
Artificial Intelligence 
CS482, CS682, MW 1 – 2:15, SEM 201, MS 227 

Prerequisites: 302, 365 

Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil 

 

mailto:sushil@cse.unr.edu
http://www.cse.unr.edu/~sushil


Non-classical search 

- Path does not matter, just the final state 
- Maximize objective function 



Local optimum 

• Heuristic: Number of pairs of queens attacking each other 
directly 

• Movement: only within your column 

H = 1 but all successors 
have > 1 H = 17 



Model 

• We have a black box “evaluate” function that returns an 
objective function value 

          Evaluate 
candidate state Obj. func 

Application dependent fitness function 



Local Hill Climbing 

• Move in the direction of increasing value 

• Very greedy 

• Subject to 

• Local maxima 

• Ridges 

• Plateaux 

• 8-queens: 86% failure, but only needs 4 steps to succeed, 3 to fail 



Hill climbing 

• Keep going on a plateau? 
• Advantage: Might find another hill 
• Disadvantage: infinite loops  limit number of moves on plateau 

• 8 queens: 94% success!! 

• Stochastic hill climbing  
• randomly choose from among better successors (proportional to obj?) 

• First-choice hill climbing  
• keep generating successors till a better one is generated 

• Random-restarts 
• If probability of success is p, then we will need 1/p restarts 
• 8-queens: p = 0.14 ~= 1/7 so 7 starts  
• 6 failures (3 steps), 1 success (4 steps) = 22 steps 
• In general: Cost of success + (1-p)/p * cost of failure 
• 8-queens sideways: 0.94 success in 21 steps, 64 steps for failure 

• Under a minute 



Simulated annealing 

• Gradient descent (not ascent) 

• Accept bad moves with probability 𝑒𝑑𝐸/𝑇 

• T decreases every iteration 

• If schedule(t) is slow enough we approach finding global optimum 
with probability 1 



Beam Search 



Genetic Algorithms 
• Stochastic hill-climbing with information exchange 

• A population of stochastic hill-climbers 



More detailed GA 

• Generate pop(0) 

• Evaluate pop(0) 

• T=0 

• While (not converged) do 

• Select pop(T+1) from pop(T) 

• Recombine pop(T+1) 

• Evaluate pop(T+1) 

• T = T + 1 

• Done 



Generate pop(0) 

for(i = 0 ; i < popSize; i++){         
for(j = 0; j < chromLen; j++){ 
Pop[i].chrom[j] = flip(0.5); 

}                                                
}                                                    

Initialize population with randomly generated strings of 1’s 
and 0’s 



Genetic Algorithm 

• Generate pop(0) 

• Evaluate pop(0) 

• T=0 

• While (not converged) do 

• Select pop(T+1) from pop(T) 

• Recombine pop(T+1) 

• Evaluate pop(T+1) 

• T = T + 1 

• Done 



Evaluate pop(0) 

Evaluate 
Decoded individual Fitness 

Application dependent fitness function 



Genetic Algorithm 

• Generate pop(0) 

• Evaluate pop(0) 

• T=0 

• While (T < maxGen) do 

• Select pop(T+1) from pop(T) 

• Recombine pop(T+1) 

• Evaluate pop(T+1) 

• T = T + 1 

• Done 



Genetic Algorithm 

• Generate pop(0) 

• Evaluate pop(0) 

• T=0 

• While (T < maxGen) do 

• Select pop(T+1) from pop(T) 

• Recombine pop(T+1) 

• Evaluate pop(T+1) 

• T = T + 1 

• Done 



Selection 

• Each member of the population gets 
a share of the pie proportional to 
fitness relative to other members of 
the population 

• Spin the roulette wheel pie and pick 
the individual that the ball lands on 

• Focuses search in promising areas 



Code 

int roulette(IPTR pop, double sumFitness, int popsize) 

{  

 

  /* select a single individual by roulette wheel selection */ 

   

  double rand,partsum; 

  int i; 

 

  partsum = 0.0; i = 0; 

  rand = f_random() * sumFitness;  

   

  i = -1; 

  do{ 

    i++; 

    partsum += pop[i].fitness; 

  } while (partsum < rand && i < popsize - 1) ; 

   

  return i; 

} 

 



Genetic Algorithm 

• Generate pop(0) 

• Evaluate pop(0) 

• T=0 

• While (T < maxGen) do 

• Select pop(T+1) from pop(T) 

• Recombine pop(T+1) 

• Evaluate pop(T+1) 

• T = T + 1 

• Done 



Crossover and mutation 

Mutation Probability = 0.001 

Insurance 

Xover Probability = 0.7 

Exploration operator 



Crossover helps if 

 



Crossover code 
void crossover(POPULATION *p, IPTR p1, IPTR p2, IPTR c1, IPTR c2) 

{ 

/* p1,p2,c1,c2,m1,m2,mc1,mc2 */ 

  int *pi1,*pi2,*ci1,*ci2; 

  int xp, i; 

 

  pi1 = p1->chrom; 

  pi2 = p2->chrom; 

  ci1 = c1->chrom; 

  ci2 = c2->chrom; 

   

  if(flip(p->pCross)){ 

 

    xp = rnd(0, p->lchrom - 1); 

    for(i = 0; i < xp; i++){ 

      ci1[i] = muteX(p, pi1[i]); 

      ci2[i] = muteX(p, pi2[i]); 

    } 

    for(i = xp; i < p->lchrom; i++){ 

      ci1[i] = muteX(p, pi2[i]); 

      ci2[i] = muteX(p, pi1[i]); 

    } 

  } else { 

    for(i = 0; i < p->lchrom; i++){ 

      ci1[i] = muteX(p, pi1[i]); 

      ci2[i] = muteX(p, pi2[i]); 

    } 

  } 

} 



Mutation code 

 
int muteX(POPULATION *p, int pa) 

{ 

  return (flip(p->pMut) ? 1 - pa  : pa); 

} 



23 

How does it work 

01101 13 169 0.14 0.58 1 

11000 24 576 0.49 1.97 2 

01000 8 64 0.06 0.22 0 

10011 19 361 0.31 1.23 1 

Sum 1170 1.0 4.00 4.00 

Avg 293 .25 1.00 1.00 

Max 576 .49 1.97 2.00 

 String                    decoded           f(x^2)                  fi/Sum(fi)         Expected         Actual 



24 

How does it work cont’d 

0110|1 2 01100 12 144 

1100|0 1 11001 25 625 

11|000 4 11011 27 729 

10|011 3 10000 16 256 

Sum 1754 

Avg 439 

Max 729 

    String                    mate                offspring              decoded          f(x^2) 



Continuous spaces 

 

 

 

 

 

 

 

 

 

 

• What is a good value for α ? 
• Too small, it takes too long 

• Too large, may miss the optimum 



Newton Raphson Method 

 



Linear and quadratic programming 

• Constrained optimization 

• Optimize f(x) subject to  

• Linear convex constraints – polynomial time in number of variables 

• Linear programming – scales to thousands of variables 

• Convex non-linear constraints – special cases  polynomial time  

• In special cases non-linear convex optimization can scale to thousands of 
variables 



Games and game trees 

• Multi-agent systems + competitive environment  games and 
adversarial search 

• In game theory any multiagent environment is a game as long 
as each agent has “significant” impact on others 

• In AI many games were 

• Game theoretically: Deterministic, Turn taking, Two-player, Zero-
sum, Perfect information 

• AI: deterministic, fully observable environments in which two 
agents act alternately and utility values at the end are equal but 
opposite. One wins the other loses 

• Chess, Checkers 

• Not Poker, backgammon,  

 



Game types 

Starcraft? Counterstrike? Halo? WoW? 



Search in Games 



Tic-Tac-Toe 



Minimax search 



Minimax algorithm 



3 player Minimax 
• Two player minimax reduces to one number because utilities 

are opposite – knowing one is enough 

• But there should actually be a vector of two utilities with 
player choosing to maximize their utility at their turn 

• So with three players  you have a 3 vector 

• Alliances? 



Minimax properties 

• Complete?  

• Only if tree is finite 

• Note: A finite strategy can exist for an infinite tree! 

• Optimal? 

• Yes, against an optimal opponent! Otherwise, hmmmm 

• Time Complexity? 

• O(𝑏𝑚) 

• Space Complexity? 

• O(bm) 

• Chess: 

• b ~= 35, m ~= 100 for reasonable games 

• Exact solution still completely infeasible 



Alpha-beta pruning 



Alpha-beta 



Alpha-beta 



Alpha-beta 



Alpha-beta  



Alpha-beta 

• Alpha is the best value (for Max) found so far at any choice point 
along the path for Max 

• Best means highest 

• If utility v is worse than alpha, max will avoid it 

• Beta is the best value (for Min) found so far at any choice point 
along the path for Min 

• Best means lowest 

• If utility v is larger than beta, min will avoid it 

 

 



Alpha-beta algorithm 



Alpha beta example 

• Minimax(root)  

• = max (min (3, 12, 8), min(2, x, y), min (14, 5, 2)) 

• = max(3, min(2, x, y), 2) 

• = max(3, aValue <= 2, 2)  

• = 3 

 



Alpha-beta pruning analysis 

• Alpha-beta pruning can reduce the effective branching factor 

• Alpha-beta pruning’s effectiveness is heavily dependent on 
MOVE ORDERING 

• 14, 5, 2 versus 2, 5, 14 

• If we can order moves well 

• O(𝑏
𝑚

2
  ) 

• Which is O((𝑏1/2).𝑚 

• Effective branching factor then become square root of b 

• For chess this is huge  from 35 to 6 

• Alpha-beta can solve a tree twice as deep as minimax in the 
same amount of time! 
• Chess: Try captures first, then threats, then forward moves, then 

backward moves comes close to b = 12 



Imperfect information 

• You still cannot reach all leaves of the chess search tree! 

• What can we do? 

• Go as deep as you can, then 

• Utility Value = Evaluate(Current Board) 

• Proposed in 1950 by Claude Shannon 



Search 

• Problem solving by searching for a solution in a space of 
possible solutions 

• Uninformed versus Informed search 

• Atomic representation of state 

• Solutions are fixed sequences of actions 

 


