1 = c1->chrom;

 ci2 = c2->chrom;

 if(flip(p->pCross)){

 xp = rnd(0, p->lchrom - 1);

 for(i = 0; i < xp; i++){

 ci1[i] = muteX(p, pi1[i]);

 ci2[i] = muteX(p, pi2[i]);

 }

 for(i = xp; i < p->lchrom; i++){

 ci1[i] = muteX(p, pi2[i]);

 ci2[i] = muteX(p, pi1[i]);

 }

 } else {

 for(i = 0; i < p->lchrom; i++){

 ci1[i] = muteX(p, pi1[i]);

 ci2[i] = muteX(p, pi2[i]);

 }

 }

}

Mutation code

int muteX(POPULATION *p, int pa)

{

 return (flip(p->pMut) ? 1 - pa : pa);

}

Search

• Problem solving by searching for a solution in a space of
possible solutions

• Uninformed versus Informed search

• Atomic representation of state

• Solutions are fixed sequences of actions

