Artificial Intelligence

CS482, CS682, MW 1 — 2:15, SEM 201, MS 227
Prerequisites: 302, 365

Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil

mailto:sushil@cse.unr.edu
http://www.cse.unr.edu/~sushil

Non-classical search

objective function lobal ‘
i ___—global maximum

shoulder

N

local maximum

*flat” local maximum

//

e state space

current
state

- Path does not matter, just the final state
- Maximize objective function

Local optimum

* Heuristic: Number of pairs of queens attacking each other
directly

* Movement: only within your column

H =1 but all successors
H=17 have > 1

SRR (W N Ee
16 15 |12 | 14 |[12]| 16

o o L 1 [@ W m .

Model

* We have a black box “evaluate” function that returns an
objective function value

4)

candidate state Ob;. func
Evaluate

A 4
v

- /

Application dependent fitness function

Local Hill Climbing

function HILL-CLIMBING(problem) returns a state that 1s a local maximum

current «— MAKE-NODE(problem INITIAL-STATE)

loop do
neighbor < a highest-valued successor of current
if neighbor VALUE <. current. VALUE then return current STATE
current «— neighbor

Move in the direction of increasing value

Very greedy

Subject to
Local maxima

Ridges
Plateaux

8-queens: 86% failure, but only needs 4 steps to succeed, 3 to fail

Hill climbing

Keep going on a plateau?

Advantage: Might find another hill

Disadvantage: infinite loops = limit number of moves on plateau

8 queens: 94% success!!

Stochastic hill climbing

randomly choose from among better successors (proportional to obj?)
First-choice hill climbing

keep generating successors till a better one is generated
Random-restarts

If probability of success is p, then we will need 1/p restarts

8-queens: p =0.14 ~=1/7 so 7 starts

6 failures (3 steps), 1 success (4 steps) = 22 steps

In general: Cost of success + (1-p)/p * cost of failure

8-queens sideways: 0.94 success in 21 steps, 64 steps for failure
Under a minute

Simulated annealing

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule a mapping from fime to “temperature™

curTent «— MAKE-NODE(problem INITIAL-STATE)
for £t =1 to oo do
T +— schedule(t)
if T' =0 then return current
next «+— a randomly selected successor of current
AFE +— next VALUE — current VALUE
if AE > 0 then current — next

else current «+— next only with probability eRE/T

* Gradient descent (not ascent)
* Accept bad moves with probability e4E/T
* T decreases every iteration

* If schedule(t) is slow enough we approach finding global optimum
with probability 1

Beam Search

|dea: keep k states instead of 1; choose top k of all their successors

Not the same as k searches run in parallel!
Searches that find good states recruit other searches to join them

Problem: quite often, all k states end up on same local hill
|dea: choose k successors randomly, biased towards good ones

Observe the close analogy to natural selection!

Genetic Algorithms

* Stochastic hill-climbing with information exchange
* A population of stochastic hill-climbers

function GENETIC-ALGORITHM population, FITNESS-FN) returns an individual
inputs: population, a set of indrviduals
FITNESS-FN, a function that measures the fitness of an mdividual

repeat
new_population +— empty set

fori=1to SIZEi Eapulatian) do
T SELECTION(population, FITNESS-FN)
y — [} SELECTION(population, FITNESS-FN)

child «— REPRODUCE(z, i)
if (small random probability) then child «— MUTATE(child)
add child to new_population
population «— new_population
until some ndividual 1s fit enough, or enough time has elapsed
return the best indrvidual 1in population, according to FITNESS-FN

function REPRODUCE(z,) returns an mdmvidual
inputs: .y, parent individuals

n+— LENGTH(x); ¢+ random number from 1 to n
return APPEND(SUBSTRING(z, 1, ¢), SUBSTRING(y, ¢ + 1, 1))

More detailed GA

Generate pop(0)

Evaluate pop(0)
T=0
While (not converged) do

Select pop(T+1) from pop(T)
Recombine pop(T+1)
Evaluate pop(T+1)
T=T+1

Done

Generate pop(0)

Initialize population with randomly generated strings of 1’s

and Q’s

-~

\

for(i=0; i < popSize; i++){
for(j = 0; j < chromLen; j++){
Popli].chrom[j] = flip(0.5);
}
}

\

Genetic Algorithm

Generate pop(0)

Evaluate pop(0)
T=0
While (not converged) do

Select pop(T+1) from pop(T)
Recombine pop(T+1)
Evaluate pop(T+1)
T=T+1

Done

Evaluate pop(0)

Decoded individual Fitness

A 4

v

Evaluate

N /

Application dependent fitness function

Genetic Algorithm

Generate pop(0)

Evaluate pop(0)

T=0

While (T < maxGen) do
Select pop(T+1) from pop(T)

Recombine pop(T+1)
Evaluate pop(T+1)
T=T+1

Done

Genetic Algorithm

Generate pop(0)

Evaluate pop(0)

T=0

While (T < maxGen) do
Select pop(T+1) from pop(T)

Recombine pop(T+1)
Evaluate pop(T+1)
T=T+1

Done

Selection

* Each member of the population gets
a share of the pie proportional to
fitness relative to other members of
the population

* Spin the roulette wheel pie and pick
the individual that the ball lands on

* Focuses search in promising areas

Code

int roulette (IPTR pop, double sumFitness, int popsize)

{

/* select a single individual by roulette wheel selection */

double rand,partsum;
int i;

partsum = 0.0; i = O;
rand = £ random() * sumFitness;

i=-1;
do{
i++;
partsum += pop[i] .fitness;
} while (partsum < rand && i < popsize - 1) ;

return i;

Genetic Algorithm

Generate pop(0)

Evaluate pop(0)

T=0

While (T < maxGen) do
Select pop(T+1) from pop(T)

Recombine pop(T+1)
Evaluate pop(T+1)
T=T+1

Done

Crossover and mutation

Mutation Probability = 0.001

Insurance

Xover Probability = 0.7

l Exploration operator

Crossover helps if

Crossover helps iff substrings are meaningful components

Crossover code

void crossover (POPULATION *p, IPTR pl, IPTR p2, IPTR cl,
{
/* pl,p2,cl,c2,ml, m2,mcl, mc2 */

int *pil,*pi2,*cil,*ci2;

int xp, i;

pil = pl->chrom;
pi2 = p2->chrom;
cil = cl->chrom;
ci2 = c2->chrom;

if (flip (p->pCross)) {

xp = rnd(0, p->lchrom - 1);

for(i = 0; i < xp; i++){
cil[i] = muteX(p, pil[i]);
ci2[i] = muteX(p, pi2[i]);

}

for(i = xp; i < p->lchrom; i++) {
cil[i] = muteX(p, pi2[i]);
ci2[i] = muteX(p, pil[i]);

}

} else {

for(i = 0; i < p->1lchrom; i++) {
cil[i] = muteX(p, pil[i]):;
ci2[i] = muteX(p, pi2[i]);

}

IPTR c2)

Mutation code

int muteX (POPULATION *p, int pa)

{
return (flip(p->pMut) ? 1 - pa : pa);

}

How does it work

String decoded f(x"2) fi/Sum(fi) Expected Actual
01101 |13 169 |0.14 |058 |1

11000 |24 |576 |0.49 [1.97 |2

01000 |8 64 0.06 [0.22 |0

10011 |19 [361 |0.31 [1.23 |1

Sum 1170 |1.0 [4.00 |4.00

Avg 293 |25 [1.00 [1.00

Max 576 .49 |1.97 |[2.00

How does it work cont’d

String mate offspring decoded f(xA2)
01101 |2 01100 |12 144

1100/0 |1 11001 |25 625

11|000 |4 11011 |27 729

10/011 |3 10000 |16 256

Sum 1754

Avg 439

Max 729

Continuous spaces

Suppose we want to site three airports in Romania:
— 6-D state space defined by (z,), (79, o), (T3, 73)
— objective function f(z1,y2, T2, Y2, T3, Y3) =
sum of squared distances from each city to nearest airport

Discretization methods turn continuous space into discrete space,
e.g., empirical gradient considers =0 change in each coordinate

Gradient methods compute

of of of of of oOf
Oxy Oyy Oxy Oyy Oxs’ Oy

Vf=

to increase/reduce f, e.g., by x — x + oV f(x)

* What is a good value for a ?
Too small, it takes too long
Too large, may miss the optimum

Newton Raphson Method

Sometimes can solve for V f(x) = 0 exactly (e.g., with one city).
Newton—Raphson (1664, 1690) iterates x «— x — HEI(K}VL}“(KJ
to solve V f(x) = 0, where H;; = 9*f /0x;0x;

Linear and quadratic programming

* Constrained optimization
Optimize f(x) subject to
Linear convex constraints — polynomial time in number of variables
* Linear programming — scales to thousands of variables

Convex non-linear constraints — special cases = polynomial time

* In special cases non-linear convex optimization can scale to thousands of
variables

Games and game trees

* Multi-agent systems + competitive environment = games and
adversarial search

* In game theory any multiagent environment is a game as long
as each agent has “significant” impact on others
* In Al many games were

Game theoretically: Deterministic, Turn taking, Two-player, Zero-
sum, Perfect information

Al: deterministic, fully observable environments in which two
agents act alternately and utility values at the end are equal but
opposite. One wins the other loses

* Chess, Checkers
* Not Poker, backgammon,

Game types

deterministic chance
perfect information chess, checkers, backgammon
go, othello monopoly

imperfect information battleships, bridge, poker, scrabble
blind tictactoe nuclear war

Starcraft? Counterstrike? Halo? WoW?

Search in Games

“Unpredictable” opponent = solution is a strategy
specifying a move for every possible opponent reply

Time limits = unlikely to find goal, must approximate

Plan of attack:

e Computer considers possible lines of play (Babbage, 1846)
e Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)

e Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948;

Shannon, 1950)
e First chess program (Turing, 1951)
e Machine learning to improve evaluation accuracy (Samuel, 1952-57)

e Pruning to allow deeper search (McCarthy, 1956)

Tic-Tac-Toe

MAX (x)
__——F—"_Fd:::;d;::;_{_j ":‘?—:::—":::_—__—::______%E
X X X
MIN (o) X X X
X X X
xjol | [x[o] [x T
MAX (X) 0
_______R_______
x[o[x] [x[o X['_“_
MIN (0) X X
-
x[o[x] [x[ox] [x[o[x] ---
TERMINAL [[0[X| [0]o[x] [[x
0 x|x]o] [x[o]o
Utility -1 0 +1

Figure 5.1 FILES: figures/tictactoe.eps (Tue Nov 3 16:23:55 2009). A (partial) game tree for the
game of fic-tac-toe. The top node 1s the mmitial state, and MAX moves first, placing an X 1n an empty

square. We show part of the tree, giving alternating moves by MIN (0) and MAX (X), until we eventually
reach termunal states, which can be assigned ufilities according to the rules of the game.

Minimax search

Perfect play for deterministic, perfect-information games

Idea: choose move to position with highest minimax value
— best achievable payoff against best play

E.g., 2-ply game:
MAX

MIN

Minimax algorithm

function MiNniMAX-DEcCIsION(state) returns an action
inputs: state, current state in game

return the a in AcTions(state) maximizing MiN-VALUE(RESULT(a, state))

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
Ve— — 33
for a, sin SuccEssORs(state) do v+— MAX (v, MIN-VALUE(s))
return v

function MiN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
W+ OO0
for a, sin SUCCESSORS(state) do v+« MIN(v, MAX-VALUE(s))
return v

3 player Minimax

Two player minimax reduces to one number because utilities
are opposite — knowing one is enough

But there should actually be a vector of two utilities with
player choosing to maximize their utility at their turn

So with three players = you have a 3 vector

Alliances?

to move
A

(1,2,6) (4,2,3) (6,1,2) (7.,4.1) G (1L,5,2y (7,71 (5,4,5)

Figure 5.4 FILES: figures/minimax3.eps (Tue Nov 3 16:23:11 2009). The first three plies of a
game free with three players (A, B, (). Each node 1s labeled with values from the viewpont of each
player. The best move 1s marked at the root.

Minimax properties

Complete?

Only if tree is finite
Note: A finite strategy can exist for an infinite tree!

Optimal?
Yes, against an optimal opponent! Otherwise, hmmmm

Time Complexity?
o(b™)

Space Complexity?
O(bm)

Chess:

b ~= 35, m ~= 100 for reasonable games

Exact solution still completely infeasible

Alpha-beta pruning

MAX 23

MIN 3

Alpha-beta

MAX 23

MIN 3 /T
X X

Alpha-beta

MAX

MIN <14

Alpha-beta

MAX

MIN

Alpha-beta

MAX

MIN

Alpha-beta

* Alpha is the best value (for Max) found so far at any choice point
along the path for Max

Best means highest
If utility v is worse than alpha, max will avoid it

* Beta is the best value (for Min) found so far at any choice point
along the path for Min

Best means lowest

If utility v is larger than beta, min will avoid it

Alpha-beta algorithm

function ALrHA-BETA-DECISION(state) returns an action
return the a in AcTioNS(state) maximizing MIN-VALUE(RESULT(a, staie))

function MAX-VALUE(state, o, 3) returns a utility value
inputs: state, current state in game
v, the value of the best alternative for MAX along the path to state
3, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(state) then return UTILITY(state)
Ve— —00
for a, sin SucCEssoORs(state) do
v+ MaX(v, MIN-VALUE(s, av, 3))
ifv = 4 then return v
a +— MAX(a, v)
return v

function MiN-VALUE(state, o, 3) returns a utility value
same as MAX-VALUE but with roles of o, 7 reversed

Alpha beta example

* Minimax(root)
= max (min (3, 12, 8), min(2, x, y), min (14, 5, 2))
= max(3, min(2, x, y), 2)
= max(3, aValue <=2, 2)
=3

Alpha-beta pruning analysis

* Alpha-beta pruning can reduce the effective branching factor
* Alpha-beta pruning’s effectiveness is heavily dependent on

MOVE ORDERING MAX >3
* 14,5, 2 versus 2,5, 14
 If we can order moves well min 3 €2 S B 2
m
* O(bz2)
* Which is O((b1/2).™ s 2 B2 Mm% 5

* Effective branching factor then become square root of b
* For chess this is huge 2 from 35to 6

* Alpha-beta can solve a tree twice as deep as minimax in the
same amount of time!

Chess: Try captures first, then threats, then forward moves, then
backward moves comes close to b =12

Imperfect information

* You still cannot reach all leaves of the chess search tree!
* What can we do?

Go as deep as you can, then

Utility Value = Evaluate(Current Board)

Proposed in 1950 by Claude Shannon

Search

Problem solving by searching for a solution in a space of
possible solutions

Uninformed versus Informed search

Atomic representation of state

Solutions are fixed sequences of actions

