Artificial Intelligence

CS482, CS682, MW 1 — 2:15, SEM 201, MS 227
Prerequisites: 302, 365

Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil

mailto:sushil@cse.unr.edu
http://www.cse.unr.edu/~sushil

Non-classical search

objective function lobal ‘
i ___—global maximum

shoulder

N

local maximum

*flat” local maximum

//

e state space

current
state

- Path does not matter, just the final state
- Maximize objective function

How does it work

String decoded f(x"2) fi/Sum(fi) Expected Actual
01101 |13 169 |0.14 |058 |1

11000 |24 |576 |0.49 [1.97 |2

01000 |8 64 0.06 [0.22 |0

10011 |19 [361 |0.31 [1.23 |1

Sum 1170 |1.0 [4.00 |4.00

Avg 293 |25 [1.00 [1.00

Max 576 .49 |1.97 |[2.00

How does it work cont’d

String mate offspring decoded f(xA2)
01101 |2 01100 |12 144

1100/0 |1 11001 |25 625

11|000 |4 11011 |27 729

10/011 |3 10000 |16 256

Sum 1754

Avg 439

Max 729

GA Theory

Why fitness proportional selection?

Fitness proportional selection optimizes the tradeoff between
exploration and exploitation. Minimizes the expected loss from
choosing unwisely among competing schema

Why binary representations?

Binary representations maximize the ratio of the number of
schemas to number of strings

* Excuse me, but what is a schema?

Mutation can be thought of as beam hill-climbing. Why have
crossover?

Crossover allows information exchange that can lead to better
performance in some spaces

Schemas and Schema Theorem

* How do we analyze GAs?
Individuals do not survive
Bits and pieces of individuals survive
* Three questions:
What do these bits and pieces signify?
How do we describe bits and pieces?
What happens to these bits and pieces over time?

Schemas

* What does part of a string that encodes a candidate solution
signify?

1111 11 ol ol ol A pointin the search space

1] 1] 1 An area of the search space

Different kind of crossover lead to different kinds of areas that need to be described

1 ol 1 A different kind of area

11 *1 *| 0] 1] *| A schema denotes a portion of the search space

Schema notation

* Schema H = 01*0* denotes the set of strings:
01000
01001
01100
01101

Schema properties

* Order of a schema H 2> 0O(H)
Number of fixed positions
O(10**0)=3
* Defining length of a schema
Distance between first and last fixed position
d(10**0) =4
d(*1*00) =3

What does GA do to schemas?

* What does selection do to schemas?

If m (h, t) is the number of schemas h at time t then

m(h, t+1) = % m (h,t) = above average schemas increase exponentional

o
i

* What does crossover do to schemas?
Probability that schema gets disrupted

Probability of disruption = P. %

This is a conservative probability of disruption. Consider what happens when
crossover identical strings

* What does mutation do to schemas?
Probability that mutation does not destroy a schema

Probability of conservation = (1 — P,,)°™ =(1-0(h) P,, - (higher order terms)

The Schema theorem

* Schema Theorem:

a(h)

M(h, t+1) > };: m (h, t) [1 — P. o(h) P] ... ignoring higher order terms

* The schema theorem leads to the building block hypothesis that
says:
GAs work by juxtaposing, short (in defining length), low-order, above
average fitness schema or building blocks into more complete solutions

GA Theory

Why fitness proportional selection?

Why crossover?

Why mutation?

Why binary representations?

Continuous spaces

Suppose we want to site three airports in Romania:
— 6-D state space defined by (z,), (79, o), (T3, 73)
— objective function f(z1,y2, T2, Y2, T3, Y3) =
sum of squared distances from each city to nearest airport

Discretization methods turn continuous space into discrete space,
e.g., empirical gradient considers =0 change in each coordinate

Gradient methods compute

of of of of of oOf
Oxy Oyy Oxy Oyy Oxs’ Oy

Vf=

to increase/reduce f, e.g., by x — x + oV f(x)

* What is a good value for a ?
Too small, it takes too long
Too large, may miss the optimum

Newton Raphson Method

Sometimes can solve for V f(x) = 0 exactly (e.g., with one city).
Newton—Raphson (1664, 1690) iterates x «— x — HEI(K}VL}“(KJ
to solve V f(x) = 0, where H;; = 9*f /0x;0x;

Linear and quadratic programming

* Constrained optimization
Optimize f(x) subject to
Linear convex constraints — polynomial time in number of variables
* Linear programming — scales to thousands of variables

Convex non-linear constraints — special cases = polynomial time

* In special cases non-linear convex optimization can scale to thousands of
variables

Games and game trees

* Multi-agent systems + competitive environment = games and
adversarial search

* In game theory any multiagent environment is a game as long
as each agent has “significant” impact on others
* In Al many games were

Game theoretically: Deterministic, Turn taking, Two-player, Zero-
sum, Perfect information

Al: deterministic, fully observable environments in which two
agents act alternately and utility values at the end are equal but
opposite. One wins the other loses

* Chess, Checkers
* Not Poker, backgammon,

Game types

deterministic chance
perfect information chess, checkers, backgammon
go, othello monopoly

imperfect information battleships, bridge, poker, scrabble
blind tictactoe nuclear war

Starcraft? Counterstrike? Halo? WoW?

Search in Games

“Unpredictable” opponent = solution is a strategy
specifying a move for every possible opponent reply

Time limits = unlikely to find goal, must approximate

Plan of attack:

e Computer considers possible lines of play (Babbage, 1846)
e Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)

e Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948;

Shannon, 1950)
e First chess program (Turing, 1951)
e Machine learning to improve evaluation accuracy (Samuel, 1952-57)

e Pruning to allow deeper search (McCarthy, 1956)

Tic-Tac-Toe

* Two player, deterministic, small tree
* Two players: Max versus Min
* Approximately: 9! tree nodes

Tic-Tac-Toe

MAX (x)
__——F—"_Fd:::;d;::;_{_j ":‘?—:::—":::_—__—::______%E
X X X
MIN (o) X X X
X X X
xjol | [x[o] [x T
MAX (X) 0
_______R_______
x[o[x] [x[o X['_“_
MIN (0) X X
-
x[o[x] [x[ox] [x[o[x] ---
TERMINAL [[0[X| [0]o[x] [[x
0 x|x]o] [x[o]o
Utility -1 0 +1

Figure 5.1 FILES: figures/tictactoe.eps (Tue Nov 3 16:23:55 2009). A (partial) game tree for the
game of fic-tac-toe. The top node 1s the mmitial state, and MAX moves first, placing an X 1n an empty

square. We show part of the tree, giving alternating moves by MIN (0) and MAX (X), until we eventually
reach termunal states, which can be assigned ufilities according to the rules of the game.

Minimax search

Perfect play for deterministic, perfect-information games

Idea: choose move to position with highest minimax value
— best achievable payoff against best play

E.g., 2-ply game:
MAX

MIN

Minimax algorithm

function MiNniMAX-DEcCIsION(state) returns an action
inputs: state, current state in game

return the a in AcTions(state) maximizing MiN-VALUE(RESULT(a, state))

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
Ve— — 33
for a, sin SuccEssORs(state) do v+— MAX (v, MIN-VALUE(s))
return v

function MiN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
W+ OO0
for a, sin SUCCESSORS(state) do v+« MIN(v, MAX-VALUE(s))
return v

3 player Minimax

Two player minimax reduces to one number because utilities
are opposite — knowing one is enough

But there should actually be a vector of two utilities with
player choosing to maximize their utility at their turn

So with three players = you have a 3 vector

Alliances?

to move
A

(1,2,6) (4,2,3) (6,1,2) (7.,4.1) G (1L,5,2y (7,71 (5,4,5)

Figure 5.4 FILES: figures/minimax3.eps (Tue Nov 3 16:23:11 2009). The first three plies of a
game free with three players (A, B, (). Each node 1s labeled with values from the viewpont of each
player. The best move 1s marked at the root.

Minimax properties

Complete?

Only if tree is finite
Note: A finite strategy can exist for an infinite tree!

Optimal?
Yes, against an optimal opponent! Otherwise, hmmmm

Time Complexity?
o(b™)

Space Complexity?
O(bm)

Chess:

b ~= 35, m ~= 100 for reasonable games

Exact solution still completely infeasible

Alpha-beta pruning

MAX 23

MIN 3

Alpha-beta

MAX 23

MIN 3 /T
X X

Alpha-beta

MAX

MIN <14

Alpha-beta

MAX

MIN

Alpha-beta

MAX

MIN

Alpha-beta

* Alpha is the best value (for Max) found so far at any choice point
along the path for Max

Best means highest
If utility v is worse than alpha, max will avoid it

* Beta is the best value (for Min) found so far at any choice point
along the path for Min

Best means lowest

If utility v is larger than beta, min will avoid it

Alpha-beta algorithm

function ALrHA-BETA-DECISION(state) returns an action
return the a in AcTioNS(state) maximizing MIN-VALUE(RESULT(a, staie))

function MAX-VALUE(state, o, 3) returns a utility value
inputs: state, current state in game
v, the value of the best alternative for MAX along the path to state
3, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(state) then return UTILITY(state)
Ve— —00
for a, sin SucCEssoORs(state) do
v+ MaX(v, MIN-VALUE(s, av, 3))
ifv = 4 then return v
a +— MAX(a, v)
return v

function MiN-VALUE(state, o, 3) returns a utility value
same as MAX-VALUE but with roles of o, 7 reversed

Alpha beta example

* Minimax(root)
= max (min (3, 12, 8), min(2, x, y), min (14, 5, 2))
= max(3, min(2, x, y), 2)
= max(3, aValue <=2, 2)
=3

Alpha-beta pruning analysis

* Alpha-beta pruning can reduce the effective branching factor
* Alpha-beta pruning’s effectiveness is heavily dependent on

MOVE ORDERING MAX >3
* 14,5, 2 versus 2,5, 14
 If we can order moves well min 3 €2 S B 2
m
* O(bz2)
* Which is O((b1/2).™ s 2 B2 Mm% 5

* Effective branching factor then become square root of b
* For chess this is huge 2 from 35to 6

* Alpha-beta can solve a tree twice as deep as minimax in the
same amount of time!

Chess: Try captures first, then threats, then forward moves, then
backward moves comes close to b =12

Imperfect information

You still cannot reach all leaves of the chess search tree!

What can we do?
Go as deep as you can, then
Utility Value = Evaluate(Current Board)
Proposed in 1950 by Claude Shannon

Apply an evaluation function to non-terminal nodes

Use a cutoff test to decide when to stop expanding nodes and
apply the evaluation function

Evaluation function

* Must order nodes in the same way as the utility function

Wins > Draws > Losses
* Fast

Otherwise it is better to search deeper and get more information
* For non-terminal states, high evaluations should mean higher

probability of winning
Chess is not a chancy game
But computational limitations make eval function chancy!

Which is better?

-

:

T B e

(a) White to move

(b) White to move

2

Figure5.8 FILES: figures/chess-evaluation3.eps (Tue Nov 3 16:22:33 2009). Two chess positions
that differ only in the position of the rook at lower right. In (a), Black has an advantage of a knight and
two pawns, which should be enough to win the game. In (b), White will capture the queen, giving it an

advantage that should be strong enough to win.

Evaluation functions

* A function of board features
Use proportions of board-states with winning, losing, and drawing states t
compute probabilities.
72% winning (1.0)
20% draws (0.0)
8% losses (0.5)
Then: evalFunction(board state) = (0.72 * 1) + (0.2 * 0) + (0.08 * 0.5)
Use a weighted linear sum of board features (Can also use non-linear f)
Chess book: pawn = 1, bishop/knight = 3, rook = 5, queen =9
Good pawn structure = A, king safety = B

evalFunction(board state) = w;* pawns + w, * bishops + w3 * knight + w, * ro
+ ...+ w, * good pawn structure +....

All this information for chess comes from centuries of human expertise

For new games?

&

(a) White to move (b) White to move

* Horizon effect and singular extension
I

o 1 Oov B b

Forward pruning

* Beam search
* ProbCut — learn from experience to reduce the chance that
good moves will be pruned

Like alpha-beta but prunes nodes that are probably outside the
current alpha-beta window

Othello

* Combine all these techniques plus

Table lookups

* Chess
Openings (perhaps upto 10 moves)
Endings (5, 6 pieces left)
King-Rook versus King (KRK)
King-Bishop-Knight versus King (KBNK)
* Checkers
Is solved!

Stochastic Games

* Chance is involved (Backgammon, Dominoes, ...)
* Increases depth if modeled like:

MAX A
ciance @ O Q-0 O
1/36 118 1118 1136
1.1 12 6.5 6.6
MIN \/ \/ Y \/
CHANCE) O ... O 9
1/36 118 118 1/36
1.1 1.2 6,5 6.6

MAX A U U

TERMINAL 2 -1 1 —1 1

Simple example (coin flipping)

Expected value minimax

if state is a MAX node then

return the highest EXPECTIMINIMAX- VALUE of SUCCESSORS(state)
if state is a MIN node then

return the lowest EXPECTIMINIMAX-VALUE of SUCCESSORS(state)
if state is a chance node then

return average of EXPECTIMINIMAX-VALUE of SUCCESSORS(state)

Backgammon

Dice rolls increase b: 21 possible rolls with 2 dice
Backgammon == 20 legal moves (can be 6,000 with 1-1 roll)

depth 4 = 20 x (21 x 20)* ~ 1.2 x 10”

As depth increases, probability of reaching a given node shrinks
—- value of lookahead is diminished

a—[7 pruning is much less effective

TDGAMMON uses depth-2 search + very good EvAL
=~ world-champion level

With chance, exact values matter

MAX

DICE

MIN

1 400 400

Behaviour is preserved only by positive linear transformation of EVAL

Hence EVAL should be proportional to the expected payoff

Fog of War

* Use belief states to represent the set of states you could be in
given all the percepts so far

* Kriegspiel

You can only see your pieces
Judge says: Ok, illegal, check, ...

Card Games

* Consider all possible deals of a deck of cards, solve each deal as a
fully observable game, then choose best move averaged over all
deals

* Computationally infeasible but:

Let us do Monte Carlo approximation
Deal a 100 deals, a 1000 deals, ... whatever is computational feasible
Choose best outcome move

* Read section 5.7 — state of the art game programs

Errors in evaluation functions!

1000 1000 1000

Summary

* Games are fun to work on

* They give insight on several important issues in Al
Perfection is unattainable = approximate
Think about what to think about
Uncertainty constrains assignment of values to states
Optimal decisions depend on information state, not real state

* Games are to Al as grand prix racing is to automobile design

Searching with Nondeterministic action

Search

Problem solving by searching for a solution in a space of
possible solutions

Uninformed versus Informed search

Atomic representation of state

Solutions are fixed sequences of actions

