Artificial Intelligence

CS482, CS682, MW 1 — 2:15, SEM 201, MS 227
Prerequisites: 302, 365

Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil

mailto:sushil@cse.unr.edu
http://www.cse.unr.edu/~sushil

Games and game trees

* Multi-agent systems + competitive environment = games and
adversarial search

* In game theory any multiagent environment is a game as long
as each agent has “significant” impact on others
* In Al many games were

Game theoretically: Deterministic, Turn taking, Two-player, Zero-
sum, Perfect information

Al: deterministic, fully observable environments in which two
agents act alternately and utility values at the end are equal but
opposite. One wins the other loses

* Chess, Checkers
* Not Poker, backgammon,

Game types

deterministic chance
perfect information chess, checkers, backgammon
go, othello monopoly

imperfect information battleships, bridge, poker, scrabble
blind tictactoe nuclear war

Starcraft? Counterstrike? Halo? WoW?

Search in Games

“Unpredictable” opponent = solution is a strategy
specifying a move for every possible opponent reply

Time limits = unlikely to find goal, must approximate

Plan of attack:

e Computer considers possible lines of play (Babbage, 1846)
e Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)

e Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948;

Shannon, 1950)
e First chess program (Turing, 1951)
e Machine learning to improve evaluation accuracy (Samuel, 1952-57)

e Pruning to allow deeper search (McCarthy, 1956)

Tic-Tac-Toe

* Two player, deterministic, small tree
* Two players: Max versus Min
* Approximately: 9! tree nodes

Tic-Tac-Toe

MAX (x)
__——F—"_Fd:::;d;::;_{_j ":‘?—:::—":::_—__—::______%E
X X X
MIN (o) X X X
X X X
xjol | [x[o] [x T
MAX (X) 0
_______R_______
x[o[x] [x[o X['_“_
MIN (0) X X
-
x[o[x] [x[ox] [x[o[x] ---
TERMINAL [[0[X| [0]o[x] [[x
0 x|x]o] [x[o]o
Utility -1 0 +1

Figure 5.1 FILES: figures/tictactoe.eps (Tue Nov 3 16:23:55 2009). A (partial) game tree for the
game of fic-tac-toe. The top node 1s the mmitial state, and MAX moves first, placing an X 1n an empty

square. We show part of the tree, giving alternating moves by MIN (0) and MAX (X), until we eventually
reach termunal states, which can be assigned ufilities according to the rules of the game.

Minimax search

Perfect play for deterministic, perfect-information games

Idea: choose move to position with highest minimax value
— best achievable payoff against best play

E.g., 2-ply game:
MAX

MIN

Minimax algorithm

function MiNniMAX-DEcCIsION(state) returns an action
inputs: state, current state in game

return the a in AcTions(state) maximizing MiN-VALUE(RESULT(a, state))

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
Ve— — 33
for a, sin SuccEssORs(state) do v+— MAX (v, MIN-VALUE(s))
return v

function MiN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
W+ OO0
for a, sin SUCCESSORS(state) do v+« MIN(v, MAX-VALUE(s))
return v

3 player Minimax

Two player minimax reduces to one number because utilities
are opposite — knowing one is enough

But there should actually be a vector of two utilities with
player choosing to maximize their utility at their turn

So with three players = you have a 3 vector

Alliances?

to move
A

(1,2,6) (4,2,3) (6,1,2) (7.,4.1) G (1L,5,2y (7,71 (5,4,5)

Figure 5.4 FILES: figures/minimax3.eps (Tue Nov 3 16:23:11 2009). The first three plies of a
game free with three players (A, B, (). Each node 1s labeled with values from the viewpont of each
player. The best move 1s marked at the root.

Minimax properties

Complete?

Only if tree is finite
Note: A finite strategy can exist for an infinite tree!

Optimal?
Yes, against an optimal opponent! Otherwise, hmmmm

Time Complexity?
o(b™)

Space Complexity?
O(bm)

Chess:

b ~= 35, m ~= 100 for reasonable games

Exact solution still completely infeasible

Alpha-beta pruning

MAX 23

MIN 3

Alpha-beta

MAX 23

MIN 3 /T
X X

Alpha-beta

MAX

MIN <14

Alpha-beta

MAX

MIN

Alpha-beta

MAX

MIN

Alpha-beta

* Alpha is the best value (for Max) found so far at any choice point
along the path for Max

Best means highest
If utility v is worse than alpha, max will avoid it

* Beta is the best value (for Min) found so far at any choice point
along the path for Min

Best means lowest

If utility v is larger than beta, min will avoid it

Alpha-beta algorithm

function ALrHA-BETA-DECISION(state) returns an action
return the a in AcTioNS(state) maximizing MIN-VALUE(RESULT(a, staie))

function MAX-VALUE(state, o, 3) returns a utility value
inputs: state, current state in game
v, the value of the best alternative for MAX along the path to state
3, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(state) then return UTILITY(state)
Ve— —00
for a, sin SucCEssoORs(state) do
v+ MaX(v, MIN-VALUE(s, av, 3))
ifv = 4 then return v
a +— MAX(a, v)
return v

function MiN-VALUE(state, o, 3) returns a utility value
same as MAX-VALUE but with roles of o, 7 reversed

Alpha beta example

* Minimax(root)
= max (min (3, 12, 8), min(2, x, y), min (14, 5, 2))
= max(3, min(2, x, y), 2)
= max(3, aValue <=2, 2)
=3

Alpha-beta pruning analysis

* Alpha-beta pruning can reduce the effective branching factor
* Alpha-beta pruning’s effectiveness is heavily dependent on

MOVE ORDERING MAX >3
* 14,5, 2 versus 2,5, 14
 If we can order moves well min 3 €2 S B 2
m
* O(bz2)
* Which is O((b1/2).™ s 2 B2 Mm% 5

* Effective branching factor then become square root of b
* For chess this is huge 2 from 35to 6

* Alpha-beta can solve a tree twice as deep as minimax in the
same amount of time!

Chess: Try captures first, then threats, then forward moves, then
backward moves comes close to b =12

Imperfect information

You still cannot reach all leaves of the chess search tree!

What can we do?
Go as deep as you can, then
Utility Value = Evaluate(Current Board)
Proposed in 1950 by Claude Shannon

Apply an evaluation function to non-terminal nodes

Use a cutoff test to decide when to stop expanding nodes and
apply the evaluation function

Evaluation function

* Must order nodes in the same way as the utility function

Wins > Draws > Losses
* Fast

Otherwise it is better to search deeper and get more information
* For non-terminal states, high evaluations should mean higher

probability of winning
Chess is not a chancy game
But computational limitations make eval function chancy!

Which is better?

-

:

T B e

(a) White to move

(b) White to move

2

Figure5.8 FILES: figures/chess-evaluation3.eps (Tue Nov 3 16:22:33 2009). Two chess positions
that differ only in the position of the rook at lower right. In (a), Black has an advantage of a knight and
two pawns, which should be enough to win the game. In (b), White will capture the queen, giving it an

advantage that should be strong enough to win.

Evaluation functions

* A function of board features
Use proportions of board-states with winning, losing, and drawing states t
compute probabilities.
72% winning (1.0)
20% draws (0.0)
8% losses (0.5)
Then: evalFunction(board state) = (0.72 * 1) + (0.2 * 0) + (0.08 * 0.5)
Use a weighted linear sum of board features (Can also use non-linear f)
Chess book: pawn = 1, bishop/knight = 3, rook = 5, queen =9
Good pawn structure = A, king safety = B

evalFunction(board state) = w;* pawns + w, * bishops + w3 * knight + w, * ro
+ ...+ w, * good pawn structure +....

All this information for chess comes from centuries of human expertise

For new games?

&

(a) White to move (b) White to move

* Horizon effect and singular extension
I

o 1 Oov B b

Forward pruning

* Beam search
* ProbCut — learn from experience to reduce the chance that
good moves will be pruned

Like alpha-beta but prunes nodes that are probably outside the
current alpha-beta window

Othello

* Combine all these techniques plus

Table lookups

* Chess
Openings (perhaps upto 10 moves)
Endings (5, 6 pieces left)
King-Rook versus King (KRK)
King-Bishop-Knight versus King (KBNK)
* Checkers
Is solved!

Stochastic Games

* Chance is involved (Backgammon, Dominoes, ...)
* Increases depth if modeled like:

MAX A
ciance @ O Q-0 O
1/36 118 1118 1136
1.1 12 6.5 6.6
MIN \/ \/ Y \/
CHANCE) O ... O 9
1/36 118 118 1/36
1.1 1.2 6,5 6.6

MAX A U U

TERMINAL 2 -1 1 —1 1

Simple example (coin flipping)

Expected value minimax

if state is a MAX node then

return the highest EXPECTIMINIMAX- VALUE of SUCCESSORS(state)
if state is a MIN node then

return the lowest EXPECTIMINIMAX-VALUE of SUCCESSORS(state)
if state is a chance node then

return average of EXPECTIMINIMAX-VALUE of SUCCESSORS(state)

Backgammon

Dice rolls increase b: 21 possible rolls with 2 dice
Backgammon == 20 legal moves (can be 6,000 with 1-1 roll)

depth 4 = 20 x (21 x 20)* ~ 1.2 x 10”

As depth increases, probability of reaching a given node shrinks
—- value of lookahead is diminished

a—[7 pruning is much less effective

TDGAMMON uses depth-2 search + very good EvAL
=~ world-champion level

With chance, exact values matter

MAX

DICE

MIN

1 400 400

Behaviour is preserved only by positive linear transformation of EVAL

Hence EVAL should be proportional to the expected payoff

Fog of War

* Use belief states to represent the set of states you could be in
given all the percepts so far

* Kriegspiel
You can only see your pieces
Judge says: Ok, illegal, check, ...

What is a belief state?

Card Games

* Consider all possible deals of a deck of cards, solve each deal as a
fully observable game, then choose best move averaged over all
deals

* Computationally infeasible but:

Let us do Monte Carlo approximation
Deal a 100 deals, a 1000 deals, ... whatever is computational feasible
Choose best outcome move

* Read section 5.7 — state of the art game programs

Errors in evaluation functions!

1000 1000 1000

Summary

* Games are fun to work on

* They give insight on several important issues in Al
Perfection is unattainable = approximate
Think about what to think about
Uncertainty constrains assignment of values to states
Optimal decisions depend on information state, not real state

* Games are to Al as grand prix racing is to automobile design

Searching with Nondeterministic action

In the past, we knew what state we were in and a solution was
a path from root to goal.

Now, how do you find paths when the environment is partially
observable or non-deterministic or both and you don’t know
what state you are in?

You make contingency plans
If in state x theny

You use percepts

| did an action with a non-deterministic result, percepts can tell
me which result actually occurred

Erratic Vacuum cleaners

Suck
* Sometimes cleans
adjacent square © o3R8 |08 o3R8 | 08B
* Sometimes deposits dirt
in current square ® 3 fﬁg il P =)
* Transition Model 5 “é@ 055 6 ‘fﬁg
Result = Results
Suck({1}) = {5, 7} . ‘é@ q =)

Erratic Vacuum cleaners

* Sometimes cleans adjacent square ©

* Sometimes deposits dirt in current square

®

[am—
(g

Solution
[Suck, if State == 5 then [Right, Suck] else []]

* Solutions are trees! Not sequences 0

* Solutions are nested if-then-else

o] 5] FE| FE

]

Many problems in the real world are of
this type because exact prediction is
impossible

Keep your eyes open when you drive/walk/fly

And-Or search trees

=]
T | o
Suck Right

vy =l =t
7 5 o 2] eim | v

GOAL SV Right Lefi Suck

1
5 = s 1 : 8 =4 a| .z =
LOOP (r2AL /f

GOAL

.l

LOOP

And-Or search trees.. —~..

Or nodes (Suck or Right) /g\

=)

And node {5, 7} - Results GOAL .?V\fgm Left
And-Or tree solution is a subtree: (E O

Goal node at every leaf

. 5 < s 1 n‘%g‘ R 6 1 .;:;]
One action at each Or-node oor Loop Suck Left L oop
Includes every outcome branch for And ? O
.y]
* Same as: ’ S
GOAL LOOFP

* [Suck, if State == 5 then [Right, Suck] else []]

Remember the simple problem
solving agent?

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
persistent: seq, an action sequence, mitially empty
state, some description of the current world state
goal, a goal, imtially null
problem, a problem formulation

state «— UPDATE-STATE(state, percept)
if seq 15 empty then
goal +—— FORMULATE-GOAL(state)
problem +— FORMULATE-PROBLEM siate, goal)
seq «— SEARCH(problem)
if seq = fatlure then return a null action
action «— FIRST(seq)
seq «— REST(seq)
return action

And-Or problem solver

function AND-OR-GRAPH-SEARCH(problem) returns a conditional plan, or failure
OR-SEARCH(problem INITIAL-STATE, problem, [])

function OR-SEARCH(staile, problem, path) returns a conditional plan, or failure
if problem GOAL-TEST(state) then return the empty plan)
If there is a non-cyc

if state 1s on path then return failure
for each action in problem ACTIONS(state) do solution it must be
plan «— AND-SEARCH(RESULTS(state, action), problem, [state | path]) findable from the e

if plan 1] th tur t1 lan
| i 1p an # failure then return [action | plan| occurrence of state
return failure
path (Completenes

function AND-SEARCH(states, problem, path) returns a conditional plan, or failure
for each s, in sfates do
plan, «— OR-SEARCH(s,, problem path)

if plan, = failure then return failure
return [if s; then plan, else if s; then plan, else ...if 5,1 then plan__, else plan, |

Figure 4.11 An algonthm for searching AND—OR graphs generated by nondeterministic environ-
ments. It returns a conditional plan that reaches a goal state in all circumstances. (The notation [z |]

refers to the list formed by adding object x to the front of list [.)

Recursive, breadth-first. Can use breadth-first, ...

Slippery vacuum worlds

* Movement actions sometimes fail and leave you in
the same location

* No acyclic solutions!
* Labels enable cycles
* [Suck, L1: Right, if State == 5 then L1 elseﬂa L ck]

Suck Right

Search

Problem solving by searching for a solution in a space of
possible solutions

Uninformed versus Informed search

Atomic representation of state

Solutions are fixed sequences of actions

