
Artificial Intelligence
CS482, CS682, MW 1 – 2:15, SEM 201, MS 227

Prerequisites: 302, 365

Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil

mailto:sushil@cse.unr.edu
http://www.cse.unr.edu/~sushil

Games and game trees

• Multi-agent systems + competitive environment  games and
adversarial search

• In game theory any multiagent environment is a game as long
as each agent has “significant” impact on others

• In AI many games were

• Game theoretically: Deterministic, Turn taking, Two-player, Zero-
sum, Perfect information

• AI: deterministic, fully observable environments in which two
agents act alternately and utility values at the end are equal but
opposite. One wins the other loses

• Chess, Checkers

• Not Poker, backgammon,

Game types

Starcraft? Counterstrike? Halo? WoW?

Search in Games

Tic-Tac-Toe

• Two player, deterministic, small tree

• Two players: Max versus Min

• Approximately: 9! tree nodes

Tic-Tac-Toe

Minimax search

Minimax algorithm

3 player Minimax
• Two player minimax reduces to one number because utilities

are opposite – knowing one is enough

• But there should actually be a vector of two utilities with
player choosing to maximize their utility at their turn

• So with three players  you have a 3 vector

• Alliances?

Minimax properties

• Complete?

• Only if tree is finite

• Note: A finite strategy can exist for an infinite tree!

• Optimal?

• Yes, against an optimal opponent! Otherwise, hmmmm

• Time Complexity?

• O(𝑏𝑚)

• Space Complexity?

• O(bm)

• Chess:

• b ~= 35, m ~= 100 for reasonable games

• Exact solution still completely infeasible

Alpha-beta pruning

Alpha-beta

Alpha-beta

Alpha-beta

Alpha-beta

Alpha-beta

• Alpha is the best value (for Max) found so far at any choice point
along the path for Max

• Best means highest

• If utility v is worse than alpha, max will avoid it

• Beta is the best value (for Min) found so far at any choice point
along the path for Min

• Best means lowest

• If utility v is larger than beta, min will avoid it

Alpha-beta algorithm

Alpha beta example

• Minimax(root)

• = max (min (3, 12, 8), min(2, x, y), min (14, 5, 2))

• = max(3, min(2, x, y), 2)

• = max(3, aValue <= 2, 2)

• = 3

Alpha-beta pruning analysis

• Alpha-beta pruning can reduce the effective branching factor

• Alpha-beta pruning’s effectiveness is heavily dependent on
MOVE ORDERING

• 14, 5, 2 versus 2, 5, 14

• If we can order moves well

• O(𝑏
𝑚

2
)

• Which is O((𝑏1/2).𝑚

• Effective branching factor then become square root of b

• For chess this is huge  from 35 to 6

• Alpha-beta can solve a tree twice as deep as minimax in the
same amount of time!
• Chess: Try captures first, then threats, then forward moves, then

backward moves comes close to b = 12

Imperfect information

• You still cannot reach all leaves of the chess search tree!

• What can we do?

• Go as deep as you can, then

• Utility Value = Evaluate(Current Board)

• Proposed in 1950 by Claude Shannon

• Apply an evaluation function to non-terminal nodes

• Use a cutoff test to decide when to stop expanding nodes and
apply the evaluation function

Evaluation function

• Must order nodes in the same way as the utility function

• Wins > Draws > Losses

• Fast

• Otherwise it is better to search deeper and get more information

• For non-terminal states, high evaluations should mean higher
probability of winning

• Chess is not a chancy game

• But computational limitations make eval function chancy!

Which is better?

Evaluation functions
• A function of board features

• Use proportions of board-states with winning, losing, and drawing states to
compute probabilities.

• 72% winning (1.0)

• 20% draws (0.0)

• 8% losses (0.5)

• Then: evalFunction(board state) = (0.72 * 1) + (0.2 * 0) + (0.08 * 0.5)

• Use a weighted linear sum of board features (Can also use non-linear f)

• Chess book: pawn = 1, bishop/knight = 3, rook = 5, queen = 9

• Good pawn structure = A, king safety = B

• evalFunction(board state) = 𝑤1* pawns + 𝑤2 * bishops + 𝑤3 * knight + 𝑤4 * rook
+ … + 𝑤𝑛 * good pawn structure + ….

• All this information for chess comes from centuries of human expertise

• For new games?

When do we cutoff search

• Quiescence

• Horizon effect and singular extension

Forward pruning

• Beam search

• ProbCut – learn from experience to reduce the chance that
good moves will be pruned

• Like alpha-beta but prunes nodes that are probably outside the
current alpha-beta window

• Othello

• Combine all these techniques plus

Table lookups

• Chess

• Openings (perhaps upto 10 moves)

• Endings (5, 6 pieces left)

• King-Rook versus King (KRK)

• King-Bishop-Knight versus King (KBNK)

• Checkers

• Is solved!

Stochastic Games
• Chance is involved (Backgammon, Dominoes, …)

• Increases depth if modeled like:

Simple example (coin flipping)

Expected value minimax

Backgammon

With chance, exact values matter

Fog of War

• Use belief states to represent the set of states you could be in
given all the percepts so far

• Kriegspiel

• You can only see your pieces

• Judge says: Ok, illegal, check, …

What is a belief state?

Card Games

• Consider all possible deals of a deck of cards, solve each deal as a
fully observable game, then choose best move averaged over all
deals

• Computationally infeasible but:

• Let us do Monte Carlo approximation

• Deal a 100 deals, a 1000 deals, … whatever is computational feasible

• Choose best outcome move

• Read section 5.7 – state of the art game programs

Errors in evaluation functions!

Summary

• Games are fun to work on

• They give insight on several important issues in AI

• Perfection is unattainable  approximate

• Think about what to think about

• Uncertainty constrains assignment of values to states

• Optimal decisions depend on information state, not real state

• Games are to AI as grand prix racing is to automobile design

Searching with Nondeterministic actions

• In the past, we knew what state we were in and a solution was
a path from root to goal.

• Now, how do you find paths when the environment is partially
observable or non-deterministic or both and you don’t know
what state you are in?

• You make contingency plans

• If in state x then y

• You use percepts

• I did an action with a non-deterministic result, percepts can tell
me which result actually occurred

Erratic Vacuum cleaners

Suck

• Sometimes cleans
adjacent square 

• Sometimes deposits dirt
in current square 

• Transition Model
• Result  Results

• Suck({1})  {5, 7}

Erratic Vacuum cleaners
• Sometimes cleans adjacent square 

• Sometimes deposits dirt in current square


• Solution
• [Suck, if State == 5 then [Right, Suck] else []]

• Solutions are trees! Not sequences

• Solutions are nested if-then-else

• Many problems in the real world are of
this type because exact prediction is
impossible
• Keep your eyes open when you drive/walk/fly

And-Or search trees

And-Or search trees

• Or nodes (Suck or Right)

• And node {5, 7}  Results

• And-Or tree solution is a subtree:

• Goal node at every leaf

• One action at each Or-node

• Includes every outcome branch for And

• Same as:

• [Suck, if State == 5 then [Right, Suck] else []]

Remember the simple problem
solving agent?

And-Or problem solver

Recursive, breadth-first. Can use breadth-first, …

If there is a non-cyclic
solution it must be
findable from the earlier
occurrence of state in
path (Completeness)

Slippery vacuum worlds

• Movement actions sometimes fail and leave you in
the same location

• No acyclic solutions!

• Labels enable cycles

• [Suck, L1: Right, if State == 5 then L1 else Suck]

Search

• Problem solving by searching for a solution in a space of
possible solutions

• Uninformed versus Informed search

• Atomic representation of state

• Solutions are fixed sequences of actions

